1
|
Kadekawa K, Nishijima S, Noguchi K, Matsumoto S, Sugaya K. Elucidation of the pathophysiology of interstitial cystitis/bladder pain syndrome via experimental autoimmune cystitis rat model. Am J Physiol Regul Integr Comp Physiol 2024; 327:R250-R260. [PMID: 38842512 DOI: 10.1152/ajpregu.00269.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/20/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024]
Abstract
Although the cause of interstitial cystitis/painful bladder syndrome (IC/PBS) remains unknown, autoimmune involvement has been strongly suggested to be a contributing factor. To elucidate the pathophysiology of IC/PBS, we characterized the experimental autoimmune cystitis (EAC) in rats. Adult female Sprague-Dawley rats were divided into the EAC and control groups. The EAC rats were generated by administrating a homogenate of donor rat bladder tissue as a bladder antigen. The characteristics of the two groups were determined by evaluating pain behavior and conducting cystometry, histopathology, and molecular analyses. The EAC rats showed: 1) a decreased paw withdrawal threshold, 2) a reduced intercontraction interval on cystometry, 3) the irregular surfaces of the umbrella cells of epithelium throughout the bladder wall, 4) accumulation of stress granules in the bladder and vascular endothelium, 5)the increased expression of genes related to inflammation and ischemia at the mRNA and protein levels, 6) a significantly increased paw withdrawal threshold with pain treatment, and 7) the induction of glomerulation of the bladder wall, epithelium denudation, and lymphocyte infiltration in the interstitium by bladder distension. These results suggest that the EAC rats showed pain and frequent urination with the overexpression of inflammatory chemokines, reflecting clinical IC/BPS, and the bladder epithelium and vascular endothelium may be the primary sites of IC/BPS, and bladder injury, such as bladder distension, can cause progression from BPS to IC with Hunner lesions.NEW & NOTEWORTHY The experimental autoimmune cystitis model rats showed pain and frequent urination with the overexpression of inflammatory chemokines, reflecting clinical interstitial cystitis/painful bladder syndrome (IC/PBS), and the bladder epithelium and vascular endothelium may be the primary sites of IC/BPS, and bladder injury, such as bladder distension, can cause progression from BPS to IC with Hunner lesions.
Collapse
Affiliation(s)
- Katsumi Kadekawa
- Southern Knights' Laboratory Co., Ltd., Okinawa, Japan
- Department of Urology, Okinawa Kyodo Hospital, Okinawa, Japan
- University of Ryukyus, Okinawa, Japan
| | - Saori Nishijima
- Southern Knights' Laboratory Co., Ltd., Okinawa, Japan
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | | | - Seiji Matsumoto
- Asahikawa Medical University Hospital Clinical Research Support Center, Asahikawa, Japan
| | - Kimio Sugaya
- Southern Knights' Laboratory Co., Ltd., Okinawa, Japan
| |
Collapse
|
2
|
A Guide to Preclinical Models of Zoster-Associated Pain and Postherpetic Neuralgia. Curr Top Microbiol Immunol 2022; 438:189-221. [PMID: 34524508 DOI: 10.1007/82_2021_240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Reactivation of latent varicella-zoster virus (VZV) causes herpes zoster (HZ), which is commonly accompanied by acute pain and pruritus over the time course of a zosteriform rash. Although the rash and associated pain are self-limiting, a considerable fraction of HZ cases will subsequently develop debilitating chronic pain states termed postherpetic neuralgia (PHN). How VZV causes acute pain and the mechanisms underlying the transition to PHN are far from clear. The human-specific nature of VZV has made in vivo modeling of pain following reactivation difficult to study because no single animal can reproduce reactivated VZV disease as observed in the clinic. Investigations of VZV pathogenesis following primary infection have benefited greatly from human tissues harbored in immune-deficient mice, but modeling of acute and chronic pain requires an intact nervous system with the capability of transmitting ascending and descending sensory signals. Several groups have found that subcutaneous VZV inoculation of the rat induces prolonged and measurable changes in nociceptive behavior, indicating sensitivity that partially mimics the development of mechanical allodynia and thermal hyperalgesia seen in HZ and PHN patients. Although it is not a model of reactivation, the rat is beginning to inform how VZV infection can evoke a pain response and induce long-lasting alterations to nociception. In this review, we will summarize the rat pain models from a practical perspective and discuss avenues that have opened for testing of novel treatments for both zoster-associated pain and chronic PHN conditions, which remain in critical need of effective therapies.
