1
|
Puzzo F, Crossley MP, Goswami A, Zhang F, Pekrun K, Garzon JL, Cimprich KA, Kay MA. AAV-mediated genome editing is influenced by the formation of R-loops. Mol Ther 2024:S1525-0016(24)00660-9. [PMID: 39369271 DOI: 10.1016/j.ymthe.2024.09.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/05/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024] Open
Abstract
Recombinant adeno-associated viral vectors (rAAV) hold an intrinsic ability to stimulate homologous recombination (AAV-HR) and are the most used in clinical settings for in vivo gene therapy. However, rAAVs also integrate throughout the genome. Here, we describe DNA-RNA immunoprecipitation sequencing (DRIP-seq) in murine HEPA1-6 hepatoma cells and whole murine liver to establish the similarities and differences in genomic R-loop formation in a transformed cell line and intact tissue. We show enhanced AAV-HR in mice upon genetic and pharmacological upregulation of R-loops. Selecting the highly expressed Albumin gene as a model locus for genome editing in both in vitro and in vivo experiments showed that the R-loop prone 3' end of Albumin was efficiently edited by AAV-HR, whereas the upstream R-loop-deficient region did not result in detectable vector integration. In addition, we found a positive correlation between previously reported off-target rAAV integration sites and R-loop enriched genomic regions. Thus, we conclude that high levels of R-loops, present in highly transcribed genes, may promote rAAV vector genome integration. These findings may shed light on potential mechanisms for improving the safety and efficacy of genome editing by modulating R-loops and may enhance our ability to predict regions most susceptible to off-target insertional mutagenesis by rAAV vectors.
Collapse
Affiliation(s)
- Francesco Puzzo
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Magdalena P Crossley
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Aranyak Goswami
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Feijie Zhang
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Katja Pekrun
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Jada L Garzon
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Karlene A Cimprich
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Mark A Kay
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
2
|
D'Alessio AM, Boffa I, De Stefano L, Soria LR, Brunetti-Pierri N. Liver gene transfer for metabolite detoxification in inherited metabolic diseases. FEBS Lett 2024; 598:2372-2384. [PMID: 38884367 DOI: 10.1002/1873-3468.14957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
Inherited metabolic disorders (IMDs) are a growing group of genetic diseases caused by defects in enzymes that mediate cellular metabolism, often resulting in the accumulation of toxic substrates. The liver is a highly metabolically active organ that hosts several thousands of chemical reactions. As such, it is an organ frequently affected in IMDs. In this article, we review current approaches for liver-directed gene-based therapy aimed at metabolite detoxification in a variety of IMDs. Moreover, we discuss current unresolved challenges in gene-based therapies for IMDs.
Collapse
Affiliation(s)
- Alfonso M D'Alessio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, University of Naples Federico II, Naples, Italy
| | - Iolanda Boffa
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Azienda Ospedaliera Universitaria Federico II, Naples, Italy
| | - Lucia De Stefano
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Leandro R Soria
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, University of Naples Federico II, Naples, Italy
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| |
Collapse
|
3
|
Simoni C, Barbon E, Muro AF, Cantore A. In vivo liver targeted genome editing as therapeutic approach: progresses and challenges. Front Genome Ed 2024; 6:1458037. [PMID: 39246827 PMCID: PMC11378722 DOI: 10.3389/fgeed.2024.1458037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024] Open
Abstract
The liver is an essential organ of the body that performs several vital functions, including the metabolism of biomolecules, foreign substances, and toxins, and the production of plasma proteins, such as coagulation factors. There are hundreds of genetic disorders affecting liver functions and, for many of them, the only curative option is orthotopic liver transplantation, which nevertheless entails many risks and long-term complications. Some peculiar features of the liver, such as its large blood flow supply and the tolerogenic immune environment, make it an attractive target for in vivo gene therapy approaches. In recent years, several genome-editing tools mainly based on the clustered regularly interspaced short palindromic repeats associated protein 9 (CRISPR-Cas9) system have been successfully exploited in the context of liver-directed preclinical or clinical therapeutic applications. These include gene knock-out, knock-in, activation, interference, or base and prime editing approaches. Despite many achievements, important challenges still need to be addressed to broaden clinical applications, such as the optimization of the delivery methods, the improvement of the editing efficiency, and the risk of on-target or off-target unwanted effects and chromosomal rearrangements. In this review, we highlight the latest progress in the development of in vivo liver-targeted genome editing approaches for the treatment of genetic disorders. We describe the technological advancements that are currently under investigation, the challenges to overcome for clinical applicability, and the future perspectives of this technology.
Collapse
Affiliation(s)
- Chiara Simoni
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Elena Barbon
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrés F Muro
- International Center for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Alessio Cantore
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
4
|
Hatanaka F, Suzuki K, Shojima K, Yu J, Takahashi Y, Sakamoto A, Prieto J, Shokhirev M, Nuñez Delicado E, Rodriguez Esteban C, Izpisua Belmonte JC. Therapeutic strategy for spinal muscular atrophy by combining gene supplementation and genome editing. Nat Commun 2024; 15:6191. [PMID: 39048567 PMCID: PMC11269569 DOI: 10.1038/s41467-024-50095-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 07/01/2024] [Indexed: 07/27/2024] Open
Abstract
Defect in the SMN1 gene causes spinal muscular atrophy (SMA), which shows loss of motor neurons, muscle weakness and atrophy. While current treatment strategies, including small molecules or viral vectors, have shown promise in improving motor function and survival, achieving a definitive and long-term correction of SMA's endogenous mutations and phenotypes remains highly challenging. We have previously developed a CRISPR-Cas9 based homology-independent targeted integration (HITI) strategy, enabling unidirectional DNA knock-in in both dividing and non-dividing cells in vivo. In this study, we demonstrated its utility by correcting an SMA mutation in mice. When combined with Smn1 cDNA supplementation, it exhibited long-term therapeutic benefits in SMA mice. Our observations may provide new avenues for the long-term and efficient treatment of inherited diseases.
Collapse
Affiliation(s)
- Fumiyuki Hatanaka
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Altos Labs, Inc., 5510 Morehouse Dr., Ste. 300, San Diego, CA, 92121, USA
| | - Keiichiro Suzuki
- Institute for Advanced Co-Creation Studies, Osaka University, Osaka, 560-8531, Japan
- Graduate School of Engineering Science, Osaka University, Osaka, 560-8531, Japan
- Graduate School of Frontier Bioscience, Osaka University, Osaka, 565-0871, Japan
| | - Kensaku Shojima
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Department of General Internal Medicine, Hyogo Medical University School of Medicine, Hyogo, 663-8131, Japan
| | - Jingting Yu
- Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Yuta Takahashi
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Altos Labs, Inc., 5510 Morehouse Dr., Ste. 300, San Diego, CA, 92121, USA
| | - Akihisa Sakamoto
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Javier Prieto
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Maxim Shokhirev
- Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Estrella Nuñez Delicado
- Universidad Catolica, San Antonio de Murcia, Campus de los Jeronimos, 135, 30107, Guadalupe, Spain
| | - Concepcion Rodriguez Esteban
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Altos Labs, Inc., 5510 Morehouse Dr., Ste. 300, San Diego, CA, 92121, USA
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
- Altos Labs, Inc., 5510 Morehouse Dr., Ste. 300, San Diego, CA, 92121, USA.
| |
Collapse
|
5
|
Esposito F, Dell'Aquila F, Rhiel M, Auricchio S, Chmielewski KO, Andrieux G, Ferla R, Horrach PS, Padmanabhan A, Di Cunto R, Notaro S, Santeularia ML, Boerries M, Dell'Anno M, Nusco E, Padula A, Nutarelli S, Cornu TI, Sorrentino NC, Piccolo P, Trapani I, Cathomen T, Auricchio A. Safe and effective liver-directed AAV-mediated homology-independent targeted integration in mouse models of inherited diseases. Cell Rep Med 2024; 5:101619. [PMID: 38897206 PMCID: PMC11293346 DOI: 10.1016/j.xcrm.2024.101619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/13/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
Liver-directed adeno-associated viral (AAV) vector-mediated homology-independent targeted integration (AAV-HITI) by CRISPR-Cas9 at the highly transcribed albumin locus is under investigation to provide sustained transgene expression following neonatal treatment. We show that targeting the 3' end of the albumin locus results in productive integration in about 15% of mouse hepatocytes achieving therapeutic levels of systemic proteins in two mouse models of inherited diseases. We demonstrate that full-length HITI donor DNA is preferentially integrated upon nuclease cleavage and that, despite partial AAV genome integrations in the target locus, no gross chromosomal rearrangements or insertions/deletions at off-target sites are found. In line with this, no evidence of hepatocellular carcinoma is observed within the 1-year follow-up. Finally, AAV-HITI is effective at vector doses considered safe if directly translated to humans providing therapeutic efficacy in the adult liver in addition to newborn. Overall, our data support the development of this liver-directed AAV-based knockin strategy.
Collapse
Affiliation(s)
- Federica Esposito
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Fabio Dell'Aquila
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Medical Genetics, Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Manuel Rhiel
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, Freiburg, Germany; Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Freiburg, Germany
| | - Stefano Auricchio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Kay Ole Chmielewski
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, Freiburg, Germany; Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Freiburg, Germany; PhD Program, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Rita Ferla
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | | | - Arjun Padmanabhan
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Roberto Di Cunto
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Simone Notaro
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | | | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK), Partner site Freiburg, a partnership between DKFZ and Medical Center - University of Freiburg, Freiburg, Germany
| | | | - Edoardo Nusco
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Agnese Padula
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Sofia Nutarelli
- Department of Life Science and Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - Tatjana I Cornu
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, Freiburg, Germany; Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nicolina Cristina Sorrentino
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Pasquale Piccolo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Ivana Trapani
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Medical Genetics, Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, Freiburg, Germany; Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK), Partner site Freiburg, a partnership between DKFZ and Medical Center - University of Freiburg, Freiburg, Germany
| | - Alberto Auricchio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Gene Therapy Joint lab, Dept. of Advanced Biomedical Sciences and Dept. of Translational Medicine, University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
6
|
Li G, Tian S, Sun X, Zhao M, Zhang F, Zhang JP, Cheng T, Zhang XB. Leveraging CRISPR-Cas9 for Accurate Detection of AAV-Neutralizing Antibodies: The AAV-HDR Method. Hum Gene Ther 2024; 35:490-505. [PMID: 38069573 DOI: 10.1089/hum.2023.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Affiliation(s)
- Guohua Li
- Department of Cell Biology, Tianjin Medical University, Tianjin, China
| | - Saining Tian
- Department of Cell Biology, Tianjin Medical University, Tianjin, China
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xinyu Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Mei Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Feng Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Jian-Ping Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Tao Cheng
- Department of Cell Biology, Tianjin Medical University, Tianjin, China
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Xiao-Bing Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| |
Collapse
|
7
|
Puzzo F, Crossley MP, Goswami A, Zhang F, Pekrun K, Garzon JL, Cimprich KA, Kay MA. AAV-mediated genome editing is influenced by the formation of R-loops. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.592855. [PMID: 38766176 PMCID: PMC11100726 DOI: 10.1101/2024.05.07.592855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Recombinant adeno-associated viral vectors (rAAV) hold an intrinsic ability to stimulate homologous recombination (AAV-HR) and are the most used in clinical settings for in vivo gene therapy. However, rAAVs also integrate throughout the genome. Here, we describe DNA-RNA immunoprecipitation sequencing (DRIP-seq) in murine HEPA1-6 hepatoma cells and whole murine liver to establish the similarities and differences in genomic R-loop formation in a transformed cell line and intact tissue. We show enhanced AAV-HR in mice upon genetic and pharmacological upregulation of R-loops. Selecting the highly expressed Albumin gene as a model locus for genome editing in both in vitro and in vivo experiments showed that the R-loop prone, 3' end of Albumin was efficiently edited by AAV-HR, whereas the upstream R-loop-deficient region did not result in detectable vector integration. In addition, we found a positive correlation between previously reported off-target rAAV integration sites and R-loop enriched genomic regions. Thus, we conclude that high levels of R-loops, present in highly transcribed genes, promote rAAV vector genome integration. These findings may shed light on potential mechanisms for improving the safety and efficacy of genome editing by modulating R-loops and may enhance our ability to predict regions most susceptible to off-target insertional mutagenesis by rAAV vectors.
Collapse
Affiliation(s)
- Francesco Puzzo
- Department of Genetics, Stanford University, Stanford, CA
- Department of Pediatrics, Stanford University, Stanford, CA
| | | | - Aranyak Goswami
- Department of Genetics, Stanford University, Stanford, CA
- Department of Pediatrics, Stanford University, Stanford, CA
| | - Feijie Zhang
- Department of Genetics, Stanford University, Stanford, CA
- Department of Pediatrics, Stanford University, Stanford, CA
| | - Katja Pekrun
- Department of Genetics, Stanford University, Stanford, CA
- Department of Pediatrics, Stanford University, Stanford, CA
| | - Jada L Garzon
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA
| | - Karlene A Cimprich
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA
| | - Mark A Kay
- Department of Genetics, Stanford University, Stanford, CA
- Department of Pediatrics, Stanford University, Stanford, CA
| |
Collapse
|
8
|
Hwu WL, Chang K, Liu YH, Wang HC, Lee NC, Chien YH. Gene therapy corrects the neurological deficits of mice with sialidosis. Gene Ther 2024; 31:263-272. [PMID: 38321198 DOI: 10.1038/s41434-024-00443-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 02/08/2024]
Abstract
Patients with sialidosis (mucolipidosis type I) type I typically present with myoclonus, seizures, ataxia, cherry-red spots, and blindness because of mutations in the neuraminidase 1 (NEU1) gene. Currently, there is no treatment for sialidosis. In this study, we developed an adeno-associated virus (AAV)-mediated gene therapy for a Neu1 knockout (Neu1-/-) mouse model of sialidosis. The vector, AAV9-P3-NP, included the human NEU1 promoter, NEU1 cDNA, IRES, and CTSA cDNA. Untreated Neu1-/- mice showed astrogliosis and microglial LAMP1 accumulation in the nervous system, including brain, spinal cord, and dorsal root ganglion, together with impaired motor function. Coexpression of NEU1 and protective protein/cathepsin A (PPCA) in neonatal Neu1-/- mice by intracerebroventricular injection, and less effective by facial vein injection, decreased astrogliosis and LAMP1 accumulation in the nervous system and improved rotarod performance of the treated mice. Facial vein injection also improved the grip strength and survival of Neu1-/- mice. Therefore, cerebrospinal fluid delivery of AAV9-P3-NP, which corrects the neurological deficits of mice with sialidosis, could be a suitable treatment for patients with sialidosis type I. After intracerebroventricular or facial vein injection of AAV vectors, NEU1 and PPCA are expressed together. PPCA-protected NEU1 is then sent to lysosomes, where β-Gal binds to this complex to form a multienzyme complex in order to execute its function.
