1
|
Batty P, Lillicrap D. Adeno-associated viral vector integration: implications for long-term efficacy and safety. J Thromb Haemost 2024; 22:2945-2960. [PMID: 39097231 DOI: 10.1016/j.jtha.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 08/05/2024]
Abstract
Adeno-associated virus (AAV) vector gene therapy provides a promising platform for treatment of monogenic inherited disorders. Clinical studies have demonstrated long-term expression with reduction in bleeding using this approach for the treatment of hemophilia. Despite these advances, there are unknowns surrounding the natural history of recombinant AAV (rAAV) vectors and the cellular mechanisms mediating vector persistence. These unknowns underpin questions regarding long-term efficacy and safety. The predominant mechanism via which AAV is proposed to persist is in circular double-stranded extrachromosomal DNA structures (episomes) within the nucleus. Studies of wild-type AAV (WT-AAV) and rAAV have demonstrated that AAV also persists via integration into a host cell's DNA. It is important to determine whether these integration events can mediate expression or could result in any long-term safety concerns. WT-AAV infection affects a large proportion of the general population, which is thought to have no long-term sequelae. Recent studies have highlighted that this WT-AAV has been detected in cases of acute hepatitis in children and in a minority of cases of hepatocellular carcinoma. Integration following treatment using rAAV has also been reported in preclinical and clinical studies. There have been variable reports on the potential implications of integration for rAAV vectors, with data in some murine studies demonstrating recurrent integration with development of hepatocellular carcinoma. These findings have not been seen in other preclinical or clinical studies. In this review, we will summarize current understanding of the natural history of AAV (wild-type and recombinant) with a focus on genomic integration and cellular implications.
Collapse
Affiliation(s)
- Paul Batty
- Department of Haematology, Cancer Institute, University College London, London, United Kingdom; Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada.
| | - David Lillicrap
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
2
|
Klapwijk JC, Del Rio Espinola A, Libertini S, Collin P, Fellows MD, Jobling S, Lynch AM, Martus H, Vickers C, Zeller A, Biasco L, Brugman MH, Bushmann FD, Cathomen T, Ertl HCJ, Gabriel R, Gao G, Jadlowsky JK, Kimber I, Lanz TA, Levine BL, Micklethwaite KP, Onodera M, Pizzurro DM, Reed S, Rothe M, Sabatino DE, Salk JJ, Schambach A, Themis M, Yuan J. Improving the Assessment of Risk Factors Relevant to Potential Carcinogenicity of Gene Therapies: A Consensus Article. Hum Gene Ther 2024; 35:527-542. [PMID: 39049734 DOI: 10.1089/hum.2024.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
Regulators and industry are actively seeking improvements and alternatives to current models and approaches to evaluate potential carcinogenicity of gene therapies (GTs). A meeting of invited experts was organized by NC3Rs/UKEMS (London, March 2023) to discuss this topic. This article describes the consensus reached among delegates on the definition of vector genotoxicity, sources of uncertainty, suitable toxicological endpoints for genotoxic assessment of GTs, and future research needs. The collected recommendations should inform the further development of regulatory guidelines for the nonclinical toxicological assessment of GT products.
Collapse
Affiliation(s)
| | | | | | - Philippe Collin
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Mick D Fellows
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Susan Jobling
- TestaVec Ltd, Maidenhead, United Kingdom
- Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | | | | | - Catherine Vickers
- National Centre for the Replacement Refinement and Reduction of Animals in Research, London, United Kingdom
| | - Andreas Zeller
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Luca Biasco
- UCL Zayed Centre for Research (ZCR), London, United Kingdom
| | - Martijn H Brugman
- Cell and Gene Therapy, GSK Medicine Research Centre, Stevenage, United Kingdom
| | - Frederic D Bushmann
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, Pennsylvania, USA
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center- University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hildegrund C J Ertl
- Ertl Laboratory, Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | | | - Guangping Gao
- Horae Gene Therapy Center, UMass Chan Medical School, University of Massachusetts, Worcester, Massachusetts, USA
| | - Julie K Jadlowsky
- Center for Cellular Immunotherapies and Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ian Kimber
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Thomas A Lanz
- Drug Safety Research & Development, Pfizer, Inc., Groton, Connecticut, USA
| | - Bruce L Levine
- Center for Cellular Immunotherapies and Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kenneth P Micklethwaite
- Department of Haematology, Blood Transplant and Cell Therapies Program, Westmead Hospital, Sydney, Australia
- NSW Health Pathology Blood Transplant and Cell Therapies Laboratory - ICPMR Westmead, Sydney, Australia
- Westmead Institute for Medical Research, Sydney, Australia
- Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Masafumi Onodera
- Gene & Cell Therapy Promotion Center, National Center for Child Health and Development, Tokyo, Japan
| | | | - Simon Reed
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Denise E Sabatino
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jesse J Salk
- Department of Medicine, Divisions of Hematology and Medical Oncology, University of Washington School of Medicine, Seattle, Washington, USA
- TwinStrand Biosciences Inc., Seattle, Washington, USA
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Themis
- TestaVec Ltd, Maidenhead, United Kingdom
- Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Jing Yuan
- Kymera Therapeutics, Watertown, Massachusetts, USA
| |
Collapse
|
3
|
Greig JA, Martins KM, Breton C, Lamontagne RJ, Zhu Y, He Z, White J, Zhu JX, Chichester JA, Zheng Q, Zhang Z, Bell P, Wang L, Wilson JM. Integrated vector genomes may contribute to long-term expression in primate liver after AAV administration. Nat Biotechnol 2024; 42:1232-1242. [PMID: 37932420 PMCID: PMC11324525 DOI: 10.1038/s41587-023-01974-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/29/2023] [Indexed: 11/08/2023]
Abstract
The development of liver-based adeno-associated virus (AAV) gene therapies is facing concerns about limited efficiency and durability of transgene expression. We evaluated nonhuman primates following intravenous dosing of AAV8 and AAVrh10 vectors for over 2 years to better define the mechanism(s) of transduction that affect performance. High transduction of non-immunogenic transgenes was achieved, although expression declined over the first 90 days to reach a lower but stable steady state. More than 10% of hepatocytes contained single nuclear domains of vector DNA that persisted despite the loss of transgene expression. Greater reductions in vector DNA and RNA were observed with immunogenic transgenes. Genomic integration of vector sequences, including complex concatemeric structures, were detected in 1 out of 100 cells at broadly distributed loci that were not in proximity to genes associated with hepatocellular carcinoma. Our studies suggest that AAV-mediated transgene expression in primate hepatocytes occurs in two phases: high but short-lived expression from episomal genomes, followed by much lower but stable expression, likely from integrated vectors.