Collapse
|
3
|
Ishida K, Mbanefo EC, Le L, Lamanna O, Pennington LF, Finkel JC, Jardetzky TS, Falcone FH, Hsieh MH. IPSE, a parasite-derived, host immunomodulatory infiltrin protein, alleviates resiniferatoxin-induced bladder pain. Mol Pain 2021; 16:1744806920970099. [PMID: 33342372 PMCID: PMC7756320 DOI: 10.1177/1744806920970099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The transient receptor potential cation channel subfamily V member 1 (TRPV1)
receptor is an important mediator of nociception and its expression is enriched
in nociceptive neurons. TRPV1 signaling has been implicated in bladder pain and
is a potential analgesic target. Resiniferatoxin is the most potent known
agonist of TRPV1. Acute exposure of the rat bladder to resiniferatoxin has been
demonstrated to result in pain-related freezing and licking behaviors that are
alleviated by virally encoded IL-4. The interleukin-4-inducing principle of
Schistosoma mansoni eggs (IPSE) is a powerful inducer of
IL-4 secretion, and is also known to alter host cell transcription through a
nuclear localization sequence-based mechanism. We previously reported that IPSE
ameliorates ifosfamide-induced bladder pain in an IL-4- and nuclear localization
sequence-dependent manner. We hypothesized that pre-administration of IPSE to
resiniferatoxin-challenged mice would dampen pain-related behaviors. IPSE indeed
lessened resiniferatoxin-triggered freezing behaviors in mice. This was a
nuclear localization sequence-dependent phenomenon, since administration of a
nuclear localization sequence mutant version of IPSE abrogated IPSE’s analgesic
effect. In contrast, IPSE’s analgesic effect did not seem IL-4-dependent, since
use of anti-IL-4 antibody in mice given both IPSE and resiniferatoxin did not
significantly affect freezing behaviors. RNA-Seq analysis of resiniferatoxin-
and IPSE-exposed bladders revealed differential expression of TNF/NF-κb-related
signaling pathway genes. In vitro testing of IPSE uptake by
urothelial cells and TRPV1-expressing neuronal cells showed uptake by both cell
types. Thus, IPSE’s nuclear localization sequence-dependent therapeutic effects
on TRPV1-mediated bladder pain may act on TRPV1-expressing neurons and/or may
rely upon urothelial mechanisms.
Collapse
Affiliation(s)
- Kenji Ishida
- Division of Urology, Department of Surgery, Children's National Hospital, Washington, DC, USA
| | - Evaristus C Mbanefo
- Division of Urology, Department of Surgery, Children's National Hospital, Washington, DC, USA
| | - Loc Le
- Biomedical Research Institute, Rockville, MD, USA
| | - Olivia Lamanna
- Division of Urology, Department of Surgery, Children's National Hospital, Washington, DC, USA
| | - Luke F Pennington
- Department of Structural Biology, Stanford University, Stanford, CA, USA
| | - Julia C Finkel
- Department of Anesthesiology, Pain and Perioperative Medicine, Children's National Hospital, Washington, DC, USA
| | | | - Franco H Falcone
- Institute of Parasitology, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Michael H Hsieh
- Division of Urology, Department of Surgery, Children's National Hospital, Washington, DC, USA
| |
Collapse
|
4
|
|
5
|
Majima T, Mori K, Kadekawa K, Takai S, Funahashi Y, Reinhart B, Goins WF, Gotoh M, Glorioso JC, Yoshimura N. The effect of herpes simplex virus vector‐mediated gene therapy of
protein phosphatase 1α
on bladder overactivity and nociception. Neurourol Urodyn 2018; 38:582-590. [DOI: 10.1002/nau.23882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/30/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Tsuyoshi Majima
- Department of UrologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvania
- Department of UrologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Kenichi Mori
- Department of UrologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvania
| | - Katsumi Kadekawa
- Department of UrologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvania
| | - Shun Takai
- Department of UrologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvania
- Department of UrologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Yasuhito Funahashi
- Department of UrologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Bonnie Reinhart
- Departments of Microbiology and Molecular GeneticsUniversity of Pittsburgh School of MedicinePittsburghPennsylvania
| | - William F. Goins
- Departments of Microbiology and Molecular GeneticsUniversity of Pittsburgh School of MedicinePittsburghPennsylvania
| | - Momokazu Gotoh