Collapse
Affiliation(s)
- Wuh-Liang Hwu
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan, ROC.
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan, ROC.
- Precision Medical Center, China Medical University Hospital, Taichung City, Taiwan, ROC.
| | - Karine Chang
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Yu-Han Liu
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Hao-Chun Wang
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Ni-Chung Lee
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan, ROC
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Yin-Hsiu Chien
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan, ROC
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan, ROC
| |
Collapse
|
9
|
Rana J, Herzog RW, Muñoz-Melero M, Yamada K, Kumar SR, Lam AK, Markusic DM, Duan D, Terhorst C, Byrne BJ, Corti M, Biswas M. B cell focused transient immune suppression protocol for efficient AAV readministration to the liver. Mol Ther Methods Clin Dev 2024; 32:101216. [PMID: 38440160 PMCID: PMC10911854 DOI: 10.1016/j.omtm.2024.101216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/18/2024] [Indexed: 03/06/2024]
Abstract
Adeno-associated virus (AAV) vectors are used for correcting multiple genetic disorders. Although the goal is to achieve lifelong correction with a single vector administration, the ability to redose would enable the extension of therapy in cases in which initial gene transfer is insufficient to achieve a lasting cure, episomal vector forms are lost in growing organs of pediatric patients, or transgene expression is diminished over time. However, AAV typically induces potent and long-lasting neutralizing antibodies (NAbs) against capsid that prevents re-administration. To prevent NAb formation in hepatic AAV8 gene transfer, we developed a transient B cell-targeting protocol using a combination of monoclonal Ab therapy against CD20 (for B cell depletion) and BAFF (to slow B cell repopulation). Initiation of immunosuppression before (rather than at the time of) vector administration and prolonged anti-BAFF treatment prevented immune responses against the transgene product and abrogated prolonged IgM formation. As a result, vector re-administration after immune reconstitution was highly effective. Interestingly, re-administration before the immune system had fully recovered achieved further elevated levels of transgene expression. Finally, this immunosuppression protocol reduced Ig-mediated AAV uptake by immune cell types with implications to reduce the risk of immunotoxicities in human gene therapy with AAV.
Collapse
Affiliation(s)
- Jyoti Rana
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - Roland W. Herzog
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - Maite Muñoz-Melero
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - Kentaro Yamada
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - Sandeep R.P. Kumar
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - Anh K. Lam
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - David M. Markusic
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Barry J. Byrne
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32607, USA
| | - Manuela Corti
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32607, USA
| | - Moanaro Biswas
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| |
Collapse
|
10
|
Muñoz S, Bertolin J, Jimenez V, Jaén ML, Garcia M, Pujol A, Vilà L, Sacristan V, Barbon E, Ronzitti G, El Andari J, Tulalamba W, Pham QH, Ruberte J, VandenDriessche T, Chuah MK, Grimm D, Mingozzi F, Bosch F. Treatment of infantile-onset Pompe disease in a rat model with muscle-directed AAV gene therapy. Mol Metab 2024; 81:101899. [PMID: 38346589 PMCID: PMC10877955 DOI: 10.1016/j.molmet.2024.101899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/03/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024] Open
Abstract
OBJECTIVE Pompe disease (PD) is caused by deficiency of the lysosomal enzyme acid α-glucosidase (GAA), leading to progressive glycogen accumulation and severe myopathy with progressive muscle weakness. In the Infantile-Onset PD (IOPD), death generally occurs <1 year of age. There is no cure for IOPD. Mouse models of PD do not completely reproduce human IOPD severity. Our main objective was to generate the first IOPD rat model to assess an innovative muscle-directed adeno-associated viral (AAV) vector-mediated gene therapy. METHODS PD rats were generated by CRISPR/Cas9 technology. The novel highly myotropic bioengineered capsid AAVMYO3 and an optimized muscle-specific promoter in conjunction with a transcriptional cis-regulatory element were used to achieve robust Gaa expression in the entire muscular system. Several metabolic, molecular, histopathological, and functional parameters were measured. RESULTS PD rats showed early-onset widespread glycogen accumulation, hepato- and cardiomegaly, decreased body and tissue weight, severe impaired muscle function and decreased survival, closely resembling human IOPD. Treatment with AAVMYO3-Gaa vectors resulted in widespread expression of Gaa in muscle throughout the body, normalizing glycogen storage pathology, restoring muscle mass and strength, counteracting cardiomegaly and normalizing survival rate. CONCLUSIONS This gene therapy holds great potential to treat glycogen metabolism alterations in IOPD. Moreover, the AAV-mediated approach may be exploited for other inherited muscle diseases, which also are limited by the inefficient widespread delivery of therapeutic transgenes throughout the muscular system.
Collapse
Affiliation(s)
- Sergio Muñoz
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Joan Bertolin
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Veronica Jimenez
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Maria Luisa Jaén
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Miquel Garcia
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Anna Pujol
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Laia Vilà
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Victor Sacristan
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Elena Barbon
- INTEGRARE, Genethon, INSERM UMR951, Univ Evry, Université Paris-Saclay, 91002, Evry, France
| | - Giuseppe Ronzitti
- INTEGRARE, Genethon, INSERM UMR951, Univ Evry, Université Paris-Saclay, 91002, Evry, France
| | - Jihad El Andari
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, BioQuant Center, Medical Faculty, University of Heidelberg, 69120, Heidelberg, Germany
| | - Warut Tulalamba
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel (VUB), B-1090, Brussels, Belgium; Department of Cardiovascular Sciences, Center for Molecular & Vascular Biology, University of Leuven, 3000, Leuven, Belgium
| | - Quang Hong Pham
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel (VUB), B-1090, Brussels, Belgium; Department of Cardiovascular Sciences, Center for Molecular & Vascular Biology, University of Leuven, 3000, Leuven, Belgium
| | - Jesus Ruberte
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Thierry VandenDriessche
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel (VUB), B-1090, Brussels, Belgium; Department of Cardiovascular Sciences, Center for Molecular & Vascular Biology, University of Leuven, 3000, Leuven, Belgium
| | - Marinee K Chuah
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel (VUB), B-1090, Brussels, Belgium; Department of Cardiovascular Sciences, Center for Molecular & Vascular Biology, University of Leuven, 3000, Leuven, Belgium
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, BioQuant Center, Medical Faculty, University of Heidelberg, 69120, Heidelberg, Germany; German Center for Infection Research (DZIF) and German Center for Cardiovascular Research (DZHK), Partner site Heidelberg, Heidelberg, Germany
| | - Federico Mingozzi
- INTEGRARE, Genethon, INSERM UMR951, Univ Evry, Université Paris-Saclay, 91002, Evry, France
| | - Fatima Bosch
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain.
| |
Collapse
|
11
|
Torella L, Klermund J, Bilbao-Arribas M, Tamayo I, Andrieux G, Chmielewski KO, Vales A, Olagüe C, Moreno-Luqui D, Raimondi I, Abad A, Torrens-Baile J, Salido E, Huarte M, Hernaez M, Boerries M, Cathomen T, Zabaleta N, Gonzalez-Aseguinolaza G. Efficient and safe therapeutic use of paired Cas9-nickases for primary hyperoxaluria type 1. EMBO Mol Med 2024; 16:112-131. [PMID: 38182795 PMCID: PMC10897483 DOI: 10.1038/s44321-023-00008-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 01/07/2024] Open
Abstract
The therapeutic use of adeno-associated viral vector (AAV)-mediated gene disruption using CRISPR-Cas9 is limited by potential off-target modifications and the risk of uncontrolled integration of vector genomes into CRISPR-mediated double-strand breaks. To address these concerns, we explored the use of AAV-delivered paired Staphylococcus aureus nickases (D10ASaCas9) to target the Hao1 gene for the treatment of primary hyperoxaluria type 1 (PH1). Our study demonstrated effective Hao1 gene disruption, a significant decrease in glycolate oxidase expression, and a therapeutic effect in PH1 mice. The assessment of undesired genetic modifications through CIRCLE-seq and CAST-Seq analyses revealed neither off-target activity nor chromosomal translocations. Importantly, the use of paired-D10ASaCas9 resulted in a significant reduction in AAV integration at the target site compared to SaCas9 nuclease. In addition, our study highlights the limitations of current analytical tools in characterizing modifications introduced by paired D10ASaCas9, necessitating the development of a custom pipeline for more accurate characterization. These results describe a positive advance towards a safe and effective potential long-term treatment for PH1 patients.
Collapse
Affiliation(s)
- Laura Torella
- DNA & RNA Medicine Division, Center for Applied Medical Research (CIMA), University of Navarra, 31008, Pamplona, Spain
| | - Julia Klermund
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, 79106, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, 79106, Freiburg, Germany
| | - Martin Bilbao-Arribas
- DNA & RNA Medicine Division, Center for Applied Medical Research (CIMA), University of Navarra, 31008, Pamplona, Spain
- IdISNA, Navarra Institute for Health Research, 31008, Pamplona, Spain
| | - Ibon Tamayo
- IdISNA, Navarra Institute for Health Research, 31008, Pamplona, Spain
- Bioinformatics Core, Center for Applied Medical Research (CIMA), University of Navarra, 31008, Pamplona, Spain
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, 79110, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Kay O Chmielewski
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, 79106, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, 79106, Freiburg, Germany
| | - Africa Vales
- DNA & RNA Medicine Division, Center for Applied Medical Research (CIMA), University of Navarra, 31008, Pamplona, Spain
| | - Cristina Olagüe
- DNA & RNA Medicine Division, Center for Applied Medical Research (CIMA), University of Navarra, 31008, Pamplona, Spain
| | - Daniel Moreno-Luqui
- DNA & RNA Medicine Division, Center for Applied Medical Research (CIMA), University of Navarra, 31008, Pamplona, Spain
| | - Ivan Raimondi
- DNA & RNA Medicine Division, Center for Applied Medical Research (CIMA), University of Navarra, 31008, Pamplona, Spain
| | - Amaya Abad
- DNA & RNA Medicine Division, Center for Applied Medical Research (CIMA), University of Navarra, 31008, Pamplona, Spain
| | - Julen Torrens-Baile
- DNA & RNA Medicine Division, Center for Applied Medical Research (CIMA), University of Navarra, 31008, Pamplona, Spain
| | - Eduardo Salido
- Hospital Universitario de Canarias, Universidad La Laguna, CIBERER, 38320, Tenerife, Spain
| | - Maite Huarte
- DNA & RNA Medicine Division, Center for Applied Medical Research (CIMA), University of Navarra, 31008, Pamplona, Spain
| | - Mikel Hernaez
- IdISNA, Navarra Institute for Health Research, 31008, Pamplona, Spain
- Bioinformatics Core, Center for Applied Medical Research (CIMA), University of Navarra, 31008, Pamplona, Spain
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, 79110, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, 79106, Freiburg, Germany
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, 79106, Freiburg, Germany.
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, 79106, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany.
| | - Nerea Zabaleta
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Harvard Medical School, 02114, Boston, MA, USA.
| | - Gloria Gonzalez-Aseguinolaza
- DNA & RNA Medicine Division, Center for Applied Medical Research (CIMA), University of Navarra, 31008, Pamplona, Spain.
| |
Collapse
|
12
|
Martinez M, Harding CO, Schwank G, Thöny B. State-of-the-art 2023 on gene therapy for phenylketonuria. J Inherit Metab Dis 2024; 47:80-92. [PMID: 37401651 PMCID: PMC10764640 DOI: 10.1002/jimd.12651] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/13/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Phenylketonuria (PKU) or hyperphenylalaninemia is considered a paradigm for an inherited (metabolic) liver defect and is, based on murine models that replicate all human pathology, an exemplar model for experimental studies on liver gene therapy. Variants in the PAH gene that lead to hyperphenylalaninemia are never fatal (although devastating if untreated), newborn screening has been available for two generations, and dietary treatment has been considered for a long time as therapeutic and satisfactory. However, significant shortcomings of contemporary dietary treatment of PKU remain. A long list of various gene therapeutic experimental approaches using the classical model for human PKU, the homozygous enu2/2 mouse, witnesses the value of this model to develop treatment for a genetic liver defect. The list of experiments for proof of principle includes recombinant viral (AdV, AAV, and LV) and non-viral (naked DNA or LNP-mRNA) vector delivery methods, combined with gene addition, genome, gene or base editing, and gene insertion or replacement. In addition, a list of current and planned clinical trials for PKU gene therapy is included. This review summarizes, compares, and evaluates the various approaches for the sake of scientific understanding and efficacy testing that may eventually pave the way for safe and efficient human application.
Collapse
Affiliation(s)
- Michael Martinez
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Cary O. Harding
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Gerald Schwank
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Beat Thöny
- Division of Metabolism, University Children’s Hospital Zurich and Children’s Research Centre, Zurich, Switzerland
| |
Collapse
|
13
|
Lisjak M, Iaconcig A, Guarnaccia C, Vicidomini A, Moretti L, Collaud F, Ronzitti G, Zentilin L, Muro AF. Lethality rescue and long-term amelioration of a citrullinemia type I mouse model by neonatal gene-targeting combined to SaCRISPR-Cas9. Mol Ther Methods Clin Dev 2023; 31:101103. [PMID: 37744006 PMCID: PMC10514469 DOI: 10.1016/j.omtm.2023.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023]
Abstract
Citrullinemia type I is a rare autosomal-recessive disorder caused by deficiency of argininosuccinate synthetase (ASS1). The clinical presentation includes the acute neonatal form, characterized by ammonia and citrulline accumulation in blood, which may lead to encephalopathy, coma, and death, and the milder late-onset form. Current treatments are unsatisfactory, and the only curative treatment is liver transplantation. We permanently modified the hepatocyte genome in lethal citrullinemia mice (Ass1fold/fold) by inserting the ASS1 cDNA into the albumin locus through the delivery of two AAV8 vectors carrying the donor DNA and the CRISPR-Cas9 platform. The neonatal treatment completely rescued mortality ensuring survival up to 5 months of age, with plasma citrulline levels significantly decreased, while plasma ammonia levels remained unchanged. In contrast, neonatal treatment with a liver-directed non-integrative AAV8-AAT-hASS1 vector failed to improve disease parameters. To model late-onset citrullinemia, we dosed postnatal day (P) 30 juvenile animals using the integrative approach, resulting in lifespan improvement and a minor reduction in disease markers. Conversely, treatment with the non-integrative vector completely rescued mortality, reducing plasma ammonia and citrulline to wild-type values. In summary, the integrative approach in neonates is effective, although further improvements are required to fully correct the phenotype. Non-integrative gene therapy application to juvenile mice ensures a stable and very efficient therapeutic effect.