Collapse
Affiliation(s)
- Jenny A Greig
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kelly M Martins
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Camilo Breton
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - R Jason Lamontagne
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yanqing Zhu
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhenning He
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John White
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jing-Xu Zhu
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jessica A Chichester
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qi Zheng
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhe Zhang
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter Bell
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lili Wang
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - James M Wilson
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
4
|
René CA, Parks RJ. Expanding the Availability of Onasemnogene Abeparvovec to Older Patients: The Evolving Treatment Landscape for Spinal Muscular Atrophy. Pharmaceutics 2023; 15:1764. [PMID: 37376212 DOI: 10.3390/pharmaceutics15061764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/06/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a devastating neuromuscular disorder caused by mutations in the survival of motor neuron 1 (SMN1) gene, which leads to a reduced level in the SMN protein within cells. Patients with SMA suffer from a loss of alpha motor neurons in the spinal cord leading to skeletal muscle atrophy in addition to deficits in other tissues and organs. Patients with severe forms of the disease require ventilator assistance and typically succumb to the disease due to respiratory failure. Onasemnogene abeparvovec is an adeno-associated virus (AAV)-based gene therapeutic that has been approved for infants and young children with SMA, and it is delivered through intravenous administration using a dose based on the weight of the patient. While excellent outcomes have been observed in treated patients, the greater viral dose necessary to treat older children and adults raises legitimate safety concerns. Recently, onasemnogene abeparvovec use was investigated in older children through a fixed dose and intrathecal administration, a route that provides a more direct delivery to affected cells in the spinal cord and central nervous system. The promising results observed in the STRONG trial may support approval of onasemnogene abeparvovec for a greater proportion of patients with SMA.
Collapse
Affiliation(s)
- Charlotte A René
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Robin J Parks
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Department of Medicine, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
| |
Collapse
|
5
|
Calabria A, Cipriani C, Spinozzi G, Rudilosso L, Esposito S, Benedicenti F, Albertini A, Pouzolles M, Luoni M, Giannelli S, Broccoli V, Guilbaud M, Adjali O, Taylor N, Zimmermann VS, Montini E, Cesana D. Intrathymic AAV delivery results in therapeutic site-specific integration at TCR loci in mice. Blood 2023; 141:2316-2329. [PMID: 36790505 PMCID: PMC10356579 DOI: 10.1182/blood.2022017378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/22/2022] [Accepted: 01/21/2023] [Indexed: 02/16/2023] Open
Abstract
Adeno-associated virus (AAV) vectors have been successfully exploited in gene therapy applications for the treatment of several genetic disorders. AAV is considered an episomal vector, but it has been shown to integrate within the host cell genome after the generation of double-strand DNA breaks or nicks. Although AAV integration raises some safety concerns, it can also provide therapeutic benefit; the direct intrathymic injection of an AAV harboring a therapeutic transgene results in integration in T-cell progenitors and long-term T-cell immunity. To assess the mechanisms of AAV integration, we retrieved and analyzed hundreds of AAV integration sites from lymph node-derived mature T cells and compared these with liver and brain tissue from treated mice. Notably, we found that although AAV integrations in the liver and brain were distributed across the entire mouse genome, >90% of the integrations in T cells were clustered within the T-cell receptor α, β, and γ genes. More precisely, the insertion mapped to DNA breaks created by the enzymatic activity of recombination activating genes (RAGs) during variable, diversity, and joining recombination. Our data indicate that RAG activity during T-cell receptor maturation induces a site-specific integration of AAV genomes and opens new therapeutic avenues for achieving long-term AAV-mediated gene transfer in dividing cells.
Collapse
Affiliation(s)
- Andrea Calabria
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Carlo Cipriani
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulio Spinozzi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Rudilosso
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Simona Esposito
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabrizio Benedicenti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Albertini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marie Pouzolles
- Institut de Génétique Moléculaire de Montpellier, Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Mirko Luoni
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Serena Giannelli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Vania Broccoli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroscience Institute, National Research Council of Italy, Milan, Italy
| | - Mickael Guilbaud
- Translational Gene Therapy Laboratory, INSERM and Nantes University, Nantes, France
| | - Oumeya Adjali
- Translational Gene Therapy Laboratory, INSERM and Nantes University, Nantes, France
| | - Naomi Taylor
- Institut de Génétique Moléculaire de Montpellier, Centre National de la Recherche Scientifique (CNRS), Paris, France
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Valérie S. Zimmermann
- Institut de Génétique Moléculaire de Montpellier, Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniela Cesana
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
6
|
Abstract
Gene therapy is poised to revolutionize modern medicine, with seemingly unlimited potential for treating and curing genetic disorders. For otherwise incurable indications, including most inherited metabolic liver disorders, gene therapy provides a realistic therapeutic option. In this Review, we discuss gene supplementation and gene editing involving the use of recombinant adeno-associated virus (rAAV) vectors for the treatment of inherited liver diseases, including updates on several ongoing clinical trials that are producing promising results. Clinical testing has been essential in highlighting many key translational challenges associated with this transformative therapy. In particular, the interaction of a patient's immune system with the vector raises issues of safety and the duration of treatment efficacy. Furthermore, several serious adverse events after the administration of high doses of rAAVs suggest greater involvement of innate immune responses and pre-existing hepatic conditions than initially anticipated. Finally, permanent modification of the host genome associated with rAAV genome integration and gene editing raises concerns about the risk of oncogenicity that require careful evaluation. We summarize the main progress, challenges and pathways forward for gene therapy for liver diseases.
Collapse
|
7
|
Ramamurthy RM, Atala A, Porada CD, Almeida-Porada G. Organoids and microphysiological systems: Promising models for accelerating AAV gene therapy studies. Front Immunol 2022; 13:1011143. [PMID: 36225917 PMCID: PMC9549755 DOI: 10.3389/fimmu.2022.1011143] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/01/2022] [Indexed: 11/24/2022] Open
Abstract
The FDA has predicted that at least 10-20 gene therapy products will be approved by 2025. The surge in the development of such therapies can be attributed to the advent of safe and effective gene delivery vectors such as adeno-associated virus (AAV). The enormous potential of AAV has been demonstrated by its use in over 100 clinical trials and the FDA’s approval of two AAV-based gene therapy products. Despite its demonstrated success in some clinical settings, AAV-based gene therapy is still plagued by issues related to host immunity, and recent studies have suggested that AAV vectors may actually integrate into the host cell genome, raising concerns over the potential for genotoxicity. To better understand these issues and develop means to overcome them, preclinical model systems that accurately recapitulate human physiology are needed. The objective of this review is to provide a brief overview of AAV gene therapy and its current hurdles, to discuss how 3D organoids, microphysiological systems, and body-on-a-chip platforms could serve as powerful models that could be adopted in the preclinical stage, and to provide some examples of the successful application of these models to answer critical questions regarding AAV biology and toxicity that could not have been answered using current animal models. Finally, technical considerations while adopting these models to study AAV gene therapy are also discussed.