- Department of UrologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Joseph C. Glorioso
- Departments of Microbiology and Molecular GeneticsUniversity of Pittsburgh School of MedicinePittsburghPennsylvania
| | - Naoki Yoshimura
- Department of UrologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvania
| |
Collapse
|
6
|
Effects of herpes simplex virus vectors encoding poreless TRPV1 or protein phosphatase 1α in a rat cystitis model induced by hydrogen peroxide. Gene Ther 2017; 25:20-26. [PMID: 29057994 PMCID: PMC5814327 DOI: 10.1038/gt.2017.94] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 08/30/2017] [Accepted: 09/29/2017] [Indexed: 02/08/2023]
Abstract
Enhanced afferent excitability is considered to be an important pathophysiological basis of interstitial cystitis/bladder pain syndrome (IC/BPS). In addition, transient receptor potential vanilloid-1 (TRPV1) receptors are known to be involved in afferent sensitization. Animals with hydrogen peroxide (HP)-induced cystitis have been used as a model exhibiting pathologic characteristics of chronic inflammatory condition of the bladder. This study investigated the effect of gene therapy with replication-defective herpes simplex virus (HSV) vectors encoding poreless TRPV1 (PL) or protein phosphatase 1 α (PP1α), a negative regulator of TRPV1, using a HP-induced rat model of cystitis. HSV vectors encoding green fluorescent protein, PL or PP1α were inoculated into the bladder wall of female rats. After 1 week, 1% HP or normal saline was administered into the bladder, and the evaluations were performed 2 weeks after viral inoculation. In HP-induced cystitis rats, gene delivery of PL or PP1α decreased pain behavior as well as a reduction in the intercontraction interval. Also, both treatments reduced nerve growth factor expression in the bladder mucosa, reduced bladder inflammation characterized by infiltration of inflammatory cells and increased bladder weight. Taken together, HSV-mediated gene therapy targeting TRPV1 receptors could be effective for the treatment of IC/BPS.
Collapse
|
7
|
Kawamorita N, Yoshikawa S, Kashyap M, Tyagi P, Arai Y, Chancellor MB, Yoshimura N. Liposome Based Intravesical Therapy Targeting Nerve Growth Factor Ameliorates Bladder Hypersensitivity in Rats with Experimental Colitis. J Urol 2016; 195:1920-6. [PMID: 26780168 DOI: 10.1016/j.juro.2015.12.090] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2015] [Indexed: 12/30/2022]
Abstract
PURPOSE Pelvic organ cross sensitization is considered to contribute to overlapping symptoms in chronic pelvic pain syndrome. Nerve growth factor over expression in the bladder is reportedly involved in the symptom development of bladder pain syndrome/interstitial cystitis. We examined whether a reduction of over expressed nerve growth factor in the bladder by intravesical treatment with liposome and oligonucleotide conjugates would ameliorate bladder hypersensitivity in a rat colitis model. MATERIALS AND METHODS Adult female rats were divided into 1) a control group, 2) a colitis-oligonucleotide group with intracolonic TNBS (2,4,6-trinitrobenzene sulfonic acid) enema and intravesical liposome-oligonucleotide treatments, 2) a colitis-saline group with intracolonic TNBS and intravesical saline treatments, 4) a sham oligonucleotide group with intravesical liposome-oligonucleotide treatment without colitis and 5) a sham-saline group with intravesical saline treatment without colitis. Liposomes conjugated with nerve growth factor antisense oligonucleotide or saline solution were instilled in the bladder and 24 hours later colitis was induced by TNBS enema. Effects of nerve growth factor antisense treatment were evaluated by pain behavior, cystometry, molecular analyses and immunohistochemistry 10 days after TNBS treatment. RESULTS In colitis-oligonucleotide rats nerve growth factor antisense treatment ameliorated pain behavior and decreased a reduction in the intercontraction interval in response to acetic acid stimulation as well as nerve growth factor expression in the bladder mucosa. All were enhanced in colitis-saline rats compared to sham rats. CONCLUSIONS Nerve growth factor over expression in the bladder mucosa and bladder hypersensitivity induced after colitis were decreased by intravesical application of liposome-oligonucleotide targeting nerve growth factor. This suggests that local antinerve growth factor therapy could be effective treatment of bladder symptoms in chronic pelvic pain syndrome.