Collapse
Affiliation(s)
- Michela Lisjak
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| | - Alessandra Iaconcig
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| | - Corrado Guarnaccia
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| | - Antonio Vicidomini
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| | - Laura Moretti
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| | - Fanny Collaud
- Généthon, 91000 Évry, France
- Université Paris-Saclay, Université d’Évry, Inserm, Généthon, Integrare Research Unit UMR_S951, 91000 Évry, France
| | - Giuseppe Ronzitti
- Généthon, 91000 Évry, France
- Université Paris-Saclay, Université d’Évry, Inserm, Généthon, Integrare Research Unit UMR_S951, 91000 Évry, France
| | - Lorena Zentilin
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| | - Andrés F. Muro
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| |
Collapse
|
14
|
Kavita U, Sun K, Braun M, Lembke W, Mody H, Kamerud J, Yang TY, Braun IV, Fang X, Gao W, Gupta S, Hofer M, Liao MZ, Loo L, McBlane F, Menochet K, Stubenrauch KG, Upreti VV, Vigil A, Wiethoff CM, Xia CQ, Zhu X, Jawa V, Chemuturi N. PK/PD and Bioanalytical Considerations of AAV-Based Gene Therapies: an IQ Consortium Industry Position Paper. AAPS J 2023; 25:78. [PMID: 37523051 DOI: 10.1208/s12248-023-00842-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/06/2023] [Indexed: 08/01/2023] Open
Abstract
Interest and efforts to use recombinant adeno-associated viruses (AAV) as gene therapy delivery tools to treat disease have grown exponentially. However, gaps in understanding of the pharmacokinetics/pharmacodynamics (PK/PD) and disposition of this modality exist. This position paper comes from the Novel Modalities Working Group (WG), part of the International Consortium for Innovation and Quality in Pharmaceutical Development (IQ). The pan-industry WG effort focuses on the nonclinical PK and clinical pharmacology aspects of AAV gene therapy and related bioanalytical considerations.Traditional PK concepts are generally not applicable to AAV-based therapies due to the inherent complexity of a transgene-carrying viral vector, and the multiple steps and analytes involved in cell transduction and transgene-derived protein expression. Therefore, we explain PK concepts of biodistribution of AAV-based therapies and place key terminologies related to drug exposure and PD in the proper context. Factors affecting biodistribution are presented in detail, and guidelines are provided to design nonclinical studies to enable a stage-gated progression to Phase 1 testing. The nonclinical and clinical utility of transgene DNA, mRNA, and protein analytes are discussed with bioanalytical strategies to measure these analytes. The pros and cons of qPCR vs. ddPCR technologies for DNA/RNA measurement and qualitative vs. quantitative methods for transgene-derived protein are also presented. Last, best practices and recommendations for use of clinical and nonclinical data to project human dose and response are discussed. Together, the manuscript provides a holistic framework to discuss evolving concepts of PK/PD modeling, bioanalytical technologies, and clinical dose selection in gene therapy.
Collapse
Affiliation(s)
- Uma Kavita
- Spark Therapeutics, Inc., Philadelphia, Pennsylvania, 19104, USA.
| | - Kefeng Sun
- Takeda Development Center Americas Inc., 125 Binney St, Cambridge, Massachusetts, 02142, USA.
| | - Manuela Braun
- Bayer AG, Pharmaceuticals R&D, 13342, Berlin, Germany
| | - Wibke Lembke
- Integrated Biologix GmbH, 4051, Basel, Switzerland
| | - Hardik Mody
- Genentech Inc., South San Francisco, California, USA
| | | | - Tong-Yuan Yang
- Janssen R&D LLC., Spring House, Pennsylvania, 19477, USA
| | | | - Xiaodong Fang
- Asklepios BioPharmaceutical, Inc., Research Triangle, North Carolina, 27709, USA
| | - Wei Gao
- EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts, 01821, USA
| | - Swati Gupta
- AbbVie, 2525 Dupont Drive, Irvine, California, 92612, USA
| | - Magdalena Hofer
- Spark Therapeutics, Inc., Philadelphia, Pennsylvania, 19104, USA
| | | | - LiNa Loo
- Vertex Pharmaceuticals Boston, Boston, Massachusetts, 02210, USA
| | | | | | | | | | - Adam Vigil
- Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut, 06877, USA
| | | | - Cindy Q Xia
- ReNAgade Therapeutics, Cambridge, Massachusetts, 02142, USA
| | - Xu Zhu
- AstraZeneca, Waltham, Massachusetts, 02451, USA
| | - Vibha Jawa
- Bristol Myers Squibb, Lawrence Township, New Jersey, 08648, USA
| | - Nagendra Chemuturi
- Takeda Development Center Americas Inc., 125 Binney St, Cambridge, Massachusetts, 02142, USA
| |
Collapse
|
15
|
Chen M, Kim B, Jarvis MI, Fleury S, Deng S, Nouraein S, Butler S, Lee S, Chambers C, Hodges HC, Szablowski JO, Suh J, Veiseh O. Immune profiling of adeno-associated virus response identifies B cell-specific targets that enable vector re-administration in mice. Gene Ther 2023; 30:429-442. [PMID: 36372846 PMCID: PMC10183056 DOI: 10.1038/s41434-022-00371-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 09/11/2022] [Accepted: 10/04/2022] [Indexed: 11/15/2022]
Abstract
Adeno-associated virus (AAV) vector-based gene therapies can be applied to a wide range of diseases. AAV expression can last for months to years, but vector re-administration may be necessary to achieve life-long treatment. Unfortunately, immune responses against these vectors are potentiated after the first administration, preventing the clinical use of repeated administration of AAVs. Reducing the immune response against AAVs while minimizing broad immunosuppression would improve gene delivery efficiency and long-term safety. In this study, we quantified the contributions of multiple immune system components of the anti-AAV response in mice. We identified B-cell-mediated immunity as a critical component preventing vector re-administration. Additionally, we found that IgG depletion alone was insufficient to enable re-administration, suggesting IgM antibodies play an important role in the immune response against AAV. Further, we found that AAV-mediated transduction is improved in µMT mice that lack functional IgM heavy chains and cannot form mature B-cells relative to wild-type mice. Combined, our results suggest that B-cells, including non-class switched B-cells, are a potential target for therapeutics enabling AAV re-administration. Our results also suggest that the µMT mice are a potentially useful experimental model for gene delivery studies since they allow repeated dosing for more efficient gene delivery from AAVs.
Collapse
Affiliation(s)
- Maria Chen
- Department of Bioengineering, Rice University, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Boram Kim
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Maria I Jarvis
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Samantha Fleury
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Shuyun Deng
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Shirin Nouraein
- Department of Bioengineering, Rice University, Houston, TX, USA
- Rice Neuroengineering Initiative, George R. Brown School of Engineering, Rice University, Houston, TX, USA
| | - Susan Butler
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Sangsin Lee
- Department of Bioengineering, Rice University, Houston, TX, USA
- Rice Neuroengineering Initiative, George R. Brown School of Engineering, Rice University, Houston, TX, USA
| | - Courtney Chambers
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - H Courtney Hodges
- Department of Bioengineering, Rice University, Houston, TX, USA
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Jerzy O Szablowski
- Department of Bioengineering, Rice University, Houston, TX, USA
- Rice Neuroengineering Initiative, George R. Brown School of Engineering, Rice University, Houston, TX, USA
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX, USA
| | - Junghae Suh
- Department of Bioengineering, Rice University, Houston, TX, USA.
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX, USA.
- Department of BioSciences, Rice University, Houston, TX, USA.
| | - Omid Veiseh
- Department of Bioengineering, Rice University, Houston, TX, USA.
| |
Collapse
|
16
|
Weber ND, Odriozola L, Ros-Gañán I, García-Porrero G, Salas D, Argemi J, Combal JP, Kishimoto TK, González-Aseguinolaza G. Rescue of infant progressive familial intrahepatic cholestasis type 3 mice by repeated dosing of AAV gene therapy. JHEP Rep 2023; 5:100713. [PMID: 37096142 PMCID: PMC10121466 DOI: 10.1016/j.jhepr.2023.100713] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 04/26/2023] Open
Abstract
Background & Aims Gene therapy using recombinant adeno-associated virus (rAAV) vector carrying multidrug resistance protein 3 (MDR3) coding sequence (AAV8-MDR3) represents a potential curative treatment for progressive familial intrahepatic cholestasis type 3 (PFIC3), which presents in early childhood. However, patients with the severest form of PFIC3 should receive treatment early after detection to prevent irreversible hepatic fibrosis leading ultimately to liver transplantation or death. This represents a challenge for rAAV-based gene therapy because therapeutic efficacy is expected to wane as rAAV genomes are lost owing to hepatocyte division, and the formation of AAV-specific neutralising antibodies precludes re-administration. Here, we tested a strategy of vector re-administration in infant PFIC3 mice with careful evaluation of its oncogenicity - a particular concern surrounding rAAV treatment. Methods AAV8-MDR3 was re-administered to infant Abcb4 -/- mice 2 weeks after a first dose co-administered with tolerogenic nanoparticles carrying rapamycin (ImmTOR) given at 2 weeks of age. Eight months later, long-term therapeutic efficacy and safety were assessed with special attention paid to the potential oncogenicity of rAAV treatment. Results Co-administration with ImmTOR mitigated the formation of rAAV-specific neutralising antibodies and enabled an efficacious second administration of AAV8-MDR3, resulting in stable correction of the disease phenotype, including a restoration of bile phospholipid content and healthy liver function, as well as the prevention of liver fibrosis, hepatosplenomegaly, and gallstones. Furthermore, efficacious repeat rAAV administration prevented the appearance of liver malignancies in an animal model highly prone to developing hepatocellular carcinoma. Conclusions These outcomes provide strong evidence for rAAV redosing through co-administration with ImmTOR, as it resulted in a long-term therapeutic effect in a paediatric liver metabolic disorder, including the prevention of oncogenesis. Impact and implications Redosing of gene therapy for inborn hepatobiliary disorders may be essential as effect wanes during hepatocyte division and renewal, particularly in paediatric patients, but the approach may carry long-term risks of liver cancer. Viral vectors carrying a therapeutic gene exerted a durable cure of progressive familial intrahepatic cholestasis type 3 in infant mice and reduced the risk of liver cancer only following a second administration.
Collapse
Affiliation(s)
- Nicholas D. Weber
- Vivet Therapeutics S.L., Pamplona, Spain
- Corresponding authors. Address: Vivet Therapeutics S.L., Av. Pio XII, 33, 31008 Pamplona, Spain. Tel.: +34-948-194700 x816022.
| | - Leticia Odriozola
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, Pamplona, Spain
| | | | | | - David Salas
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, Pamplona, Spain
| | - Josepmaria Argemi
- Liver Unit, Internal Medicine Department, Clínica Universidad de Navarra and Hepatology Program, CIMA, Universidad de Navarra, Pamplona, Spain
- Division of Medicine, Gastroenterology and Hepatology Department, University of Pittsburgh, Pittsburgh, PA, USA
- Centro de Investigacion Biomedica en Red (CIBER-Ehd), Madrid, Spain
| | | | | | - Gloria González-Aseguinolaza
- Vivet Therapeutics S.L., Pamplona, Spain
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, Pamplona, Spain
- Corresponding authors. Address: Vivet Therapeutics S.L., Av. Pio XII, 33, 31008 Pamplona, Spain. Tel.: +34-948-194700 x816022.
| |
Collapse
|
17
|
Chen X, Niu X, Liu Y, Zheng R, Yang L, Lu J, Yin S, Wei Y, Pan J, Sayed A, Ma X, Liu M, Jing F, Liu M, Hu J, Wang L, Li D. Long-term correction of hemophilia B through CRISPR/Cas9 induced homology-independent targeted integration. J Genet Genomics 2022; 49:1114-1126. [PMID: 35691554 DOI: 10.1016/j.jgg.2022.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/29/2022] [Accepted: 06/01/2022] [Indexed: 01/14/2023]
Abstract
CRISPR/Cas9-mediated site-specific insertion of exogenous genes holds potential for clinical applications. However, it is still infeasible because homologous recombination (HR) is inefficient, especially for non-dividing cells. To overcome the challenge, we report that a homology-independent targeted integration (HITI) strategy is used for permanent integration of high-specificity-activity Factor IX variant (F9 Padua, R338L) at the albumin (Alb) locus in a novel hemophilia B (HB) rat model. The knock-in efficiency reaches 3.66%, as determined by droplet digital PCR (ddPCR). The clotting time is reduced to a normal level four weeks after treatment, and the circulating factor IX (FIX) level is gradually increased up to 52% of the normal level over nine months even after partial hepatectomy, demonstrating the amelioration of hemophilia. Through primer-extension-mediated sequencing (PEM-seq), no significant off-target effect is detected. This study not only provides a novel model for HB but also identifies a promising therapeutic approach for rare inherited diseases.
Collapse
Affiliation(s)
- Xi Chen
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xuran Niu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yang Liu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, Genome Editing Research Center, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Rui Zheng
- Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Lei Yang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jian Lu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Shuming Yin
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yu Wei
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jiahao Pan
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Ahmed Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Xueyun Ma
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Meizhen Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | | | - Mingyao Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jiazhi Hu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, Genome Editing Research Center, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| | - Liren Wang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.
| | - Dali Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
18
|
Lam P, Ashbrook A, Zygmunt DA, Yan C, Du H, Martin PT. Therapeutic efficacy of rscAAVrh74.miniCMV.LIPA gene therapy in a mouse model of lysosomal acid lipase deficiency. Mol Ther Methods Clin Dev 2022; 26:413-426. [PMID: 36092360 PMCID: PMC9403906 DOI: 10.1016/j.omtm.2022.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 08/01/2022] [Indexed: 11/03/2022]
Abstract
Lysosomal acid lipase deficiency (LAL-D) presents as one of two rare autosomal recessive diseases: Wolman disease (WD), a severe disorder presenting in infancy characterized by absent or very low LAL activity, and cholesteryl ester storage disease (CESD), a less severe, later onset disease form. Recent clinical studies have shown efficacy of enzyme replacement therapy for both forms of LAL-D; however, no gene therapy approach has yet been developed for clinical use. Here, we show that rscAAVrh74.miniCMV.LIPA gene therapy can significantly improve disease symptoms in the Lipa−/− mouse model of LAL-D. Treatment dramatically lowered hepatosplenomegaly, liver and spleen triglyceride and cholesterol levels, and serum expression of markers of liver damage. Measures of liver inflammation and fibrosis were also reduced. Treatment of young adult mice was more effective than treatment of neonates, and enzyme activity was elevated in serum, consistent with possible bystander effects. These results demonstrate that adeno associated virus (AAV)-mediated LIPA gene-replacement therapy may be a viable option to treat patients with LAL-D, particularly patients with CESD.