Collapse
|
8
|
Sabatino DE, Bushman FD, Chandler RJ, Crystal RG, Davidson BL, Dolmetsch R, Eggan KC, Gao G, Gil-Farina I, Kay MA, McCarty DM, Montini E, Ndu A, Yuan J. Evaluating the state of the science for adeno-associated virus integration: An integrated perspective. Mol Ther 2022; 30:2646-2663. [PMID: 35690906 PMCID: PMC9372310 DOI: 10.1016/j.ymthe.2022.06.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022] Open
Abstract
On August 18, 2021, the American Society of Gene and Cell Therapy (ASGCT) hosted a virtual roundtable on adeno-associated virus (AAV) integration, featuring leading experts in preclinical and clinical AAV gene therapy, to further contextualize and understand this phenomenon. Recombinant AAV (rAAV) vectors are used to develop therapies for many conditions given their ability to transduce multiple cell types, resulting in long-term expression of transgenes. Although most rAAV DNA typically remains episomal, some rAAV DNA becomes integrated into genomic DNA at a low frequency, and rAAV insertional mutagenesis has been shown to lead to tumorigenesis in neonatal mice. Currently, the risk of rAAV-mediated oncogenesis in humans is theoretical because no confirmed genotoxic events have been reported to date. However, because insertional mutagenesis has been reported in a small number of murine studies, there is a need to characterize this genotoxicity to inform research, regulatory needs, and patient care. The purpose of this white paper is to review the evidence of rAAV-related host genome integration in animal models and possible risks of insertional mutagenesis in patients. In addition, technical considerations, regulatory guidance, and bioethics are discussed.
Collapse
Affiliation(s)
- Denise E Sabatino
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Division of Hematology, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Randy J Chandler
- National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Medical College of Cornell University, New York, NY, USA
| | - Beverly L Davidson
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Mark A Kay
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA, USA
| | | | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Adora Ndu
- BridgeBio Pharma, Inc., Palo Alto, CA, USA
| | - Jing Yuan
- Drug Safety Research and Development, Pfizer Inc., Cambridge, MA, USA
| |
Collapse
|
9
|
Zhang J, Yu X, Herzog RW, Samulski RJ, Xiao W. Flies in the ointment: AAV vector preparations and tumor risk. Mol Ther 2021; 29:2637-2639. [PMID: 34450107 DOI: 10.1016/j.ymthe.2021.08.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Junping Zhang
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - Xiangping Yu
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Roland W Herzog
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - R Jude Samulski
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Weidong Xiao
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA.
| |
Collapse
|
10
|
Kichula EA, Proud CM, Farrar MA, Kwon JM, Saito K, Desguerre I, McMillan HJ. Expert recommendations and clinical considerations in the use of onasemnogene abeparvovec gene therapy for spinal muscular atrophy. Muscle Nerve 2021; 64:413-427. [PMID: 34196026 PMCID: PMC8518380 DOI: 10.1002/mus.27363] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/22/2021] [Accepted: 06/27/2021] [Indexed: 12/21/2022]
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive, neurodegenerative disease caused by biallelic mutations in the survival motor neuron 1 (SMN1) gene. SMA is characterized by motor neuron degeneration, resulting in progressive muscle atrophy and weakness. Before the emergence of disease-modifying therapies, children with the most severe form of SMA would never achieve the ability to sit independently. Only 8% survived beyond 20 months of age without permanent ventilator support. One such therapy, onasemnogene abeparvovec, an adeno-associated virus-based gene replacement therapy, delivers functional human SMN through a one-time intravenous infusion. In addition to substantially improving survival, onasemnogene abeparvovec was found to increase motor milestone attainment and reduce the need for respiratory or nutritional support in many patients. This expert opinion provides recommendations and practical considerations on the patient-centered decisions to use onasemnogene abeparvovec. Recommendations include the need for patient-centered multidisciplinary care and patient selection to identify those with underlying medical conditions or active infections to reduce risks. We also describe the importance of retesting patients with elevated anti-adeno-associated virus serotype 9 antibodies. Recommendations for prednisolone tapering and monitoring for potential adverse events, including hepatotoxicity and thrombotic microangiopathy, are described. The need for caregiver education on managing day-to-day care at time of treatment and patient- and family-centered discussions on realistic expectations are also recommended. We detail the importance of following standard-of-care guidance and long-term monitoring of all children with SMA who have received one or more disease-modifying therapy using registries. We also highlight the need for presymptomatic or early symptomatic treatment of this disorder.
Collapse
Affiliation(s)
| | - Crystal M Proud
- Children's Hospital of the King's Daughters, Norfolk, Virginia, USA
| | - Michelle A Farrar
- School of Women's and Children's Health, UNSW Medicine, University of New South Wales Sydney and Sydney Children's Hospital Network, Sydney, New South Wales, Australia
| | - Jennifer M Kwon
- School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Kayoko Saito
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | - Isabelle Desguerre
- Necker-Enfants Malades Hospital, University of Paris, AP-HP, Paris, France
| | - Hugh J McMillan
- Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
11
|
Qin W, Xu G, Tai PWL, Wang C, Luo L, Li C, Hu X, Xue J, Lu Y, Zhou Q, Wei Q, Wen T, Hu J, Xiao Y, Yang L, Li W, Flotte TR, Wei Y, Gao G. Large-scale molecular epidemiological analysis of AAV in a cancer patient population. Oncogene 2021; 40:3060-3071. [PMID: 33782545 PMCID: PMC8087635 DOI: 10.1038/s41388-021-01725-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/28/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023]
Abstract
Recombinant adeno-associated viruses (rAAVs) are well-established vectors for delivering therapeutic genes. However, previous reports have suggested that wild-type AAV is linked to hepatocellular carcinoma, raising concern with the safety of rAAVs. In addition, a recent long-term follow-up study in canines, which received rAAVs for factor VIII gene therapy, demonstrated vector integration into the genome of liver cells, reviving the uncertainty between AAV and cancer. To further explore this relationship, we performed large-scale molecular epidemiology of AAV in resected tumor samples and non-lesion tissues collected from 413 patients, reflecting nine carcinoma types: breast carcinoma, rectal cancer, pancreas carcinoma, brain tumor, hepatoid adenocarcinoma, hepatocellular carcinoma, gastric carcinoma, lung squamous, and adenocarcinoma. We found that over 80% of patients were AAV-positive among all nine types of carcinoma examined. Importantly, the AAV sequences detected in patient-matched tumor and adjacent non-lesion tissues showed no significant difference in incidence, abundance, and variation. In addition, no specific AAV sequences predominated in tumor samples. Our data shows that AAV genomes are equally abundant in tumors and adjacent normal tissues, but lack clonality. The finding critically adds to the epidemiological profile of AAV in humans, and provides insights that may assist rAAV-based clinical studies and gene therapy strategies.