Collapse
Affiliation(s)
- Naoki Kawamorita
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Urology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Satoru Yoshikawa
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Mahendra Kashyap
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Pradeep Tyagi
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yoichi Arai
- Department of Urology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Michael B Chancellor
- Department of Urology, Oakland University William Beaumont School of Medicine, Royal Oak, Michigan
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
8
|
Wolfe D, Krisky D, Goss J, Wechuck J, Mata M, Fink DJ. Translating Gene Therapy for Pain from Animal Studies to the Clinic. Transl Neurosci 2016. [DOI: 10.1007/978-1-4899-7654-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
9
|
Ogawa T, Ishizuka O, Ueda T, Tyagi P, Chancellor MB, Yoshimura N. Current and emerging drugs for interstitial cystitis/bladder pain syndrome (IC/BPS). Expert Opin Emerg Drugs 2015; 20:555-70. [DOI: 10.1517/14728214.2015.1105216] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
10
|
Majima T, Funahashi Y, Takai S, Goins WF, Gotoh M, Tyagi P, Glorioso JC, Yoshimura N. Herpes Simplex Virus Vector-Mediated Gene Delivery of Poreless TRPV1 Channels Reduces Bladder Overactivity and Nociception in Rats. Hum Gene Ther 2015. [PMID: 26204493 DOI: 10.1089/hum.2015.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Increased afferent excitability has been proposed as an important pathophysiology of interstitial cystitis/bladder pain syndrome (IC/BPS) and overactive bladder (OAB). In this study, we investigated whether herpes simplex virus (HSV) vectors encoding poreless TRPV1, in which the segment in C terminus of TRPV1 receptor is deleted, suppress bladder overactivity and pain behavior using a rat model of chemical cystitis. Replication-defective HSV vectors encoding poreless TRPV1 were injected into the bladder wall of adult female Sprague-Dawley rats. Additionally, recombinant HSV virus (vHG) vectors were injected as control. Cystometry (CMG) under urethane anesthesia was performed 1 week after viral injection to evaluate bladder overactivity induced by resiniferatoxin (RTx, a TRPV1 agonist). RTx-induced nociceptive behavior such as licking (lower abdominal licking) and freezing (motionless head-turning) was observed 2 weeks after viral injection. GFP expression in L4/L6/S1 dorsal root ganglia and the bladder as well as c-Fos-positive cells in the L6 spinal cord dorsal horn were also evaluated 2 weeks after viral injection. In CMG, the poreless TRPV1 vector-treated group showed a significantly smaller reduction in intercontraction intervals and voided volume after RTx infusion than the vHG-treated control group. The number of the RTx-induced freezing events was significantly decreased in the poreless TRPV1 group than in the vHG group, whereas there was no significant difference of the number of RTx-induced licking events between groups. The number of c-Fos-positive cells in the DCM and SPN regions of the L6 spinal dorsal horn was significantly smaller in the poreless TRPV1 group than in the vHG group. Our results indicated that HSV vector-mediated gene delivery of poreless TRPV1 had a therapeutic effect on TRPV1-mediated bladder overactivity and pain behavior. Thus, the HSV vector-mediated gene therapy targeting TRPV1 receptors could be a novel modality for the treatment of OAB and/or hypersensitive bladder disorders such as IC/BPS.