Collapse
|
19
|
Young mice administered adult doses of AAV5-hFVIII-SQ achieve therapeutic factor VIII expression into adulthood. MOLECULAR THERAPY - METHODS & CLINICAL DEVELOPMENT 2022; 26:519-531. [PMID: 36092364 PMCID: PMC9440360 DOI: 10.1016/j.omtm.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/09/2022] [Indexed: 11/28/2022]
Abstract
Valoctocogene roxaparvovec (AAV5-hFVIII-SQ) gene transfer provided reduced bleeding for adult clinical trial participants with severe hemophilia A. However, pediatric outcomes are unknown. Using a mouse model of hemophilia A, we investigated the effect of vector dose and age at treatment on transgene production and persistence. We dosed AAV5-hFVIII-SQ to neonatal and adult mice based on body weight or at a fixed dose and assessed human factor VIII-SQ variant (hFVIII-SQ) expression through 16 weeks. AAV5-hFVIII-SQ dosed per body weight in neonatal mice did not result in meaningful plasma hFVIII-SQ protein levels in adulthood. When treated with the same total vector genomes per mouse as adult mice, neonates maintained hFVIII-SQ expression into adulthood, although plasma levels were 3- to 4-fold lower versus mice dosed as adults. Mice <1 week old initially exhibited high hFVIII-SQ plasma levels and maintained meaningful levels into adulthood, despite a partial decline potentially due to age-related body mass and blood volume increases. Spatial transduction patterns differed between mice dosed as neonates versus adults. No features of hepatotoxicity or endoplasmic reticulum stress were observed with dosing at any age. These data suggest that young mice require the same total vector genomes as adult mice to sustain hFVIII-SQ plasma levels.
Collapse
|
20
|
Segurado OG, Jiang R, Pipe SW. Challenges and opportunities when transitioning from in vivo gene replacement to in vivo CRISPR/Cas9 therapies - a spotlight on hemophilia. Expert Opin Biol Ther 2022; 22:1091-1098. [PMID: 35708146 DOI: 10.1080/14712598.2022.2090241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Currently, a few in vivo gene replacement therapies are commercially available, with many in clinical development for the treatment of some inherited monogenic diseases. These disorders arise from mutations in genes encoding essential proteins with a well understood biological function. Wide adoption of gene replacement therapies requires solid safety and efficacy profiles with demonstrable long-term durability and cost-benefit advantages vs standard therapies. AREAS COVERED This expert review outlines the challenges and opportunities in treating hemophilia, including the progression from in vivo gene therapies toward in vivo gene editing, focusing on pre-clinical and emerging clinical data for gene editing and addressing the need for sustained and durable gene expression during hepatocyte proliferation when the liver is unable to maintain steady gene expression and protein production. EXPERT OPINION In vivo gene editing in liver tissues may be able to rescue patients younger than 18 years who are not eligible for gene replacement therapies, with hemophilia as a prime example.
Collapse
Affiliation(s)
| | | | - Steven W Pipe
- Department of Pediatrics and Communicable Diseases, University of Michigan Ann Arbor, Michigan, USA
| |
Collapse
|
21
|
Tornabene P, Ferla R, Llado-Santaeularia M, Centrulo M, Dell'Anno M, Esposito F, Marrocco E, Pone E, Minopoli R, Iodice C, Nusco E, Rossi S, Lyubenova H, Manfredi A, Di Filippo L, Iuliano A, Torella A, Piluso G, Musacchia F, Surace EM, Cacchiarelli D, Nigro V, Auricchio A. Therapeutic homology-independent targeted integration in retina and liver. Nat Commun 2022; 13:1963. [PMID: 35414130 PMCID: PMC9005519 DOI: 10.1038/s41467-022-29550-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/16/2022] [Indexed: 01/08/2023] Open
Abstract
Challenges to the widespread application of gene therapy with adeno-associated viral (AAV) vectors include dominant conditions due to gain-of-function mutations which require allele-specific knockout, as well as long-term transgene expression from proliferating tissues, which is hampered by AAV DNA episomal status. To overcome these challenges, we used CRISPR/Cas9-mediated homology-independent targeted integration (HITI) in retina and liver as paradigmatic target tissues. We show that AAV-HITI targets photoreceptors of both mouse and pig retina, and this results in significant improvements to retinal morphology and function in mice with autosomal dominant retinitis pigmentosa. In addition, we show that neonatal systemic AAV-HITI delivery achieves stable liver transgene expression and phenotypic improvement in a mouse model of a severe lysosomal storage disease. We also show that HITI applications predominantly result in on-target editing. These results lay the groundwork for the application of AAV-HITI for the treatment of diseases affecting various organs.
Collapse
Affiliation(s)
- Patrizia Tornabene
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli, Italy.,Medical Genetics, Department of Translational Medicine, Federico II University, 80131, Naples, Italy
| | - Rita Ferla
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli, Italy.,Medical Genetics, Department of Translational Medicine, Federico II University, 80131, Naples, Italy
| | | | - Miriam Centrulo
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli, Italy
| | - Margherita Dell'Anno
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli, Italy.,Medical Genetics, Department of Translational Medicine, Federico II University, 80131, Naples, Italy
| | - Federica Esposito
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli, Italy
| | - Elena Marrocco
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli, Italy
| | - Emanuela Pone
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli, Italy.,Medical Genetics, Department of Translational Medicine, Federico II University, 80131, Naples, Italy
| | - Renato Minopoli
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli, Italy
| | - Carolina Iodice
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli, Italy
| | - Edoardo Nusco
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli, Italy
| | - Settimio Rossi
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania L. Vanvitelli, 80131, Naples, Italy
| | | | - Anna Manfredi
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, 80078, Pozzuoli, Italy.,Next Generation Diagnostic Srl, 80078, Pozzuoli, Italy
| | | | - Antonella Iuliano
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli, Italy
| | - Annalaura Torella
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli, Italy.,Department of Precision Medicine, University of Campania L. Vanvitelli, 80138, Naples, Italy
| | - Giulio Piluso
- Department of Precision Medicine, University of Campania L. Vanvitelli, 80138, Naples, Italy
| | | | - Enrico Maria Surace
- Medical Genetics, Department of Translational Medicine, Federico II University, 80131, Naples, Italy
| | - Davide Cacchiarelli
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, 80078, Pozzuoli, Italy.,Department of Translational Medicine, Federico II University, 80131, Naples, Italy
| | - Vincenzo Nigro
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli, Italy.,Department of Precision Medicine, University of Campania L. Vanvitelli, 80138, Naples, Italy
| | - Alberto Auricchio
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli, Italy. .,Medical Genetics, Department of Advanced Biomedical Sciences, Federico II University, 80131, Naples, Italy.
| |
Collapse
|
22
|
Fludarabine increases nuclease-free AAV- and CRISPR/Cas9-mediated homologous recombination in mice. Nat Biotechnol 2022; 40:1285-1294. [PMID: 35393561 DOI: 10.1038/s41587-022-01240-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/28/2022] [Indexed: 12/12/2022]
Abstract
Homologous recombination (HR)-based gene therapy using adeno-associated viruses (AAV-HR) without nucleases has several advantages over classic gene therapy, especially the potential for permanent transgene expression. However, the low efficiency of AAV-HR remains a major limitation. Here, we tested a series of small-molecule compounds and found that ribonucleotide reductase (RNR) inhibitors substantially enhance AAV-HR efficiency in mouse and human liver cell lines approximately threefold. Short-term administration of the RNR inhibitor fludarabine increased the in vivo efficiency of both non-nuclease- and CRISPR/Cas9-mediated AAV-HR two- to sevenfold in the murine liver, without causing overt toxicity. Fludarabine administration induced transient DNA damage signaling in both proliferating and quiescent hepatocytes. Notably, the majority of AAV-HR events occurred in non-proliferating hepatocytes in both fludarabine-treated and control mice, suggesting that the induction of transient DNA repair signaling in non-dividing hepatocytes was responsible for enhancing AAV-HR efficiency in mice. These results suggest that use of a clinically approved RNR inhibitor can potentiate AAV-HR-based genome-editing therapeutics.
Collapse
|
23
|
Lisjak M, De Caneva A, Marais T, Barbon E, Biferi MG, Porro F, Barzel A, Zentilin L, Kay MA, Mingozzi F, Muro AF. Promoterless Gene Targeting Approach Combined to CRISPR/Cas9 Efficiently Corrects Hemophilia B Phenotype in Neonatal Mice. Front Genome Ed 2022; 4:785698. [PMID: 35359664 PMCID: PMC8962648 DOI: 10.3389/fgeed.2022.785698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/27/2022] [Indexed: 11/30/2022] Open
Abstract
Many inborn errors of metabolism require life-long treatments and, in severe conditions involving the liver, organ transplantation remains the only curative treatment. Non-integrative AAV-mediated gene therapy has shown efficacy in adult patients. However, treatment in pediatric or juvenile settings, or in conditions associated with hepatocyte proliferation, may result in rapid loss of episomal viral DNA and thus therapeutic efficacy. Re-administration of the therapeutic vector later in time may not be possible due to the presence of anti-AAV neutralizing antibodies. We have previously shown the permanent rescue of the neonatal lethality of a Crigler-Najjar mouse model by applying an integrative gene-therapy based approach. Here, we targeted the human coagulation factor IX (hFIX) cDNA into a hemophilia B mouse model. Two AAV8 vectors were used: a promoterless vector with two arms of homology for the albumin locus, and a vector carrying the CRISPR/SaCas9 and the sgRNA. Treatment of neonatal P2 wild-type mice resulted in supraphysiological levels of hFIX being stable 10 months after dosing. A single injection of the AAV vectors into neonatal FIX KO mice also resulted in the stable expression of above-normal levels of hFIX, reaching up to 150% of the human levels. Mice subjected to tail clip analysis showed a clotting capacity comparable to wild-type animals, thus demonstrating the rescue of the disease phenotype. Immunohistological analysis revealed clusters of hFIX-positive hepatocytes. When we tested the approach in adult FIX KO mice, we detected hFIX in plasma by ELISA and in the liver by western blot. However, the hFIX levels were not sufficient to significantly ameliorate the bleeding phenotype upon tail clip assay. Experiments conducted using a AAV donor vectors containing the eGFP or the hFIX cDNAs showed a higher recombination rate in P2 mice compared to adult animals. With this study, we demonstrate an alternative gene targeting strategy exploiting the use of the CRISPR/SaCas9 platform that can be potentially applied in the treatment of pediatric patients suffering from hemophilia, also supporting its application to other liver monogenic diseases. For the treatment of adult patients, further studies for the improvement of targeting efficiency are still required.
Collapse
Affiliation(s)
- Michela Lisjak
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Alessia De Caneva
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Thibaut Marais
- Inserm UMRS974, Centre of Research in Myology (CRM), Institut de Myologie, Sorbonne Université, Paris, France
| | - Elena Barbon
- Genethon, Evry, France
- IRCCS San Raffaele Hospital, Milan, Italy
| | - Maria Grazia Biferi
- Inserm UMRS974, Centre of Research in Myology (CRM), Institut de Myologie, Sorbonne Université, Paris, France
| | - Fabiola Porro
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Adi Barzel
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Lorena Zentilin
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Mark A. Kay
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA, United States
| | - Federico Mingozzi
- Genethon, Evry, France
- University Pierre and Marie Curie - Paris 6, INSERM U974, Paris, France
- Spark Therapeutics, Philadelphia, PA, United States
| | - Andrés F. Muro
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| |
Collapse
|
24
|
Sia KC, Gan SU, Mohd Rodhi SH, Fu ZY, Kopchick JJ, Waters MJ, Lee KO. First use of gene therapy to treat growth hormone resistant dwarfism in a mouse model. Gene Ther 2022; 29:346-356. [PMID: 35105948 PMCID: PMC9203273 DOI: 10.1038/s41434-022-00313-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/10/2021] [Accepted: 01/05/2022] [Indexed: 12/19/2022]
Abstract
The only treatment tested for growth hormone receptor (GHR) defective Laron Syndrome (LS) is injections of recombinant insulin-like-growth factor 1 (rhIGF1). The response is suboptimal and associated with progressive obesity. In this study, we treated 4–5-week-old Laron dwarf mice (GHR−/−) with an adeno-associated virus expressing murine GHR (AAV-GHR) injection at a dose of 4 × 1010 vector genome per mouse. Serum growth hormone (GH) levels decreased, and GH-responsive IGF1, IGF binding protein 3 (IGFBP3) and acid labile subunit (ALS) increased. There was a significant but limited increase in body weight and length, similar to the response to rhIGF1 treatment in LS patients. All the major organs increased in weight except the brain. Our study is the first to use gene therapy to treat GH-receptor deficiency. We propose that gene therapy with AAV-GHR may eventually be useful for the treatment of human LS.