Collapse
Affiliation(s)
- Wanru Qin
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Guangchao Xu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Horae Gene Therapy Center, University of Massachusetts, Medical School, Worcester, MA, USA
- Microbiology and Physiological Systems, University of Massachusetts, Medical School, Worcester, MA, USA
| | - Phillip W L Tai
- Horae Gene Therapy Center, University of Massachusetts, Medical School, Worcester, MA, USA
- Microbiology and Physiological Systems, University of Massachusetts, Medical School, Worcester, MA, USA
| | - Chunmei Wang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Li Luo
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Horae Gene Therapy Center, University of Massachusetts, Medical School, Worcester, MA, USA
| | | | - Xun Hu
- Biobank, West China Hospital, Sichuan University, Chengdu, China
| | - Jianxin Xue
- Department of Thoracic Oncology and State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - You Lu
- Department of Thoracic Oncology and State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qiao Zhou
- Pathology Department and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Tianfu Wen
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jiankun Hu
- Department of Gastrointestinal Surgery and Laboratory of Gastric Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Yuanyuan Xiao
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Li Yang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Weimin Li
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Terence R Flotte
- Horae Gene Therapy Center, University of Massachusetts, Medical School, Worcester, MA, USA.
- Pediatrics, University of Massachusetts, Medical School, Worcester, MA, USA.
| | - Yuquan Wei
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts, Medical School, Worcester, MA, USA.
- Microbiology and Physiological Systems, University of Massachusetts, Medical School, Worcester, MA, USA.
| |
Collapse
|
12
|
Ferla R, Alliegro M, Dell’Anno M, Nusco E, Cullen JM, Smith SN, Wolfsberg TG, O’Donnell P, Wang P, Nguyen AD, Chandler RJ, Chen Z, Burgess SM, Vite CH, Haskins ME, Venditti CP, Auricchio A. Low incidence of hepatocellular carcinoma in mice and cats treated with systemic adeno-associated viral vectors. Mol Ther Methods Clin Dev 2021; 20:247-257. [PMID: 33473358 PMCID: PMC7803627 DOI: 10.1016/j.omtm.2020.11.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022]
Abstract
Adeno-associated viral (AAV) vectors have emerged as the preferred platform for in vivo gene transfer because of their combined efficacy and safety. However, insertional mutagenesis with the subsequent development of hepatocellular carcinomas (HCCs) has been recurrently noted in newborn mice treated with high doses of AAV, and more recently, the association of wild-type AAV integrations in a subset of human HCCs has been documented. Here, we address, in a comprehensive, prospective study, the long-term risk of tumorigenicity in young adult mice following delivery of single-stranded AAVs targeting liver. HCC incidence in mice treated with therapeutic and reporter AAVs was low, in contrast to what has been previously documented in mice treated as newborns with higher doses of AAV. Specifically, HCCs developed in 6 out 76 of AAV-treated mice, and a pathogenic integration of AAV was found in only one tumor. Also, no evidence of liver tumorigenesis was found in juvenile AAV-treated mucopolysaccharidosis type VI (MPS VI) cats followed as long as 8 years after vector administration. Together, our results support the low risk of tumorigenesis associated with AAV-mediated gene transfer targeting juvenile/young adult livers, although constant monitoring of subjects enrolled in AAV clinical trial is advisable.
Collapse
Affiliation(s)
- Rita Ferla
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy
- Medical Genetics, Department of Translational Medicine, “Federico II” University, 80131 Naples, Italy
| | - Marialuisa Alliegro
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy
- Medical Genetics, Department of Translational Medicine, “Federico II” University, 80131 Naples, Italy
| | - Margherita Dell’Anno
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy
- Medical Genetics, Department of Translational Medicine, “Federico II” University, 80131 Naples, Italy
| | - Edoardo Nusco
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy
| | - John M. Cullen
- North Carolina College of Veterinary Medicine, Raleigh, NC 27607, USA
| | | | - Tyra G. Wolfsberg
- National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Patricia O’Donnell
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ping Wang
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anh-Dao Nguyen
- National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Randy J. Chandler
- National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Zelin Chen
- National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Shawn M. Burgess
- National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Charles H. Vite
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mark E. Haskins
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Alberto Auricchio
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy
- Medical Genetics, Department of Advanced Biomedicine, “Federico II” University, 80131 Naples, Italy
| |
Collapse
|
13
|
Affiliation(s)
- Charles P Venditti
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
14
|
Nguyen GN, Everett JK, Kafle S, Roche AM, Raymond HE, Leiby J, Wood C, Assenmacher CA, Merricks EP, Long CT, Kazazian HH, Nichols TC, Bushman FD, Sabatino DE. A long-term study of AAV gene therapy in dogs with hemophilia A identifies clonal expansions of transduced liver cells. Nat Biotechnol 2021; 39:47-55. [PMID: 33199875 PMCID: PMC7855056 DOI: 10.1038/s41587-020-0741-7] [Citation(s) in RCA: 237] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022]
Abstract
Nine dogs with hemophilia A were treated with adeno-associated viral (AAV) gene therapy and followed for up to 10 years. Administration of AAV8 or AAV9 vectors expressing canine factor VIII (AAV-cFVIII) corrected the FVIII deficiency to 1.9-11.3% of normal FVIII levels. In two of nine dogs, levels of FVIII activity increased gradually starting about 4 years after treatment. None of the dogs showed evidence of tumors or altered liver function. Analysis of integration sites in liver samples from six treated dogs identified 1,741 unique AAV integration events in genomic DNA and expanded cell clones in five dogs, with 44% of the integrations near genes involved in cell growth. All recovered integrated vectors were partially deleted and/or rearranged. Our data suggest that the increase in FVIII protein expression in two dogs may have been due to clonal expansion of cells harboring integrated vectors. These results support the clinical development of liver-directed AAV gene therapy for hemophilia A, while emphasizing the importance of long-term monitoring for potential genotoxicity.