Collapse
Affiliation(s)
- Tsuyoshi Majima
- 1 Department of Urology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania.,2 Department of Urology, Nagoya University Graduate School of Medicine , Nagoya, Japan
| | - Yasuhito Funahashi
- 2 Department of Urology, Nagoya University Graduate School of Medicine , Nagoya, Japan
| | - Shun Takai
- 1 Department of Urology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania.,2 Department of Urology, Nagoya University Graduate School of Medicine , Nagoya, Japan
| | - William F Goins
- 3 Department of Microbiology & Molecular Genetics, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Momokazu Gotoh
- 2 Department of Urology, Nagoya University Graduate School of Medicine , Nagoya, Japan
| | - Pradeep Tyagi
- 1 Department of Urology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Joseph C Glorioso
- 3 Department of Microbiology & Molecular Genetics, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Naoki Yoshimura
- 1 Department of Urology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| |
Collapse
|
11
|
Dinis S, de Oliveira JT, Pinto R, Cruz F, Buffington CT, Dinis P. From bladder to systemic syndrome: concept and treatment evolution of interstitial cystitis. Int J Womens Health 2015; 7:735-44. [PMID: 26229509 PMCID: PMC4516339 DOI: 10.2147/ijwh.s60798] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Interstitial cystitis, presently known as bladder pain syndrome, has been recognized for over a century but is still far from being understood. Its etiology is unknown and the syndrome probably harbors different diseases. Autoimmune dysfunction, urothelial leakage, infection, central and peripheral nervous system dysfunction, genetic disease, childhood trauma/abuse, and subsequent stress response system dysregulation might be implicated. Management is slowly evolving from a solo act by the end-organ specialist to a team approach based on new typing and phenotyping of the disease. However, oral and invasive treatments are still largely aimed at the bladder and are based on currently proposed pathophysiologic mechanisms. Future research will better define the disease, permitting individualization of treatment.
Collapse
Affiliation(s)
- Sara Dinis
- Faculty of Medicine, University of Porto, Porto, Portugal ; Department of Obstetrics and Gynecology, Hospital de São João, Porto, Portugal
| | - Joana Tavares de Oliveira
- Faculty of Veterinary Medicine, ULHT, Lisbon, Portugal ; Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, Porto, Portugal
| | - Rui Pinto
- Faculty of Medicine, University of Porto, Porto, Portugal ; Department of Urology, Hospital de São João, Porto, Portugal
| | - Francisco Cruz
- Faculty of Medicine, University of Porto, Porto, Portugal ; Department of Urology, Hospital de São João, Porto, Portugal
| | - Ca Tony Buffington
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, OH, USA
| | - Paulo Dinis
- Faculty of Medicine, University of Porto, Porto, Portugal ; Department of Urology, Hospital de São João, Porto, Portugal
| |
Collapse
|
12
|
Yoshimura N, Oguchi T, Yokoyama H, Funahashi Y, Yoshikawa S, Sugino Y, Kawamorita N, Kashyap MP, Chancellor MB, Tyagi P, Ogawa T. Bladder afferent hyperexcitability in bladder pain syndrome/interstitial cystitis. Int J Urol 2015; 21 Suppl 1:18-25. [PMID: 24807488 DOI: 10.1111/iju.12308] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 08/27/2013] [Indexed: 12/30/2022]
Abstract
Bladder pain syndrome/interstitial cystitis is a disease with lower urinary tract symptoms, such as bladder pain and urinary frequency, which results in seriously impaired quality of life of patients. The extreme pain and urinary frequency are often difficult to treat. Although the etiology of bladder pain syndrome/interstitial cystitis is still not known, there is increasing evidence showing that afferent hyperexcitability as a result of neurogenic bladder inflammation and urothelial dysfunction is important to the pathophysiological basis of symptom development. Further investigation of the pathophysiology will lead to the effective treatment of patients with bladder pain syndrome/interstitial cystitis.