Collapse
Affiliation(s)
- Kian Chuan Sia
- Department of Surgery, National University of Singapore, Singapore, Singapore
| | - Shu Uin Gan
- Department of Surgery, National University of Singapore, Singapore, Singapore
| | | | - Zhen Ying Fu
- Department of Surgery, National University of Singapore, Singapore, Singapore
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Michael J Waters
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Kok Onn Lee
- Department of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
25
|
Bertolin J, Sánchez V, Ribera A, Jaén ML, Garcia M, Pujol A, Sánchez X, Muñoz S, Marcó S, Pérez J, Elias G, León X, Roca C, Jimenez V, Otaegui P, Mulero F, Navarro M, Ruberte J, Bosch F. Treatment of skeletal and non-skeletal alterations of Mucopolysaccharidosis type IVA by AAV-mediated gene therapy. Nat Commun 2021; 12:5343. [PMID: 34504088 PMCID: PMC8429698 DOI: 10.1038/s41467-021-25697-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 08/23/2021] [Indexed: 01/16/2023] Open
Abstract
Mucopolysaccharidosis type IVA (MPSIVA) or Morquio A disease, a lysosomal storage disorder, is caused by N-acetylgalactosamine-6-sulfate sulfatase (GALNS) deficiency, resulting in keratan sulfate (KS) and chondroitin-6-sulfate accumulation. Patients develop severe skeletal dysplasia, early cartilage deterioration and life-threatening heart and tracheal complications. There is no cure and enzyme replacement therapy cannot correct skeletal abnormalities. Here, using CRISPR/Cas9 technology, we generate the first MPSIVA rat model recapitulating all skeletal and non-skeletal alterations experienced by patients. Treatment of MPSIVA rats with adeno-associated viral vector serotype 9 encoding Galns (AAV9-Galns) results in widespread transduction of bones, cartilage and peripheral tissues. This led to long-term (1 year) increase of GALNS activity and whole-body correction of KS levels, thus preventing body size reduction and severe alterations of bones, teeth, joints, trachea and heart. This study demonstrates the potential of AAV9-Galns gene therapy to correct the disabling MPSIVA pathology, providing strong rationale for future clinical translation to MPSIVA patients.
Collapse
Affiliation(s)
- Joan Bertolin
- Center of Animal Biotechnology and Gene Therapy, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Víctor Sánchez
- Center of Animal Biotechnology and Gene Therapy, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Albert Ribera
- Center of Animal Biotechnology and Gene Therapy, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Maria Luisa Jaén
- Center of Animal Biotechnology and Gene Therapy, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Miquel Garcia
- Center of Animal Biotechnology and Gene Therapy, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Anna Pujol
- Center of Animal Biotechnology and Gene Therapy, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Xavier Sánchez
- Center of Animal Biotechnology and Gene Therapy, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Sergio Muñoz
- Center of Animal Biotechnology and Gene Therapy, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Sara Marcó
- Center of Animal Biotechnology and Gene Therapy, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jennifer Pérez
- Center of Animal Biotechnology and Gene Therapy, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Gemma Elias
- Center of Animal Biotechnology and Gene Therapy, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Xavier León
- Center of Animal Biotechnology and Gene Therapy, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Carles Roca
- Center of Animal Biotechnology and Gene Therapy, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Veronica Jimenez
- Center of Animal Biotechnology and Gene Therapy, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Pedro Otaegui
- Center of Animal Biotechnology and Gene Therapy, Bellaterra, Spain
| | - Francisca Mulero
- Molecular Imaging Unit, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Marc Navarro
- Center of Animal Biotechnology and Gene Therapy, Bellaterra, Spain
- Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jesús Ruberte
- Center of Animal Biotechnology and Gene Therapy, Bellaterra, Spain
- Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Fatima Bosch
- Center of Animal Biotechnology and Gene Therapy, Bellaterra, Spain.
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.
| |
Collapse
|
26
|
Greig JA, Jennis M, Dandekar A, Chorazeczewski JK, Smith MK, Ashley SN, Yan H, Wilson JM. Muscle-directed AAV gene therapy rescues the maple syrup urine disease phenotype in a mouse model. Mol Genet Metab 2021; 134:139-146. [PMID: 34454844 DOI: 10.1016/j.ymgme.2021.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/04/2021] [Accepted: 08/07/2021] [Indexed: 11/19/2022]
Abstract
Maple syrup urine disease (MSUD) is a rare, inherited metabolic disorder characterized by a dysfunctional mitochondrial enzyme complex, branched-chain alpha-keto acid dehydrogenase (BCKDH), which catabolizes branched-chain amino acids (BCAAs). Without functional BCKDH, BCAAs and their neurotoxic alpha-keto intermediates can accumulate in the blood and tissues. MSUD is currently incurable and treatment is limited to dietary restriction or liver transplantation, meaning there is a great need to develop new treatments for MSUD. We evaluated potential gene therapy applications for MSUD in the intermediate MSUD (iMSUD) mouse model, which harbors a mutation in the dihydrolipoamide branched-chain transacylase E2 (DBT) subunit of BCKDH. Systemic delivery of an adeno-associated virus (AAV) vector expressing DBT under control of the liver-specific TBG promoter to the liver did not sufficiently ameliorate all aspects of the disease phenotype. These findings necessitated an alternative therapeutic strategy. Muscle makes a larger contribution to BCAA metabolism than liver in humans, but a muscle-specific approach involving a muscle-specific promoter for DBT expression delivered via intramuscular (IM) administration only partially rescued the MSUD phenotype in mice. Combining the muscle-tropic AAV9 capsid with the ubiquitous CB7 promoter via IM or IV injection, however, substantially increased survival across all assessed doses. Additionally, near-normal serum BCAA levels were achieved and maintained in the mid- and high-dose cohorts throughout the study; this approach also protected these mice from a lethal high-protein diet challenge. Therefore, administration of a gene therapy vector that expresses in both muscle and liver may represent a viable approach to treating patients with MSUD.
Collapse
Affiliation(s)
- Jenny A Greig
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew Jennis
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aditya Dandekar
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joanna K Chorazeczewski
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Melanie K Smith
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Scott N Ashley
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hanying Yan
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - James M Wilson
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
27
|
Manso AM, Hashem SI, Nelson BC, Gault E, Soto-Hermida A, Villarruel E, Brambatti M, Bogomolovas J, Bushway PJ, Chen C, Battiprolu P, Keravala A, Schwartz JD, Shah G, Gu Y, Dalton ND, Hammond K, Peterson K, Saftig P, Adler ED. Systemic AAV9.LAMP2B injection reverses metabolic and physiologic multiorgan dysfunction in a murine model of Danon disease. Sci Transl Med 2021; 12:12/535/eaax1744. [PMID: 32188720 DOI: 10.1126/scitranslmed.aax1744] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 08/18/2019] [Accepted: 02/20/2020] [Indexed: 12/27/2022]
Abstract
Danon disease (DD) is a rare X-linked autophagic vacuolar myopathy associated with multiorgan dysfunction, including the heart, skeletal muscle, and liver. There are no specific treatments, and most male patients die from advanced heart failure during the second or third decade of life. DD is caused by mutations in the lysosomal-associated membrane protein 2 (LAMP2) gene, a key mediator of autophagy. LAMP2 has three isoforms: LAMP2A, LAMP2B, and LAMP2C. LAMP2B is the predominant isoform expressed in cardiomyocytes. This study evaluates the efficacy of human LAMP2B gene transfer using a recombinant adeno-associated virus 9 carrying human LAMP2B (AAV9.LAMP2B) in a Lamp2 knockout (KO) mouse, a DD model. AAV9.LAMP2B was intravenously injected into 2- and 6-month-old Lamp2 KO male mice to assess efficacy in adolescent and adult phenotypes. Lamp2 KO mice receiving AAV9.LAMP2B demonstrated dose-dependent restoration of human LAMP2B protein in the heart, liver, and skeletal muscle tissue. Impaired autophagic flux, evidenced by increased LC3-II, was abrogated by LAMP2B gene transfer in all tissues in both cohorts. Cardiac function was also improved, and transaminases were reduced in AAV9.LAMP2B-treated KO mice, indicating favorable effects on the heart and liver. Survival was also higher in the older cohort receiving high vector doses. No anti-LAMP2 antibodies were detected in mice that received AAV9.LAMP2B. In summary, LAMP2B gene transfer improves metabolic and physiologic function in a DD murine model, suggesting that a similar therapeutic approach may be effective for treating patients with this highly morbid disease.
Collapse
Affiliation(s)
- Ana Maria Manso
- Division of Cardiology, Department of Medicine, UC San Diego, San Diego, CA 92037, USA
| | - Sherin I Hashem
- Department of Pathology, UC San Diego, San Diego, CA 92037, USA
| | - Bradley C Nelson
- Division of Cardiology, Department of Medicine, UC San Diego, San Diego, CA 92037, USA
| | - Emily Gault
- Division of Cardiology, Department of Medicine, UC San Diego, San Diego, CA 92037, USA
| | - Angel Soto-Hermida
- Division of Cardiology, Department of Medicine, UC San Diego, San Diego, CA 92037, USA
| | - Elizza Villarruel
- Division of Cardiology, Department of Medicine, UC San Diego, San Diego, CA 92037, USA
| | - Michela Brambatti
- Division of Cardiology, Department of Medicine, UC San Diego, San Diego, CA 92037, USA
| | - Julius Bogomolovas
- Division of Cardiology, Department of Medicine, UC San Diego, San Diego, CA 92037, USA
| | - Paul J Bushway
- Division of Cardiology, Department of Medicine, UC San Diego, San Diego, CA 92037, USA
| | - Chao Chen
- Division of Cardiology, Department of Medicine, UC San Diego, San Diego, CA 92037, USA
| | | | | | | | - Gaurav Shah
- Rocket Pharmaceuticals, New York, NY 10118, USA
| | - Yusu Gu
- Division of Cardiology, Department of Medicine, UC San Diego, San Diego, CA 92037, USA
| | - Nancy D Dalton
- Division of Cardiology, Department of Medicine, UC San Diego, San Diego, CA 92037, USA
| | - Kirk Hammond
- Division of Cardiology, Department of Medicine, UC San Diego, San Diego, CA 92037, USA
| | - Kirk Peterson
- Division of Cardiology, Department of Medicine, UC San Diego, San Diego, CA 92037, USA
| | - Paul Saftig
- Biochemical Institute, Christian Albrechts-University, Kiel 24118, Germany
| | - Eric D Adler
- Division of Cardiology, Department of Medicine, UC San Diego, San Diego, CA 92037, USA.
| |
Collapse
|
28
|
Kruse RL, Barzi M, Legras X, Pankowicz FP, Furey N, Liao L, Xu J, Bissig-Choisat B, Slagle BL, Bissig KD. A hepatitis B virus transgenic mouse model with a conditional, recombinant, episomal genome. JHEP Rep 2021; 3:100252. [PMID: 33733079 PMCID: PMC7940981 DOI: 10.1016/j.jhepr.2021.100252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/27/2020] [Accepted: 01/04/2021] [Indexed: 01/21/2023] Open
Abstract
Background & Aims Development of new and more effective therapies against hepatitis B virus (HBV) is limited by the lack of suitable small animal models. The HBV transgenic mouse model containing an integrated overlength 1.3-mer construct has yielded crucial insights, but this model unfortunately lacks covalently closed circular DNA (cccDNA), the episomal HBV transcriptional template, and cannot be cured given that HBV is integrated in every cell. Methods To solve these 2 problems, we generated a novel transgenic mouse (HBV1.1X), which generates an excisable circular HBV genome using Cre/LoxP technology. This model possesses a HBV1.1-mer cassette knocked into the ROSA26 locus and is designed for stable expression of viral proteins from birth, like the current HBV transgenic mouse model, before genomic excision with the introduction of Cre recombinase. Results We demonstrated induction of recombinant cccDNA (rcccDNA) formation via viral or transgenic Cre expression in HBV1.1X mice, and the ability to regulate HBsAg and HBc expression with Cre in mice. Tamoxifen-inducible Cre could markedly downregulate baseline HBsAg levels from the integrated HBV genome. To demonstrate clearance of HBV from HBV1.1X mice, we administered adenovirus expressing Cre, which permanently and significantly reduced HBsAg and core antigen levels in the murine liver via rcccDNA excision and a subsequent immune response. Conclusions The HBV1.1X model is the first Cre-regulatable HBV transgenic mouse model and should be of value to mimic chronic HBV infection, with neonatal expression and tolerance of HBV antigens, and on-demand modulation of HBV expression. Lay summary Hepatitis B virus (HBV) can only naturally infect humans and chimpanzees. Mouse models have been developed with the HBV genome integrated into mouse chromosomes, but this prevents mice from being cured. We developed a new transgenic mouse model that allows for HBV to be excised from mouse chromosomes to form a recombinant circular DNA molecule resembling the natural circular HBV genome. HBV expression could be reduced in these mice, enabling curative therapies to be tested in this new mouse model.
Collapse
Affiliation(s)
- Robert L Kruse
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA.,Center for Stem Cells and Regenerative Medicine, Baylor College of Medicine, Houston, TX, USA.,Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX, USA.,Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Mercedes Barzi
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC, USA.,Y.T. and Alice Chen Pediatric Genetics and Genomics Research Center, Duke University, Durham, NC, USA
| | - Xavier Legras
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC, USA.,Y.T. and Alice Chen Pediatric Genetics and Genomics Research Center, Duke University, Durham, NC, USA
| | - Francis P Pankowicz
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA.,Center for Stem Cells and Regenerative Medicine, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Nika Furey
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA.,Center for Stem Cells and Regenerative Medicine, Baylor College of Medicine, Houston, TX, USA.,Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC, USA.,Y.T. and Alice Chen Pediatric Genetics and Genomics Research Center, Duke University, Durham, NC, USA
| | - Lan Liao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Janming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Beatrice Bissig-Choisat
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA.,Center for Stem Cells and Regenerative Medicine, Baylor College of Medicine, Houston, TX, USA.,Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC, USA.,Y.T. and Alice Chen Pediatric Genetics and Genomics Research Center, Duke University, Durham, NC, USA
| | - Betty L Slagle
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Karl-Dimiter Bissig
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA.,Center for Stem Cells and Regenerative Medicine, Baylor College of Medicine, Houston, TX, USA.,Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX, USA.,Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC, USA.,Y.T. and Alice Chen Pediatric Genetics and Genomics Research Center, Duke University, Durham, NC, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Duke Center for Virology, Duke University, Durham, NC, USA.,Duke Cancer Institute, Duke University, Durham, NC, USA
| |
Collapse
|
29
|
De Sabbata G, Boisgerault F, Guarnaccia C, Iaconcig A, Bortolussi G, Collaud F, Ronzitti G, Sola MS, Vidal P, Rouillon J, Charles S, Nicastro E, D'Antiga L, Ilyinskii P, Mingozzi F, Kishimoto TK, Muro AF. Long-term correction of ornithine transcarbamylase deficiency in Spf-Ash mice with a translationally optimized AAV vector. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 20:169-180. [PMID: 33473356 PMCID: PMC7786024 DOI: 10.1016/j.omtm.2020.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022]
Abstract
Ornithine transcarbamylase deficiency (OTCD) is an X-linked liver disorder caused by partial or total loss of OTC enzyme activity. It is characterized by elevated plasma ammonia, leading to neurological impairments, coma, and death in the most severe cases. OTCD is managed by combining dietary restrictions, essential amino acids, and ammonia scavengers. However, to date, liver transplantation provides the best therapeutic outcome. AAV-mediated gene-replacement therapy represents a promising curative strategy. Here, we generated an AAV2/8 vector expressing a codon-optimized human OTC cDNA by the α1-AAT liver-specific promoter. Unlike standard codon-optimization approaches, we performed multiple codon-optimization rounds via common algorithms and ortholog sequence analysis that significantly improved mRNA translatability and therapeutic efficacy. AAV8-hOTC-CO (codon optimized) vector injection into adult OTCSpf-Ash mice (5.0E11 vg/kg) mediated long-term complete correction of the phenotype. Adeno-Associated viral (AAV) vector treatment restored the physiological ammonia detoxification liver function, as indicated by urinary orotic acid normalization and by conferring full protection against an ammonia challenge. Removal of liver-specific transcription factor binding sites from the AAV backbone did not affect gene expression levels, with a potential improvement in safety. These results demonstrate that AAV8-hOTC-CO gene transfer is safe and results in sustained correction of OTCD in mice, supporting the translation of this approach to the clinic.