Collapse
Affiliation(s)
- Giang N Nguyen
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - John K Everett
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Samita Kafle
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Aoife M Roche
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hayley E Raymond
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob Leiby
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christian Wood
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Charles-Antoine Assenmacher
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth P Merricks
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Blood Research Center, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - C Tyler Long
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Blood Research Center, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Haig H Kazazian
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Timothy C Nichols
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Blood Research Center, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Denise E Sabatino
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Division of Hematology, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
15
|
George LA, Ragni MV, Rasko JEJ, Raffini LJ, Samelson-Jones BJ, Ozelo M, Hazbon M, Runowski AR, Wellman JA, Wachtel K, Chen Y, Anguela XM, Kuranda K, Mingozzi F, High KA. Long-Term Follow-Up of the First in Human Intravascular Delivery of AAV for Gene Transfer: AAV2-hFIX16 for Severe Hemophilia B. Mol Ther 2020; 28:2073-2082. [PMID: 32559433 DOI: 10.1016/j.ymthe.2020.06.001] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/26/2020] [Accepted: 06/03/2020] [Indexed: 12/26/2022] Open
Abstract
Adeno-associated virus (AAV) vectors are a leading platform for gene-based therapies for both monogenic and complex acquired disorders. The success of AAV gene transfer highlights the need to answer outstanding clinical questions of safety, durability, and the nature of the human immune response to AAV vectors. Here, we present longitudinal follow-up data of subjects who participated in the first trial of a systemically delivered AAV vector. Adult males (n = 7) with severe hemophilia B received an AAV2 vector at doses ranging from 8 × 1010 to 2 × 1012 vg/kg to target hepatocyte-specific expression of coagulation factor IX; a subset (n = 4) was followed for 12-15 years post-vector administration. No major safety concerns were observed. There was no evidence of sustained hepatic toxicity or development of hepatocellular carcinoma as assessed by liver transaminase values, serum α-fetoprotein, and liver ultrasound. Subjects demonstrated persistent, increased AAV neutralizing antibodies (NAbs) to the infused AAV serotype 2 (AAV2) as well as all other AAV serotypes tested (AAV5 and AAV8) for the duration of follow-up. These data represent the longest available longitudinal follow-up data of subjects who received intravascular AAV and support the preliminary safety of intravascular AAV administration at the doses tested in adults. Data demonstrate, for the first time, the persistence of high-titer, multi-serotype cross-reactive AAV NAbs for up to 15 years post- AAV vector administration. Our observations are broadly applicable to the development of AAV-mediated gene therapy.
Collapse
Affiliation(s)
- Lindsey A George
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology and Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Margaret V Ragni
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - John E J Rasko
- Gene & Stem Cell Therapy Program, Centenary Institute, and Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; Cell and Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Leslie J Raffini
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Benjamin J Samelson-Jones
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology and Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Margareth Ozelo
- Department of Internal Medicine, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil; IHTC Hemophilia Unit Cláudio Luiz Pizzigatti Corrêa, INCT do Sangue Hemocentro UNICAMP, University of Campinas, Campinas, São Paulo, Brazil
| | - Maria Hazbon
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Alexa R Runowski
- Division of Hematology and Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | | | | | | | | | - Katherine A High
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Spark Therapeutics, Philadelphia, PA, USA.
| |
Collapse
|
16
|
Abstract
Initially discovered as a contaminant of adenovirus preparations, adeno-associated virus (AAV) has proved one of the most promising viral vectors for human gene therapy. The safety profile of AAV has been well-characterized in vivo studies, and the first gene therapy for patients with vision loss caused by Leber congenital amaurosis or retinitis pigmentosa was approved by the US Food and Drug Administration in 2017. This is an exciting era for investigators working on retina biology and treatments for blindness. In this chapter, we provide detailed methods for laboratory-scale production, purification, and characterization of AAV.
Collapse
Affiliation(s)
- Shuyun Deng
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX, USA
| | - Kazuhiro Oka
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
17
|
Abstract
Antibody immunotherapy is revolutionizing modern medicine. The field has advanced dramatically over the past 40 years, driven in part by major advances in isolation and manufacturing technologies that have brought these important biologics to the forefront of modern medicine. However, the global uptake of monoclonal antibody (mAb) biologics is impeded by biophysical and biochemical liabilities, production limitations, the need for cold-chain storage and transport, as well as high costs of manufacturing and distribution. Some of these hurdles may be overcome through transient in vivo gene delivery platforms, such as non-viral synthetic plasmid DNA and messenger RNA vectors that are engineered to encode optimized mAb genes. These approaches turn the body into a biological factory for antibody production, eliminating many of the steps involved in bioprocesses and providing several other significant advantages, and differ from traditional gene therapy (permanent delivery) approaches. In this review, we focus on nucleic acid delivery of antibody employing synthetic plasmid DNA vector platforms, and RNA delivery, these being important approaches that are advancing simple, rapid, in vivo expression and having an impact in animal models of infectious diseases and cancer, among others.
Collapse
Affiliation(s)
- Ami Patel
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Mamadou A Bah
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - David B Weiner
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
18
|
Pathogenesis of Hepatic Tumors following Gene Therapy in Murine and Canine Models of Glycogen Storage Disease. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 15:383-391. [PMID: 31890731 PMCID: PMC6909089 DOI: 10.1016/j.omtm.2019.10.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 10/30/2019] [Indexed: 12/15/2022]
Abstract
Glycogen storage disease type Ia (GSD Ia) is caused by mutations in the glucose-6-phosphatase (G6Pase) catalytic subunit gene (G6PC). GSD Ia complications include hepatocellular adenomas (HCA) with a risk for hepatocellular carcinoma (HCC) formation. Genome editing with adeno-associated virus (AAV) vectors containing a zinc-finger nuclease (ZFN) and a G6PC donor transgene was evaluated in adult mice with GSD Ia. Although mouse livers expressed G6Pase, HCA and HCC occurred following AAV vector administration. Interestingly, vector genomes were almost undetectable in the tumors but remained relatively high in adjacent liver (p < 0.01). G6Pase activity was decreased in tumors, in comparison with adjacent liver (p < 0.01). Furthermore, AAV-G6Pase vector-treated dogs with GSD Ia developed HCC with lower G6Pase activity (p < 0.01) in comparison with adjacent liver. AAV integration and tumor marker analysis in mice revealed that tumors arose from the underlying disorder, not from vector administration. Similarly to human GSD Ia-related HCA and HCC, mouse and dog tumors did not express elevated α-fetoprotein. Taken together, these results suggest that AAV-mediated gene therapy not only corrects hepatic G6Pase deficiency, but also has potential to suppress HCA and HCC in the GSD Ia liver.