Collapse
Affiliation(s)
- Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Abstract
This paper is the thirty-sixth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2013 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
15
|
Yoshikawa S, Kawamorita N, Oguchi T, Funahashi Y, Tyagi P, Chancellor MB, Yoshimura N. Pelvic organ cross-sensitization to enhance bladder and urethral pain behaviors in rats with experimental colitis. Neuroscience 2014; 284:422-429. [PMID: 25445197 DOI: 10.1016/j.neuroscience.2014.08.064] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/19/2014] [Accepted: 08/26/2014] [Indexed: 12/12/2022]
Abstract
Neural cross-sensitization has been postulated as a mechanism underlying overlaps of chronic pelvic pain disorders such as bladder pain syndrome/interstitial cystitis (BPS/IC) and irritable bowel syndrome (IBS). Animals with experimental colitis have been used to study the underlying mechanisms for overlapped pelvic pain symptoms, and shown to exhibit bladder overactivity evidenced by frequent voiding; however, it has not directly been evaluated whether pain sensation derived from the lower urinary tract is enhanced in colitis models. Also, the cross-sensitization between the colon and urethra has not been studied previously. In the present study, we therefore investigated pain behaviors induced by nociceptive stimuli in the lower urinary tract and the involvement of C-fiber afferent pathways using rats with colitis induced by intracolonic application of 2,4,6-trinitrobenzenesulfonic acid (TNBS). In TNBS-induced colitis rats at 10 days, intravesical application of resiniferatoxin (RTx) induced a significantly greater number of episodes of both licking and freezing behaviors, which were reduced by capsaicin-sensitive C-fiber afferent desensitization. Histochemical studies using fluorescent dye tracers injected into the colon, bladder or urethra showed that dichotomized afferent neurons comprised 6.9-14.5% of L1, L6 and S1 dorsal root ganglion (DRG) neurons innervating the colon or the lower urinary tract. Transient receptor potential vanilloid 1 (TRPV1) mRNA expression was significantly increased in, the bladder, urethra and S1 DRG in colitis rats. An increase in myeloperoxidase (MPO) activity was found in the colon, but not in the bladder or urethra after intracolonic TNBS treatment. These results indicate that TNBS-induced colitis increased pain sensitivity in the bladder and urethra via activation of C-fiber afferent pathways due to colon-to-bladder and colon-to-urethral cross-sensitization, suggesting the contribution of pelvic organ cross-sensitization mechanisms to overlapped pain symptoms in BPS/IC and IBS.
Collapse
Affiliation(s)
- S Yoshikawa
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - N Kawamorita
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - T Oguchi
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Y Funahashi
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - P Tyagi
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - M B Chancellor
- Department of Urology, William Beaumont Hospital, Royal Oak, MI, USA
| | - N Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
16
|
Guedon JMG, Zhang M, Glorioso JC, Goins WF, Kinchington PR. Relief of pain induced by varicella-zoster virus in a rat model of post-herpetic neuralgia using a herpes simplex virus vector expressing enkephalin. Gene Ther 2014; 21:694-702. [PMID: 24830437 DOI: 10.1038/gt.2014.43] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/24/2014] [Accepted: 03/27/2014] [Indexed: 11/09/2022]
Abstract
Acute and chronic pain (post-herpetic neuralgia or PHN) are encountered in patients with herpes zoster that is caused by reactivation of varicella-zoster virus (VZV) from a state of neuronal latency. PHN is often refractory to current treatments, and additional strategies for pain relief are needed. Here we exploited a rat footpad model of PHN to show that herpes simplex virus (HSV) vector-mediated gene delivery of human preproenkephalin (vHPPE) effectively reduced chronic VZV-induced nocifensive indicators of pain. VZV inoculated at the footpad induced prolonged mechanical allodynia and thermal hyperalgesia that did not develop in controls or with ultraviolet light-inactivated VZV. Subsequent footpad administration of vHPPE relieved VZV-induced pain behaviors in a dose-dependent manner for extended periods, and prophylactic vector administration prevented VZV-induced pain from developing. Short-term pain relief following low-dose vHPPE administration could be effectively prolonged by vector re-administration. HPPE transcripts were increased three- to fivefold in ipsilateral ganglia, but not in the contralateral dorsal root ganglia. VZV hypersensitivity and its relief by vHPPE were not affected by peripheral delivery of opioid receptor agonist or antagonist, suggesting that the efficacy was mediated at the ganglion and/or spinal cord level. These results support further development of ganglionic expression of enkephalin as a novel treatment for the pain associated with Zoster.