Collapse
Affiliation(s)
- Giulia De Sabbata
- International Center for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| | - Florence Boisgerault
- Généthon, 91000 Evry, France.,Université Paris-Saclay, Université Evry, INSERM, Généthon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Corrado Guarnaccia
- International Center for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| | - Alessandra Iaconcig
- International Center for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| | - Giulia Bortolussi
- International Center for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| | - Fanny Collaud
- Généthon, 91000 Evry, France.,Université Paris-Saclay, Université Evry, INSERM, Généthon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Giuseppe Ronzitti
- Généthon, 91000 Evry, France.,Université Paris-Saclay, Université Evry, INSERM, Généthon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Marcelo Simon Sola
- Généthon, 91000 Evry, France.,Université Paris-Saclay, Université Evry, INSERM, Généthon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Patrice Vidal
- Généthon, 91000 Evry, France.,Université Paris-Saclay, Université Evry, INSERM, Généthon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Jeremy Rouillon
- Généthon, 91000 Evry, France.,Université Paris-Saclay, Université Evry, INSERM, Généthon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Severine Charles
- Généthon, 91000 Evry, France.,Université Paris-Saclay, Université Evry, INSERM, Généthon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | | | | | | | - Federico Mingozzi
- Généthon, 91000 Evry, France.,Université Paris-Saclay, Université Evry, INSERM, Généthon, Integrare Research Unit UMR_S951, 91000 Evry, France.,Institut de Myologie, 73013 Paris, France
| | | | - Andrés F Muro
- International Center for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| |
Collapse
|
30
|
de Alencastro G, Puzzo F, Pavel-Dinu M, Zhang F, Pillay S, Majzoub K, Tiffany M, Jang H, Sheikali A, Cromer MK, Meetei R, Carette JE, Porteus MH, Pekrun K, Kay MA. Improved Genome Editing through Inhibition of FANCM and Members of the BTR Dissolvase Complex. Mol Ther 2021; 29:1016-1027. [PMID: 33678249 DOI: 10.1016/j.ymthe.2020.10.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/27/2020] [Accepted: 10/19/2020] [Indexed: 11/16/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors have the unique property of being able to perform genomic targeted integration (TI) without inducing a double-strand break (DSB). In order to improve our understanding of the mechanism behind TI mediated by AAV and improve its efficiency, we performed an unbiased genetic screen in human cells using a promoterless AAV-homologous recombination (AAV-HR) vector system. We identified that the inhibition of the Fanconi anemia complementation group M (FANCM) protein enhanced AAV-HR-mediated TI efficiencies in different cultured human cells by ∼6- to 9-fold. The combined knockdown of the FANCM and two proteins also associated with the FANCM complex, RecQ-mediated genome instability 1 (RMI1) and Bloom DNA helicase (BLM) from the BLM-topoisomerase IIIα (TOP3A)-RMI (BTR) dissolvase complex (RMI1, having also been identified in our screen), led to the enhancement of AAV-HR-mediated TI up to ∼17 times. AAV-HR-mediated TI in the presence of a nuclease (CRISPR-Cas9) was also increased by ∼1.5- to 2-fold in FANCM and RMI1 knockout cells, respectively. Furthermore, knockdown of FANCM in human CD34+ hematopoietic stem and progenitor cells (HSPCs) increased AAV-HR-mediated TI by ∼3.5-fold. This study expands our knowledge on the mechanisms related to AAV-mediated TI, and it highlights new pathways that might be manipulated for future improvements in AAV-HR-mediated TI.
Collapse
Affiliation(s)
| | - Francesco Puzzo
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA, USA
| | - Mara Pavel-Dinu
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford, CA, USA
| | - Feijie Zhang
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA, USA
| | - Sirika Pillay
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Karim Majzoub
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Matthew Tiffany
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA, USA
| | - Hagoon Jang
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA, USA
| | - Adam Sheikali
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford, CA, USA
| | - M Kyle Cromer
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford, CA, USA
| | - Ruhikanta Meetei
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Matthew H Porteus
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford, CA, USA
| | - Katja Pekrun
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA, USA
| | - Mark A Kay
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
31
|
Koblan LW, Erdos MR, Wilson C, Cabral WA, Levy JM, Xiong ZM, Tavarez UL, Davison LM, Gete YG, Mao X, Newby GA, Doherty SP, Narisu N, Sheng Q, Krilow C, Lin CY, Gordon LB, Cao K, Collins FS, Brown JD, Liu DR. In vivo base editing rescues Hutchinson-Gilford progeria syndrome in mice. Nature 2021; 589:608-614. [PMID: 33408413 PMCID: PMC7872200 DOI: 10.1038/s41586-020-03086-7] [Citation(s) in RCA: 258] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/30/2020] [Indexed: 12/24/2022]
Abstract
Hutchinson-Gilford progeria syndrome (HGPS or progeria) is typically caused by a dominant-negative C•G-to-T•A mutation (c.1824 C>T; p.G608G) in LMNA, the gene that encodes nuclear lamin A. This mutation causes RNA mis-splicing that produces progerin, a toxic protein that induces rapid ageing and shortens the lifespan of children with progeria to approximately 14 years1-4. Adenine base editors (ABEs) convert targeted A•T base pairs to G•C base pairs with minimal by-products and without requiring double-strand DNA breaks or donor DNA templates5,6. Here we describe the use of an ABE to directly correct the pathogenic HGPS mutation in cultured fibroblasts derived from children with progeria and in a mouse model of HGPS. Lentiviral delivery of the ABE to fibroblasts from children with HGPS resulted in 87-91% correction of the pathogenic allele, mitigation of RNA mis-splicing, reduced levels of progerin and correction of nuclear abnormalities. Unbiased off-target DNA and RNA editing analysis did not detect off-target editing in treated patient-derived fibroblasts. In transgenic mice that are homozygous for the human LMNA c.1824 C>T allele, a single retro-orbital injection of adeno-associated virus 9 (AAV9) encoding the ABE resulted in substantial, durable correction of the pathogenic mutation (around 20-60% across various organs six months after injection), restoration of normal RNA splicing and reduction of progerin protein levels. In vivo base editing rescued the vascular pathology of the mice, preserving vascular smooth muscle cell counts and preventing adventitial fibrosis. A single injection of ABE-expressing AAV9 at postnatal day 14 improved vitality and greatly extended the median lifespan of the mice from 215 to 510 days. These findings demonstrate the potential of in vivo base editing as a possible treatment for HGPS and other genetic diseases by directly correcting their root cause.
Collapse
Affiliation(s)
- Luke W Koblan
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Michael R Erdos
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christopher Wilson
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Wayne A Cabral
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jonathan M Levy
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Zheng-Mei Xiong
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Urraca L Tavarez
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lindsay M Davison
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yantenew G Gete
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Xiaojing Mao
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Gregory A Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Sean P Doherty
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Narisu Narisu
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Quanhu Sheng
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Chad Krilow
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Charles Y Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Therapeutic Innovation Center, Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Kronos, Bio Inc., Cambridge, MA, USA
| | - Leslie B Gordon
- Hasbro Children's Hospital, Alpert Medical School of Brown University, Providence, RI, USA
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kan Cao
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Francis S Collins
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Jonathan D Brown
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
32
|
Adipose Tissue: An Emerging Target for Adeno-associated Viral Vectors. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 19:236-249. [PMID: 33102616 PMCID: PMC7566077 DOI: 10.1016/j.omtm.2020.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Adipose tissue is one of the largest organs, playing important roles in physiology and pathologies of multiple diseases. However, research related to adeno-associated virus (AAV) targeting adipose tissue has been left far behind studies carried out in the liver, brain, heart, and muscle. Despite initial reports indicating poor performance, AAV-mediated gene delivery to adipose tissue has continued to rise during the past two decades. AAV8 and a novel engineered hybrid serotype, Rec2, have been shown to transduce adipose tissue more efficiently than other serotypes so far tested and have been applied in most of the in vivo studies. The Rec2 serotype displays high efficacy of gene transfer to both brown and white fat via local and systemic administration. This review summarizes the advances in developing AAV vectors with enhanced adipose tropism and restricting off-target transgene expression. We discuss the challenges and strategies to search for and generate novel serotypes with tropism tailoring for adipose tissue and develop AAV vector systems to improve adipose transgene expression for basic research and translational studies.
Collapse
|
33
|
Carestia A, Kim SJ, Horling F, Rottensteiner H, Lubich C, Reipert BM, Crowe BA, Jenne CN. Modulation of the liver immune microenvironment by the adeno-associated virus serotype 8 gene therapy vector. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 20:95-108. [PMID: 33376758 PMCID: PMC7750493 DOI: 10.1016/j.omtm.2020.10.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022]
Abstract
Adeno-associated viruses (AAVs) are emerging as one of the vehicles of choice for gene therapy. However, the potential immunogenicity of these vectors is a major limitation of their use, leading to the necessity of a better understanding of how viral vectors engage the innate immune system. In this study, we demonstrate the immune response mediated by an AAV vector in a mouse model. Mice were infected intravenously with 4 × 1012 copies (cp)/kg of AAV8, and the ensuing immune response was analyzed using intravital microscopy during a period of weeks. Administration of AAV8 resulted in the infection of hepatocytes, and this infection led to a moderate, but significant, activation of the immune system in the liver. This host immune response involved platelet aggregation, neutrophil extracellular trap (NET) formation, and the recruitment of monocytes, B cells, and T cells. The resident liver macrophage population, Kupffer cells, was necessary to initiate this immune response, as its depletion abrogated platelet aggregation and NET formation and delayed the recruitment of immune cells. Moreover, the death of liver cells produced by this AAV was moderate and failed to result in a robust, sustained inflammatory response. Altogether, these data suggest that AAV8 is a suitable vector for gene therapy approaches.
Collapse
Affiliation(s)
- Agostina Carestia
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Seok-Joo Kim
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada
| | | | | | - Christian Lubich
- Institute Krems Bioanalytics, IMC FH Krems, University of Applied Sciences, Krems, Austria
| | - Birgit M Reipert
- Drug Discovery Austria, Baxalta Innovations GmbH, Vienna, Austria
| | - Brian A Crowe
- Drug Discovery Austria, Baxalta Innovations GmbH, Vienna, Austria
| | - Craig N Jenne
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
34
|
Zhang QS, Tiyaboonchai A, Nygaard S, Baradar K, Major A, Balaji N, Grompe M. Induced Liver Regeneration Enhances CRISPR/Cas9-Mediated Gene Repair in Tyrosinemia Type 1. Hum Gene Ther 2020; 32:294-301. [PMID: 32729326 DOI: 10.1089/hum.2020.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The efficiency of gene repair by homologous recombination in the liver is enhanced by CRISP/Cas9 incision near the mutation. In this study, we explored interventions designed to further enhance in vivo hepatocyte gene repair in a model of hereditary tyrosinemia. A two-AAV system was employed: one virus carried a Staphylococcus pyogenes Cas9 (SpCas9) expression cassette and the other harbored a U6 promoter-driven sgRNA and a fragment of fumarylacetoacetate hydrolase (Fah) genomic DNA as the homologous recombination donor. In neonatal mice, a gene correction frequency of ∼10.8% of hepatocytes was achieved. The efficiency in adult mice was significantly lower at ∼1.6%. To determine whether hepatocyte replication could enhance the targeting frequency, cell division was induced with thyroid hormone T3. This more than doubled the gene correction efficiency to 3.5% (p < 0.005). To determine whether SpCas9 delivery was rate limiting, the gene repair AAV was administered to SpCas9 transgenic mice. However, this did not significantly enhance gene repair. Finally, we tested whether the Fanconi anemia (FA) DNA repair pathway was important in hepatocyte gene repair. Gene correction frequencies were significantly lower in neonatal mice lacking the FA complementation group A (Fanca) gene. Taken together, we conclude that pharmacological induction of hepatocyte replication along with manipulation of DNA repair pathways could be a useful strategy for enhancing in vivo gene correction.
Collapse
Affiliation(s)
- Qing-Shuo Zhang
- Department of Pediatrics, Oregon Stem Cell Center, Oregon Health and Science University, Portland, Oregon, USA
| | - Amita Tiyaboonchai
- Department of Pediatrics, Oregon Stem Cell Center, Oregon Health and Science University, Portland, Oregon, USA
| | - Sean Nygaard
- Department of Pediatrics, Oregon Stem Cell Center, Oregon Health and Science University, Portland, Oregon, USA
| | - Kevin Baradar
- Department of Pediatrics, Oregon Stem Cell Center, Oregon Health and Science University, Portland, Oregon, USA
| | - Angela Major
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Niveditha Balaji
- Department of Pediatrics, Oregon Stem Cell Center, Oregon Health and Science University, Portland, Oregon, USA
| | - Markus Grompe
- Department of Pediatrics, Oregon Stem Cell Center, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
35
|
La QT, Ren B, Logan GJ, Cunningham SC, Khandekar N, Nassif NT, O’Brien BA, Alexander IE, Simpson AM. Use of a Hybrid Adeno-Associated Viral Vector Transposon System to Deliver the Insulin Gene to Diabetic NOD Mice. Cells 2020; 9:E2227. [PMID: 33023100 PMCID: PMC7600325 DOI: 10.3390/cells9102227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022] Open
Abstract
Previously, we used a lentiviral vector to deliver furin-cleavable human insulin (INS-FUR) to the livers in several animal models of diabetes using intervallic infusion in full flow occlusion (FFO), with resultant reversal of diabetes, restoration of glucose tolerance and pancreatic transdifferentiation (PT), due to the expression of beta (β)-cell transcription factors (β-TFs). The present study aimed to determine whether we could similarly reverse diabetes in the non-obese diabetic (NOD) mouse using an adeno-associated viral vector (AAV) to deliver INS-FUR ± the β-TF Pdx1 to the livers of diabetic mice. The traditional AAV8, which provides episomal expression, and the hybrid AAV8/piggyBac that results in transgene integration were used. Diabetic mice that received AAV8-INS-FUR became hypoglycaemic with abnormal intraperitoneal glucose tolerance tests (IPGTTs). Expression of β-TFs was not detected in the livers. Reversal of diabetes was not achieved in mice that received AAV8-INS-FUR and AAV8-Pdx1 and IPGTTs were abnormal. Normoglycaemia and glucose tolerance were achieved in mice that received AAV8/piggyBac-INS-FUR/FFO. Definitive evidence of PT was not observed. This is the first in vivo study using the hybrid AAV8/piggyBac system to treat Type 1 diabetes (T1D). However, further development is required before the system can be used for gene therapy of T1D.