Collapse
|
19
|
Abstract
Adeno-associated virus (AAV) vectors are the leading platform for gene delivery for the treatment of a variety of human diseases. Recent advances in developing clinically desirable AAV capsids, optimizing genome designs and harnessing revolutionary biotechnologies have contributed substantially to the growth of the gene therapy field. Preclinical and clinical successes in AAV-mediated gene replacement, gene silencing and gene editing have helped AAV gain popularity as the ideal therapeutic vector, with two AAV-based therapeutics gaining regulatory approval in Europe or the United States. Continued study of AAV biology and increased understanding of the associated therapeutic challenges and limitations will build the foundation for future clinical success.
Collapse
Affiliation(s)
- Dan Wang
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Phillip W L Tai
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA.
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
20
|
Hudry E, Vandenberghe LH. Therapeutic AAV Gene Transfer to the Nervous System: A Clinical Reality. Neuron 2019; 101:839-862. [DOI: 10.1016/j.neuron.2019.02.017] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 02/07/2023]
|
21
|
Abstract
Hemophilia is a congenital bleeding disorder that affects nearly half a million individuals worldwide. Joint bleeding and other co-morbidities are a significant source of debilitation for this population. Current therapies are effective but must be given lifelong at regular intervals, are costly, and are available to only about 25% of the hemophilia population living in resource-rich countries. Gene therapy for hemophilia has been in development for three decades and is now entering pivotal-stage clinical trials. While many different technology platforms exist for gene therapy, all current clinical trials for hemophilia employ adeno-associated vector (AAV)-based cell transduction. This small viral particle is capable of packaging modified F8 or F9 transgenes, can be generated robustly from cell lines, and transduces several relatively end-differentiated target tissues such as the liver with high efficiency. While pre-existing neutralizing antibodies to the AAV capsid are recognized to limit current therapy, other challenges have been identified in human studies that were not seen in preclinical studies. Both liver transaminase elevations and immune-mediated loss of transgene expression have been observed in clinical trials. Toll-like receptors, cytotoxic T cells, and other components of the immune response have been implicated in the loss of factor expression, but a full understanding of the immune response awaits clarification. Despite these challenges, many patients enrolled in gene therapy trials have attained long-term expression of factors VIII and IX. This emerging technology now represents a cure for the severe bleeding and joint damage associated with hemophilia.
Collapse
Affiliation(s)
- John C Chapin
- Shire, 650 Kendall Drive, Cambridge, MA, 02142, USA.
| | | |
Collapse
|
22
|
Riordan JD. Re: Srivastava A, Carter BJ; AAV Infection: Protection from Cancer; Hum Gene Ther 2017;28:323-327; DOI: 10.1089/hum.2016.147. Hum Gene Ther 2018; 28:375-376. [PMID: 28335621 DOI: 10.1089/hum.2017.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
23
|
Abstract
In recent years, the number of clinical trials in which adeno-associated virus (AAV) vectors have been used for in vivo gene transfer has steadily increased. The excellent safety profile, together with the high efficiency of transduction of a broad range of target tissues, has established AAV vectors as the platform of choice for in vivo gene therapy. Successful application of the AAV technology has also been achieved in the clinic for a variety of conditions, including coagulation disorders, inherited blindness, and neurodegenerative diseases, among others. Clinical translation of novel and effective "therapeutic products" is, however, a long process that involves several cycles of iterations from bench to bedside that are required to address issues encountered during drug development. For the AAV vector gene transfer technology, several hurdles have emerged in both preclinical studies and clinical trials; addressing these issues will allow in the future to expand the scope of AAV gene transfer as a therapeutic modality for a variety of human diseases. In this review, we will give an overview on the biology of AAV vector, discuss the design of AAV-based gene therapy strategies for in vivo applications, and present key achievements and emerging issues in the field. We will use the liver as a model target tissue for gene transfer based on the large amount of data available from preclinical and clinical studies.
Collapse
Affiliation(s)
- Pasqualina Colella
- Genethon, INSERM U951 INTEGRARE, University of Evry, University Paris-Saclay, 91001 Evry, France
| | - Giuseppe Ronzitti
- Genethon, INSERM U951 INTEGRARE, University of Evry, University Paris-Saclay, 91001 Evry, France
| | - Federico Mingozzi
- Genethon, INSERM U951 INTEGRARE, University of Evry, University Paris-Saclay, 91001 Evry, France
- University Pierre and Marie Curie-Paris 6 and INSERM U974, 75651 Paris, France
| |
Collapse
|
24
|
Streamlined ex vivo and in vivo genome editing in mouse embryos using recombinant adeno-associated viruses. Nat Commun 2018; 9:412. [PMID: 29379011 PMCID: PMC5788975 DOI: 10.1038/s41467-017-02706-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 12/20/2017] [Indexed: 01/07/2023] Open
Abstract
Recent advances using CRISPR-Cas9 approaches have dramatically enhanced the ease for genetic manipulation in rodents. Notwithstanding, the methods to deliver nucleic acids into pre-implantation embryos have hardly changed since the original description of mouse transgenesis more than 30 years ago. Here we report a novel strategy to generate genetically modified mice by transduction of CRISPR-Cas9 components into pre-implantation mouse embryos via recombinant adeno-associated viruses (rAAVs). Using this approach, we efficiently generated a variety of targeted mutations in explanted embryos, including indel events produced by non-homologous end joining and tailored mutations using homology-directed repair. We also achieved gene modification in vivo by direct delivery of rAAV particles into the oviduct of pregnant females. Our approach greatly simplifies the generation of genetically modified mice and, more importantly, opens the door for streamlined gene editing in other mammalian species. CRISPR-Cas9 has been widely adopted for genetically manipulating rodents for scientific research. Here the authors transduce mouse embryos with CRISPR-Cas9 components using rAAVs in explant culture or in vivo to produce gene-edited animals.