Collapse
Affiliation(s)
- J-M G Guedon
- 1] Graduate Program in Molecular Virology and Microbiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA [2] Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - M Zhang
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - J C Glorioso
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - W F Goins
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - P R Kinchington
- 1] Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA [2] Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
17
|
Huang W, Zheng W, Ouyang H, Yi H, Liu S, Zeng W, Levitt RC, Candiotti KA, Lubarsky DA, Hao S. Mechanical allodynia induced by nucleoside reverse transcriptase inhibitor is suppressed by p55TNFSR mediated by herpes simplex virus vector through the SDF1α/CXCR4 system in rats. Anesth Analg 2014; 118:671-80. [PMID: 24557113 DOI: 10.1213/ane.0000000000000079] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND In the human immunodeficiency virus (HIV)-associated sensory neuropathy, neuropathic pain associated with the use of nucleoside reverse transcriptase inhibitors (NRTIs) in patients with HIV/acquired immunodeficiency syndrome is clinically common. While evidence demonstrates that neuropathic pain is influenced by neuroinflammatory events that include the proinflammatory molecules, tumor necrosis factor-α (TNF-α), stromal cell-derived factor 1-α (SDF1-α), and C-X-C chemokine receptor type 4 (CXCR4), the detailed mechanisms by which NRTIs contribute to the development of neuropathic pain are not known. In this study, we investigated the role of these proinflammatory molecules in the dorsal root ganglion (DRG) and the spinal dorsal horn in NRTIs-mediated neuropathic pain state. METHODS Neuropathic pain was induced by intraperitoneal administration of 2',3'-dideoxycytidine (ddC, one of the NRTIs). Mechanical threshold was tested using von Frey filament fibers. Nonreplicating herpes simplex virus (HSV) vectors expressing p55 TNF soluble receptor (p55TNFSR) were inoculated into hindpaw of rats. The expression of TNF-α, SDF1-α, and CXCR4 in both the lumbar spinal cord and the L4/5 DRG was examined using Western blots. Intrathecal CXCR4 antagonist was administered. RESULTS The present study demonstrated that (1) systemic ddC induced upregulation of TNF-α, SDF1-α, and CXCR4 in both the lumbar spinal cord and the L4/5 DRG; (2) p55TNFSR mediated by a nonreplicating HSV vector reversed mechanical allodynia induced by systemic ddC; (3) intrathecal administration of the CXCR4 antagonist AMD3100 increased mechanical threshold; and (4) HSV vector expressing p55TNFSR reversed upregulation of TNF-α, SDF1-α, and CXCR4 induced by ddC in the lumbar spinal dorsal horn and the DRG. CONCLUSIONS Our studies demonstrate that TNF-α through the SDF1/CXCR4 system is involved in the NRTIs-related neuropathic pain state and that blocking the signaling of these proinflammatory molecules is able to reduce NRTIs-related neuropathic pain. These results provide a novel mechanism-based approach (gene therapy) to treating HIV-associated neuropathic pain.
Collapse
Affiliation(s)
- Wan Huang
- From the *Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, Florida; †Department of Anesthesiology, State Key Laboratory of Oncology on Southern China, Cancer Center, Sun Yat-Sen University, Guangzhou, China; ‡Department of Neurology, University of Michigan Medical School, Ann Arbor, Michigan; §Hussman Institute of Human Genomics, University of Miami Miller School of Medicine; and ‖Veterans Affairs Medical Center, Miami, Florida
| | | | | | | | | | | | | | | | | | | |
Collapse
|