Collapse
Affiliation(s)
- Que T. La
- School of Life Sciences, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia; (Q.T.L.); (B.R.); (N.T.N.); (B.A.O.)
- Centre for Health Technologies, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Binhai Ren
- School of Life Sciences, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia; (Q.T.L.); (B.R.); (N.T.N.); (B.A.O.)
- Centre for Health Technologies, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Grant J. Logan
- Gene Therapy Research Unit, Children’s Medical Research Institute and Children’s Hospital at Westmead, Faculty of Medicine and Health, The University of Sydney and Sydney Children’s Hospitals Network, 214 Hawkesbury Rd, Westmead, NSW 2145, Australia; (G.J.L.); (S.C.C.); (N.K.); (I.E.A.)
| | - Sharon C. Cunningham
- Gene Therapy Research Unit, Children’s Medical Research Institute and Children’s Hospital at Westmead, Faculty of Medicine and Health, The University of Sydney and Sydney Children’s Hospitals Network, 214 Hawkesbury Rd, Westmead, NSW 2145, Australia; (G.J.L.); (S.C.C.); (N.K.); (I.E.A.)
| | - Neeta Khandekar
- Gene Therapy Research Unit, Children’s Medical Research Institute and Children’s Hospital at Westmead, Faculty of Medicine and Health, The University of Sydney and Sydney Children’s Hospitals Network, 214 Hawkesbury Rd, Westmead, NSW 2145, Australia; (G.J.L.); (S.C.C.); (N.K.); (I.E.A.)
| | - Najah T. Nassif
- School of Life Sciences, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia; (Q.T.L.); (B.R.); (N.T.N.); (B.A.O.)
- Centre for Health Technologies, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Bronwyn A. O’Brien
- School of Life Sciences, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia; (Q.T.L.); (B.R.); (N.T.N.); (B.A.O.)
- Centre for Health Technologies, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Ian E. Alexander
- Gene Therapy Research Unit, Children’s Medical Research Institute and Children’s Hospital at Westmead, Faculty of Medicine and Health, The University of Sydney and Sydney Children’s Hospitals Network, 214 Hawkesbury Rd, Westmead, NSW 2145, Australia; (G.J.L.); (S.C.C.); (N.K.); (I.E.A.)
- Discipline of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Ann M. Simpson
- School of Life Sciences, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia; (Q.T.L.); (B.R.); (N.T.N.); (B.A.O.)
- Centre for Health Technologies, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| |
Collapse
|
36
|
Wang Q, Zhong X, Li Q, Su J, Liu Y, Mo L, Deng H, Yang Y. CRISPR-Cas9-Mediated In Vivo Gene Integration at the Albumin Locus Recovers Hemostasis in Neonatal and Adult Hemophilia B Mice. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:520-531. [PMID: 32775489 PMCID: PMC7393320 DOI: 10.1016/j.omtm.2020.06.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/25/2020] [Indexed: 02/05/2023]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 loaded by vectors could induce high rates of specific site genome editing and correct disease-causing mutations. However, most monogenic genetic diseases such as hemophilia are caused by different mutations dispersed in one gene, instead of an accordant mutation. Vectors developed for correcting specific mutations may not be suited to different mutations at other positions. Site-specific gene addition provides an ideal solution for long-term, stable gene therapy. We have demonstrated SaCas9-mediated homology-directed factor IX (FIX) in situ targeting for sustained treatment of hemophilia B. In this study, we tested a more efficient dual adeno-associated virus (AAV) strategy with lower vector dose for liver-directed genome editing that enables CRISPR-Cas9-mediated site-specific integration of therapeutic transgene within the albumin gene, and we aimed to develop a more universal gene-targeting approach. We successfully achieved coagulation function in newborn and adult hemophilia B mice by a single injection of dual AAV vectors. FIX levels in treated mice persisted even after a two-thirds partial hepatectomy, indicating stable gene integration. Our results suggest that this CRISPR-Cas9-mediated site-specific gene integration in hepatocytes could transform into a common clinical therapeutic method for hemophilia B and other genetic diseases.
Collapse
Affiliation(s)
- Qingnan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Xiaomei Zhong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Qian Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Jing Su
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Yi Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Li Mo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Hongxin Deng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Yang Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
- Corresponding author: Yang Yang, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, Sichuan 610041, China.
| |
Collapse
|
37
|
Yin S, Ma L, Shao T, Zhang M, Guan Y, Wang L, Hu Y, Chen X, Han H, Shen N, Qiu W, Geng H, Yu Y, Li S, Yu W, Liu M, Li D. Enhanced genome editing to ameliorate a genetic metabolic liver disease through co-delivery of adeno-associated virus receptor. SCIENCE CHINA-LIFE SCIENCES 2020; 65:718-730. [PMID: 32815069 DOI: 10.1007/s11427-020-1744-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 04/20/2020] [Indexed: 12/24/2022]
Abstract
Genome editing through adeno-associated viral (AAV) vectors is a promising gene therapy strategy for various diseases, especially genetic disorders. However, homologous recombination (HR) efficiency is extremely low in adult animal models. We assumed that increasing AAV transduction efficiency could increase genome editing activity, especially HR efficiency, for in vivo gene therapy. Firstly, a mouse phenylketonuria (PKU) model carrying a pathogenic R408W mutation in phenylalanine hydroxylase (Pah) was generated. Through co-delivery of the general AAV receptor (AAVR), we found that AAVR could dramatically increase AAV transduction efficiency in vitro and in vivo. Furthermore, co-delivery of SaCas9/sgRNA/donor templates with AAVR via AAV8 vectors increased indel rate over 2-fold and HR rate over 15-fold for the correction of the single mutation in PahR408W mice. Moreover, AAVR co-injection successfully increased the site-specific insertion rate of a 1.4 kb Pah cDNA by 11-fold, bringing the HR rate up to 7.3% without detectable global off-target effects. Insertion of Pah cDNA significantly decreased the Phe level and ameliorated PKU symptoms. This study demonstrates a novel strategy to dramatically increase AAV transduction which substantially enhanced in vivo genome editing efficiency in adult animal models, showing clinical potential for both conventional and genome editing-based gene therapy.
Collapse
Affiliation(s)
- Shuming Yin
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Lie Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Tingting Shao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Mei Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yuting Guan
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Liren Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yaqiang Hu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xi Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Honghui Han
- Bioray Laboratories Inc., Shanghai, 200241, China
| | - Nan Shen
- Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Wenjuan Qiu
- Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Hongquan Geng
- Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yongguo Yu
- Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Shichang Li
- College of Physical Education and Health, East China Normal University, Shanghai, 200241, China.,Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Weishi Yu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.,CIPHER GENE LLC, Beijing, 100089, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
38
|
|
39
|
Lee S, Zhou P, Whyte S, Shin S. Adeno-Associated Virus Serotype 8-Mediated Genetic Labeling of Cholangiocytes in the Neonatal Murine Liver. Pharmaceutics 2020; 12:pharmaceutics12040351. [PMID: 32295003 PMCID: PMC7238059 DOI: 10.3390/pharmaceutics12040351] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 12/13/2022] Open
Abstract
Determination of the cellular tropism of viral vectors is imperative for designing precise gene therapy. It has been widely accepted that transduction of hepatocytes using adeno-associated virus serotype 8 (AAV8) is a promising approach to correct inborn errors in neonates, but the type of neonatal hepatic cells transduced by AAV8 has not been thoroughly investigated. To address this question, we used a reporter mouse that carries Cre recombinase (Cre)-inducible yellow fluorescent protein (YFP). Our analysis primarily focused on cholangiocytes, given their pivotal roles in normal liver function and disease. We treated RosaYFP/+ mice at postnatal day 2 (P2) with AAV8-cytomegalovirus (CMV) promoter-Cre and analyzed livers at P10 and P56. The vast majority of HNF4α+ hepatocytes were labeled with YFP at both time points, and 11.6% and 24.4% of CK19+ cholangiocytes were marked at P10 and P56, respectively. We also detected YFP+ cells devoid of hepatocyte and cholangiocyte markers, and a subset of these cells expressed the endothelial and fibroblast marker CD34. Next, we used the hepatocyte-specific thyroxine-binding globulin (TBG) promoter. Surprisingly, AAV8-TBG-Cre marked 6.8% and 30.9% of cholangiocytes at P10 and P56, respectively. These results suggest that AAV8 can be a useful tool for targeting cholangiocytes in neonatal livers.
Collapse
Affiliation(s)
- Sanghoon Lee
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Ping Zhou
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Senyo Whyte
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Molecular and Developmental Biology Graduate Program, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Soona Shin
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Correspondence:
| |
Collapse
|
40
|
Costa Verdera H, Kuranda K, Mingozzi F. AAV Vector Immunogenicity in Humans: A Long Journey to Successful Gene Transfer. Mol Ther 2020; 28:723-746. [PMID: 31972133 PMCID: PMC7054726 DOI: 10.1016/j.ymthe.2019.12.010] [Citation(s) in RCA: 359] [Impact Index Per Article: 89.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 12/27/2019] [Indexed: 12/15/2022] Open
Abstract
Gene therapy with adeno-associated virus (AAV) vectors has demonstrated safety and long-term efficacy in a number of trials across target organs, including eye, liver, skeletal muscle, and the central nervous system. Since the initial evidence that AAV vectors can elicit capsid T cell responses in humans, which can affect the duration of transgene expression, much progress has been made in understanding and modulating AAV vector immunogenicity. It is now well established that exposure to wild-type AAV results in priming of the immune system against the virus, with development of both humoral and T cell immunity. Aside from the neutralizing effect of antibodies, the impact of pre-existing immunity to AAV on gene transfer is still poorly understood. Herein, we review data emerging from clinical trials across a broad range of gene therapy applications. Common features of immune responses to AAV can be found, suggesting, for example, that vector immunogenicity is dose-dependent, and that innate immunity plays an important role in the outcome of gene transfer. A range of host-specific factors are also likely to be important, and a comprehensive understanding of the mechanisms driving AAV vector immunogenicity in humans will be key to unlocking the full potential of in vivo gene therapy.
Collapse
Affiliation(s)
- Helena Costa Verdera
- Genethon and INSERM U951, 91000 Evry, France; Sorbonne Université and INSERM U974, 75013 Paris, France
| | | | - Federico Mingozzi
- Genethon and INSERM U951, 91000 Evry, France; Spark Therapeutics, Philadelphia, PA 19104, USA.
| |
Collapse
|
41
|
Wang L, Yang Y, Breton C, Bell P, Li M, Zhang J, Che Y, Saveliev A, He Z, White J, Latshaw C, Xu C, McMenamin D, Yu H, Morizono H, Batshaw ML, Wilson JM. A mutation-independent CRISPR-Cas9-mediated gene targeting approach to treat a murine model of ornithine transcarbamylase deficiency. SCIENCE ADVANCES 2020; 6:eaax5701. [PMID: 32095520 PMCID: PMC7015695 DOI: 10.1126/sciadv.aax5701] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 09/30/2019] [Indexed: 02/05/2023]
Abstract
Ornithine transcarbamylase (OTC) deficiency is an X-linked urea cycle disorder associated with high mortality. Although a promising treatment for late-onset OTC deficiency, adeno-associated virus (AAV) neonatal gene therapy would only provide short-term therapeutic effects as the non-integrated genome gets lost during hepatocyte proliferation. CRISPR-Cas9-mediated homology-directed repair can correct a G-to-A mutation in 10% of OTC alleles in the livers of newborn OTC spfash mice. However, an editing vector able to correct one mutation would not be applicable for patients carrying different OTC mutations, plus expression would not be fast enough to treat a hyperammonemia crisis. Here, we describe a dual-AAV vector system that accomplishes rapid short-term expression from a non-integrated minigene and long-term expression from the site-specific integration of this minigene without any selective growth advantage for OTC-positive cells in newborns. This CRISPR-Cas9 gene-targeting approach may be applicable to all patients with OTC deficiency, irrespective of mutation and/or clinical state.
Collapse
Affiliation(s)
- Lili Wang
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yang Yang
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Camilo Breton
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peter Bell
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mingyao Li
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jia Zhang
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yan Che
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexei Saveliev
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhenning He
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John White
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Caitlin Latshaw
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chenyu Xu
- Center for Genetic Medicine Research, Children’s Research Institute, Children’s National Hospital, Washington, DC 20010, USA
| | - Deirdre McMenamin
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongwei Yu
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hiroki Morizono
- Center for Genetic Medicine Research, Children’s Research Institute, Children’s National Hospital, Washington, DC 20010, USA
| | - Mark L. Batshaw
- Center for Genetic Medicine Research, Children’s Research Institute, Children’s National Hospital, Washington, DC 20010, USA
| | - James M. Wilson
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
42
|
Harding CO. Prospects for Cell-Directed Curative Therapy of Phenylketonuria (PKU). MOLECULAR FRONTIERS JOURNAL 2019; 3:110-121. [PMID: 32524084 PMCID: PMC7286632 DOI: 10.1142/s2529732519400145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Phenylketonuria (PKU) due to recessively inherited phenylalanine hydroxylase (PAH) deficiency is among the most common inborn errors of metabolism. Dietary therapy begun early in infancy prevents the major manifestations of the disease but shortcomings to treatment continue to exist including lifelong commitment to a complicated and unpalatable diet, poor adherence to diet in adolescence and adulthood, and consequently a range of unsatisfactory outcomes, including neuropsychiatric disorders, frequently develop. Novel treatments that do not strictly depend upon dietary protein restriction are actively sought. This review discusses the potential for and the limitations of permanently curative cell-directed treatment of PKU, including liver-directed gene therapy and gene editing, if initiated during early infancy. A fictional but realistic vignette of a family with a new baby girl recently diagnosed with PKU is presented. What is needed to permanently cure her?