Collapse
|
25
|
Cachón-González MB, Zaccariotto E, Cox TM. Genetics and Therapies for GM2 Gangliosidosis. Curr Gene Ther 2018; 18:68-89. [PMID: 29618308 PMCID: PMC6040173 DOI: 10.2174/1566523218666180404162622] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/10/2018] [Accepted: 01/27/2018] [Indexed: 12/30/2022]
Abstract
Tay-Sachs disease, caused by impaired β-N-acetylhexosaminidase activity, was the first GM2 gangliosidosis to be studied and one of the most severe and earliest lysosomal diseases to be described. The condition, associated with the pathological build-up of GM2 ganglioside, has acquired almost iconic status and serves as a paradigm in the study of lysosomal storage diseases. Inherited as a classical autosomal recessive disorder, this global disease of the nervous system induces developmental arrest with regression of attained milestones; neurodegeneration progresses rapidly to cause premature death in young children. There is no effective treatment beyond palliative care, and while the genetic basis of GM2 gangliosidosis is well established, the molecular and cellular events, from diseasecausing mutations and glycosphingolipid storage to disease manifestations, remain to be fully delineated. Several therapeutic approaches have been attempted in patients, including enzymatic augmentation, bone marrow transplantation, enzyme enhancement, and substrate reduction therapy. Hitherto, none of these stratagems has materially altered the course of the disease. Authentic animal models of GM2 gangliodidosis have facilitated in-depth evaluation of innovative applications such as gene transfer, which in contrast to other interventions, shows great promise. This review outlines current knowledge pertaining the pathobiology as well as potential innovative treatments for the GM2 gangliosidoses.
Collapse
Affiliation(s)
| | - Eva Zaccariotto
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
26
|
Dogbevia GK, Töllner K, Körbelin J, Bröer S, Ridder DA, Grasshoff H, Brandt C, Wenzel J, Straub BK, Trepel M, Löscher W, Schwaninger M. Gene therapy decreases seizures in a model ofIncontinentia pigmenti. Ann Neurol 2017. [DOI: 10.1002/ana.24981] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Godwin K. Dogbevia
- Institute for Experimental and Clinical Pharmacology and Toxicology; University of Lübeck; Lübeck Germany
| | - Kathrin Töllner
- Department of Pharmacology, Toxicology, and Pharmacy; University of Veterinary Medicine and Center for Systems Neuroscience; Hannover Germany
| | - Jakob Körbelin
- University Medical Center Hamburg-Eppendorf, Hubertus Wald Cancer Center, Department of Oncology and Hematology; Hamburg Germany
| | - Sonja Bröer
- Department of Pharmacology, Toxicology, and Pharmacy; University of Veterinary Medicine and Center for Systems Neuroscience; Hannover Germany
| | - Dirk A. Ridder
- Institute of Pathology; University Medical Center Mainz; Mainz Germany
| | - Hanna Grasshoff
- Institute for Experimental and Clinical Pharmacology and Toxicology; University of Lübeck; Lübeck Germany
| | - Claudia Brandt
- Department of Pharmacology, Toxicology, and Pharmacy; University of Veterinary Medicine and Center for Systems Neuroscience; Hannover Germany
| | - Jan Wenzel
- Institute for Experimental and Clinical Pharmacology and Toxicology; University of Lübeck; Lübeck Germany
- DZHK (German Research Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel; Lübeck Germany
| | - Beate K. Straub
- Institute of Pathology; University Medical Center Mainz; Mainz Germany
| | - Martin Trepel
- University Medical Center Hamburg-Eppendorf, Hubertus Wald Cancer Center, Department of Oncology and Hematology; Hamburg Germany
- Augsburg Medical Center, Department of Hematology and Oncology; Augsburg Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy; University of Veterinary Medicine and Center for Systems Neuroscience; Hannover Germany
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology; University of Lübeck; Lübeck Germany
- DZHK (German Research Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel; Lübeck Germany
| |
Collapse
|
27
|
Xie J, Mao Q, Tai PWL, He R, Ai J, Su Q, Zhu Y, Ma H, Li J, Gong S, Wang D, Gao Z, Li M, Zhong L, Zhou H, Gao G. Short DNA Hairpins Compromise Recombinant Adeno-Associated Virus Genome Homogeneity. Mol Ther 2017; 25:1363-1374. [PMID: 28462820 PMCID: PMC5474962 DOI: 10.1016/j.ymthe.2017.03.028] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 02/05/2023] Open
Abstract
Short hairpin (sh)RNAs delivered by recombinant adeno-associated viruses (rAAVs) are valuable tools to study gene function in vivo and a promising gene therapy platform. Our data show that incorporation of shRNA transgenes into rAAV constructs reduces vector yield and produces a population of truncated and defective genomes. We demonstrate that sequences with hairpins or hairpin-like structures drive the generation of truncated AAV genomes through a polymerase redirection mechanism during viral genome replication. Our findings reveal the importance of genomic secondary structure when optimizing viral vector designs. We also discovered that shDNAs could be adapted to act as surrogate mutant inverted terminal repeats (mTRs), sequences that were previously thought to be required for functional self-complementary AAV vectors. The use of shDNAs as artificial mTRs opens the door to engineering a new generation of AAV vectors with improved potency, genetic stability, and safety for both preclinical studies and human gene therapy.
Collapse
Affiliation(s)
- Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Viral Vector Core, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Qin Mao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Thoracic Cancer, Cancer Center, West China Hospital, West China School of Clinical Medicine, Sichuan University, Chengdu, Sichuan 610000, China
| | - Phillip W L Tai
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ran He
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Viral Vector Core, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jianzhong Ai
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Urology Department, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China
| | - Qin Su
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Viral Vector Core, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ye Zhu
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Cardiovascular Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China
| | - Hong Ma
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Viral Vector Core, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jia Li
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Shoufang Gong
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Dan Wang
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Zhen Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Mengxin Li
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Viral Vector Core, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Li Zhong
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Heather Zhou
- Genetics and Pharmacogenomics, Merck Research Laboratory, Kenilworth, NJ 07033, USA.