Collapse
Affiliation(s)
- Cary O Harding
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Mailstop L-103, 3181 Sam Jackson Park Rd., Portland, OR 97239, USA
| |
Collapse
|
43
|
Siew SM, Cunningham SC, Zhu E, Tay SS, Venuti E, Bolitho C, Alexander IE. Prevention of Cholestatic Liver Disease and Reduced Tumorigenicity in a Murine Model of PFIC Type 3 Using Hybrid AAV-piggyBac Gene Therapy. Hepatology 2019; 70:2047-2061. [PMID: 31099022 DOI: 10.1002/hep.30773] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 05/06/2019] [Indexed: 12/14/2022]
Abstract
Recombinant adeno-associated viral (rAAV) vectors are highly promising vehicles for liver-targeted gene transfer, with therapeutic efficacy demonstrated in preclinical models and clinical trials. Progressive familial intrahepatic cholestasis type 3 (PFIC3), an inherited juvenile-onset, cholestatic liver disease caused by homozygous mutation of the ABCB4 gene, may be a promising candidate for rAAV-mediated liver-targeted gene therapy. The Abcb4-/- mice model of PFIC3, with juvenile mice developing progressive cholestatic liver injury due to impaired biliary phosphatidylcholine excretion, resulted in cirrhosis and liver malignancy. Using a conventional rAAV strategy, we observed markedly blunted rAAV transduction in adult Abcb4-/- mice with established liver disease, but not in disease-free, wild-type adults or in homozygous juveniles prior to liver disease onset. However, delivery of predominantly nonintegrating rAAV vectors to juvenile mice results in loss of persistent transgene expression due to hepatocyte proliferation in the growing liver. Conclusion: A hybrid vector system, combining the high transduction efficiency of rAAV with piggyBac transposase-mediated somatic integration, was developed to facilitate stable human ABCB4 expression in vivo and to correct juvenile-onset chronic liver disease in a murine model of PFIC3. A single dose of hybrid vector at birth led to life-long restoration of bile composition, prevention of biliary cirrhosis, and a substantial reduction in tumorigenesis. This powerful hybrid rAAV-piggyBac transposon vector strategy has the capacity to mediate lifelong phenotype correction and reduce the tumorigenicity of progressive familial intrahepatic cholestasis type 3 and, with further refinement, the potential for human clinical translation.
Collapse
Affiliation(s)
- Susan M Siew
- Department of Gastroenterology and James Fairfax Institute of Pediatric Nutrition, Sydney Children's Hospitals Network, Westmead, Australia
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, Australia
| | - Sharon C Cunningham
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, Australia
| | - Erhua Zhu
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, Australia
| | - Szun S Tay
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, Australia
| | - Elena Venuti
- Department of Gastroenterology and James Fairfax Institute of Pediatric Nutrition, Sydney Children's Hospitals Network, Westmead, Australia
| | - Christine Bolitho
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, Australia
| | - Ian E Alexander
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, Australia
- Discipline of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| |
Collapse
|
44
|
Morishige S, Mizuno S, Ozawa H, Nakamura T, Mazahery A, Nomura K, Seki R, Mouri F, Osaki K, Yamamura K, Okamura T, Nagafuji K. CRISPR/Cas9-mediated gene correction in hemophilia B patient-derived iPSCs. Int J Hematol 2019; 111:225-233. [PMID: 31664646 DOI: 10.1007/s12185-019-02765-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 12/12/2022]
Abstract
The clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) system is an efficient genome-editing tool that holds potential for gene therapy. Here, we report an application of this system for gene repair in hemophilia B (HB) using induced pluripotent stem cells (iPSCs). We prepared targeting plasmids with homology arms containing corrected sequences to repair an in-frame deletion in exon 2 of the factor IX (F9) gene and transfected patient-derived iPSCs with the Cas9 nuclease and a guide RNA expression vector. To validate the expression of corrected F9, we attempted to induce the differentiation of iPSCs toward hepatocyte-like cells (HLCs) in vitro. We successfully repaired a disease-causing mutation in HB in patient-derived iPSCs. The transcription product of corrected F9 was confirmed in HLCs differentiated from gene-corrected iPSCs. Although further research should be undertaken to obtain completely functional hepatocytes with secretion of coagulation factor IX, our study provides a proof-of-principle for HB gene therapy using the CRISPR/Cas9 system.
Collapse
Affiliation(s)
- Satoshi Morishige
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Shinichi Mizuno
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan.,Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Hidetoshi Ozawa
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Takayuki Nakamura
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Ahmad Mazahery
- Institute of Resource Development and Analysis, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Kei Nomura
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Ritsuko Seki
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Fumihiko Mouri
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Koichi Osaki
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Kenichi Yamamura
- Institute of Resource Development and Analysis, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Takashi Okamura
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan.,Center for Hematology and Oncology, St. Mary's Hospital, 422 Tsubuku-Honmachi, Kurume, 830-8543, Japan
| | - Koji Nagafuji
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan.
| |
Collapse
|
45
|
Gollomp KL, Doshi BS, Arruda VR. Gene therapy for hemophilia: Progress to date and challenges moving forward. Transfus Apher Sci 2019; 58:602-612. [DOI: 10.1016/j.transci.2019.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
46
|
Grisch-Chan HM, Schwank G, Harding CO, Thöny B. State-of-the-Art 2019 on Gene Therapy for Phenylketonuria. Hum Gene Ther 2019; 30:1274-1283. [PMID: 31364419 PMCID: PMC6763965 DOI: 10.1089/hum.2019.111] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/22/2019] [Indexed: 12/21/2022] Open
Abstract
Phenylketonuria (PKU) is considered to be a paradigm for a monogenic metabolic disorder but was never thought to be a primary application for human gene therapy due to established alternative treatment. However, somewhat unanticipated improvement in neuropsychiatric outcome upon long-term treatment of adults with PKU with enzyme substitution therapy might slowly change this assumption. In parallel, PKU was for a long time considered to be an excellent test system for experimental gene therapy of a Mendelian autosomal recessive defect of the liver due to an outstanding mouse model and the easy to analyze and well-defined therapeutic end point, that is, blood l-phenylalanine concentration. Lifelong treatment by targeting the mouse liver (or skeletal muscle) was achieved using different approaches, including (1) recombinant adeno-associated viral (rAAV) or nonviral naked DNA vector-based gene addition, (2) genome editing using base editors delivered by rAAV vectors, and (3) by delivering rAAVs for promoter-less insertion of the PAH-cDNA into the Pah locus. In this article we summarize the gene therapeutic attempts of correcting a mouse model for PKU and discuss the future implications for human gene therapy.
Collapse
Affiliation(s)
- Hiu Man Grisch-Chan
- Division of Metabolism, University Children's Hospital Zurich and Children's Research Centre, Zurich, Switzerland
| | - Gerald Schwank
- Department of Biology, Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Cary O. Harding
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Science and Health University, Portland, Oregon
| | - Beat Thöny
- Division of Metabolism, University Children's Hospital Zurich and Children's Research Centre, Zurich, Switzerland
| |
Collapse
|
47
|
Abstract
Pompe disease (PD) is caused by the deficiency of the lysosomal enzyme acid α-glucosidase (GAA), resulting in systemic pathological glycogen accumulation. PD can present with cardiac, skeletal muscle, and central nervous system manifestations, as a continuum of phenotypes among two main forms: classical infantile-onset PD (IOPD) and late-onset PD (LOPD). IOPD is caused by severe GAA deficiency and presents at birth with cardiac hypertrophy, muscle hypotonia, and severe respiratory impairment, leading to premature death, if not treated. LOPD is characterized by levels of residual GAA activity up to ∼20% of normal and presents both in children and adults with a varied severity of muscle weakness and motor and respiratory deficit. Enzyme replacement therapy (ERT), based on repeated intravenous (i.v.) infusions of recombinant human GAA (rhGAA), represents the only available treatment for PD. Upon more than 10 years from its launch, it is becoming evident that ERT can extend the life span of IOPD and stabilize disease progression in LOPD; however, it does not represent a cure for PD. The limited uptake of the enzyme in key affected tissues and the high immunogenicity of rhGAA are some of the hurdles that limit ERT efficacy. GAA gene transfer with adeno-associated virus (AAV) vectors has been shown to reduce glycogen storage and improve the PD phenotype in preclinical studies following different approaches. Here, we present an overview of the different gene therapy approaches for PD, focusing on in vivo gene transfer with AAV vectors and discussing the potential opportunities and challenges in developing safe and effective gene therapies for the disease. Based on emerging safety and efficacy data from clinical trials for other protein deficiencies, in vivo gene therapy with AAV vectors appears to have the potential to provide a therapeutically relevant, stable source of GAA enzyme, which could be highly beneficial in PD.
Collapse
Affiliation(s)
- Pasqualina Colella
- Genethon, Evry, France.,Department of Pediatrics, Stanford University, Stanford, California
| | - Federico Mingozzi
- Genethon, Evry, France.,Spark Therapeutics, Philadelphia, Pennsylvania
| |
Collapse
|
48
|
Liu L, Cao J, Chang Q, Xing F, Yan G, Fu L, Wang H, Ma Z, Chen X, Li Y, Li S. In Vivo Exon Replacement in the Mouse Atp7b Gene by the Cas9 System. Hum Gene Ther 2019; 30:1079-1092. [PMID: 31144528 DOI: 10.1089/hum.2019.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The application of CRISPR/Cas9 has opened a new era in gene therapy, making it possible to correct mutated genomes in vivo. Exon replacement can correct many mutations and has potential clinical value. In this study, we used a lentivirus-delivered transgene to obtain transgenic mice in which Cas9 and green fluorescent protein (GFP) were driven by the hTBG promoter and were specifically expressed in the liver. In Cas9-positive mice, only ∼11.6% of hepatocytes were GFP positive. The newborn Cas9-positive F1 mice were injected via the temporal vein with rAAV carrying a modified homologous replacement sequence for exon 8 of Atp7b and a pair of single-strand guide RNAs targeting the introns surrounding exon 8. When the Cas9-positive hepatocytes were sorted and analyzed by PCR and next-generation deep sequencing with different labels, ∼16.34 ± 4.02% to 19.37 ± 6.50% of the analyzed copies of exon 8 were replaced by the donor template in the genome of GFP-positive hepatocytes, that is, 1.81 ± 0.29% to 2.09 ± 0.54% replacement occurred in all liver genomes. However, when rAAV carrying a modified homologous replacement sequence was injected into the adult spCas9 mice, a double-cut deletion ratio of up to 99%, only about 1.10-1.13% of the exon 8 replacement rate was detected in Cas9-positive hepatocytes. This study is the first to achieve exon replacement via CRISPR/Cas9, which will benefit research on CRISPR/Cas9 technology for gene therapy.
Collapse
Affiliation(s)
- Lili Liu
- Department of Laboratory Animal Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianchang Cao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiurong Chang
- Department of Laboratory Animal Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fengying Xing
- Department of Laboratory Animal Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guofeng Yan
- Department of Laboratory Animal Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Fu
- Department of Laboratory Animal Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huiyang Wang
- Department of Laboratory Animal Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhengwen Ma
- Department of Laboratory Animal Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xuejin Chen
- Department of Laboratory Animal Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Li
- Department of Laboratory Animal Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shangang Li
- Yunnan Key Laboratory of Primate Biomedicine Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
49
|
De Caneva A, Porro F, Bortolussi G, Sola R, Lisjak M, Barzel A, Giacca M, Kay MA, Vlahoviček K, Zentilin L, Muro AF. Coupling AAV-mediated promoterless gene targeting to SaCas9 nuclease to efficiently correct liver metabolic diseases. JCI Insight 2019; 5:128863. [PMID: 31211694 DOI: 10.1172/jci.insight.128863] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Non-integrative AAV-mediated gene therapy in the liver is effective in adult patients, but faces limitations in pediatric settings due to episomal DNA loss during hepatocyte proliferation. Gene targeting is a promising approach by permanently modifying the genome. We previously rescued neonatal lethality in Crigler-Najjar mice by inserting a promoterless human uridine glucuronosyl transferase A1 (UGT1A1) cDNA in exon 14 of the albumin gene, without the use of nucleases. To increase recombination rate and therapeutic efficacy, here we used CRISPR/SaCas9. Neonatal mice were transduced with two AAVs: one expressing the SaCas9 and sgRNA, and one containing a promoterless cDNA flanked by albumin homology regions. Targeting efficiency increased ~26-fold with an eGFP reporter cDNA, reaching up to 24% of eGFP-positive hepatocytes. Next, we fully corrected the diseased phenotype of Crigler-Najjar mice by targeting the hUGT1A1 cDNA. Treated mice had normal plasma bilirubin up to 10 months after administration, hUGT1A1 protein levels were ~6-fold higher than in WT liver, with a 90-fold increase in recombination rate. Liver histology, inflammatory markers, and plasma albumin were normal in treated mice, with no off-targets in predicted sites. Thus, the improved efficacy and reassuring safety profile support the potential application of the proposed approach to other liver diseases.
Collapse
Affiliation(s)
- Alessia De Caneva
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Fabiola Porro
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Giulia Bortolussi
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Riccardo Sola
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Michela Lisjak
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Adi Barzel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Mauro Giacca
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Mark A Kay
- Departments of Pediatrics and Genetics, Stanford University, Stanford, California, USA
| | - Kristian Vlahoviček
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Lorena Zentilin
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Andrés F Muro
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| |
Collapse
|
50
|
Abstract
Adeno-associated virus (AAV) vectors are the leading platform for gene delivery for the treatment of a variety of human diseases. Recent advances in developing clinically desirable AAV capsids, optimizing genome designs and harnessing revolutionary biotechnologies have contributed substantially to the growth of the gene therapy field. Preclinical and clinical successes in AAV-mediated gene replacement, gene silencing and gene editing have helped AAV gain popularity as the ideal therapeutic vector, with two AAV-based therapeutics gaining regulatory approval in Europe or the United States. Continued study of AAV biology and increased understanding of the associated therapeutic challenges and limitations will build the foundation for future clinical success.
Collapse
Affiliation(s)
- Dan Wang
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Phillip W L Tai
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA.
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|