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Viral Vector Core, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA; State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China.
| |
Collapse
|
28
|
Chandler RJ, Sands MS, Venditti CP. Recombinant Adeno-Associated Viral Integration and Genotoxicity: Insights from Animal Models. Hum Gene Ther 2017; 28:314-322. [PMID: 28293963 DOI: 10.1089/hum.2017.009] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Currently, clinical gene therapy is experiencing a renaissance, with new products for clinical use approved in Europe and clinical trials for multiple diseases reporting positive results, especially those using recombinant adeno-associated viral (rAAV) vectors. Amid this new success, it is prudent to recall that the field of gene therapy experienced tragic setbacks in 1999 and 2002 because of the serious adverse events related to retroviral and adenoviral gene delivery in two clinical trials that resulted in the death of two patients. In both cases, the toxicity observed in humans had been documented to occur in animal models. However, these toxicities were either undetected or underappreciated before they arose in humans. rAAVs have been tested extensively in animals and animal models of disease, largely without adverse events, except for transient elevation in liver enzymes in some patients. However, a small but growing number of murine studies have documented that adeno-associated viral gene delivery can result in insertional mutagenesis. Herein, the aggregate data are reviewed from multiple murine studies where genotoxicity associated with rAAV treatment has been observed. The data emphasize the need for a proactive position to evaluate the potential risks and possible solutions associated with AAV-mediated gene therapy.
Collapse
Affiliation(s)
- Randy J Chandler
- 1 Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health , Department of Health and Human Services, Bethesda, Maryland
| | - Mark S Sands
- 2 Department of Internal Medicine, Washington University School of Medicine , St. Louis, Missouri.,3 Department of Genetics, Washington University School of Medicine , St. Louis, Missouri
| | - Charles P Venditti
- 1 Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health , Department of Health and Human Services, Bethesda, Maryland
| |
Collapse
|
29
|
Kattenhorn LM, Tipper CH, Stoica L, Geraghty DS, Wright TL, Clark KR, Wadsworth SC. Adeno-Associated Virus Gene Therapy for Liver Disease. Hum Gene Ther 2016; 27:947-961. [PMID: 27897038 PMCID: PMC5177998 DOI: 10.1089/hum.2016.160] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 11/23/2016] [Indexed: 12/14/2022] Open
Abstract
The field of adeno-associated virus (AAV) gene therapy has progressed rapidly over the past decade, with the advent of novel capsid serotype and organ-specific promoters, and an increasing understanding of the immune response to AAV administration. In particular, liver-directed therapy has made remarkable strides, with a number of clinical trials currently planned and ongoing in hemophilia A and B, as well as other liver disorders. This review focuses on liver-directed AAV gene therapy, including historic context, current challenges, and future developments.
Collapse
|
30
|
Abstract
There are conflicting reports that integration of the wild-type adeno-associated virus 2 (AAV2) genome is associated with induction of hepatocellular carcinoma (HCC) in a small subset of patients. However, there are several lines of evidence that contradict this assertion: (i) AAV2 has long been known to be a non-pathogenic virus, although ∼90% of the human population is seropositive for AAV2 antibodies; (ii) AAV2 has been shown to possess anticancer activity; (iii) epidemiological evidence suggests that AAV2 infection plays a protective role against cervical carcinoma; and (iv) five different AAV serotype vectors (AAV1, AAV2, AAV5, AAV8, and AAV9) have been or are currently being used in 162 Phase I/II clinical trials and one Phase III clinical trial in humans to date, and no cancer of any type has ever been observed or reported. A brief historical account of the putative role of infection by AAV in the etiology of cancer, or lack thereof, is presented.
Collapse
Affiliation(s)
- Arun Srivastava
- 1 Division of Cellular and Molecular Therapy, Departments of Pediatrics and Molecular Genetics and Microbiology, Powell Gene Therapy Center; Genetics Institute; University of Florida College of Medicine , Gainesville, Florida
| | | |
Collapse
|
31
|
Chandler RJ, LaFave MC, Varshney GK, Burgess SM, Venditti CP. Genotoxicity in Mice Following AAV Gene Delivery: A Safety Concern for Human Gene Therapy? Mol Ther 2016; 24:198-201. [PMID: 26906613 DOI: 10.1038/mt.2016.17] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Randy J Chandler
- Molecular Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Matthew C LaFave
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Gaurav K Varshney
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Charles P Venditti
- Molecular Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
32
|
Abstract
Here we review the recent literature on Hemophilia gene transfer/therapy. Gene therapy is one of several new technologies being developed as a treatment for bleeding disorders. We will discuss current and pending clinical efforts and attempt to relate how the field is trending. In doing so, we will focus on the use of recombinant Adeno-associated viral (rAAV) vector-mediated gene transfer since all currently active trials are using this vector. Recent exciting results embody nearly 20 years of preclinical and translational research. After several early clinical attempts, therapeutic factor levels that can now be achieved reflect several modifications of the original vectors. Patterns of results are slowly starting to emerge as different AAV vectors are being tested. As with any new technology, there are drawbacks, and the potential for immune/inflammatory and oncogenic risks have emerged and will be discussed.
Collapse
Affiliation(s)
- Peter Ward
- a Tisch Cancer Institute , Icahn School of Medicine at Mount Sinai, One Gustave Levy Place , New York City , NY , USA
| | - Christopher E Walsh
- a Tisch Cancer Institute , Icahn School of Medicine at Mount Sinai, One Gustave Levy Place , New York City , NY , USA
| |
Collapse
|
33
|
Recombinant AAV Integration Is Not Associated With Hepatic Genotoxicity in Nonhuman Primates and Patients. Mol Ther 2016; 24:1100-1105. [PMID: 26948440 DOI: 10.1038/mt.2016.52] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/28/2016] [Indexed: 12/14/2022] Open
Abstract
Recombinant adeno-associated viral vectors (rAAV) currently constitute a real therapeutic strategy for the sustained correction of diverse genetic conditions. Though a wealth of preclinical and clinical studies have been conducted with rAAV, the oncogenic potential of these vectors is still controversial, particularly when considering liver-directed gene therapy. Few preclinical studies and the recent discovery of incomplete wild-type AAV2 genomes integrated in human hepatocellular carcinoma biopsies have raised concerns on rAAV safety. In the present study, we have characterized the integration of both complete and partial rAAV2/5 genomes in nonhuman primate tissues and clinical liver biopsies from a trial aimed to treat acute intermittent porphyria. We applied a new multiplex linear amplification-mediated polymerase chain reaction (PCR) assay capable of detecting integration events that are originated throughout the rAAV genome. The integration rate was low both in nonhuman primates and patient's samples. Importantly, no integration clusters or events were found in genes previously reported to link rAAV integration with hepatocellular carcinoma development, thus showing the absence of genotoxicity of a systemically administered rAAV2/5 in a large animal model and in the clinical context.
Collapse
|
34
|
Abstract
MicroRNAs (miRNAs) are 20 to 24 nt long, single-stranded RNAs that repress gene expression. Dysregulation of miRNA expression is associated with many human diseases. Modulating the level of endogenous miRNA alters gene profiling and can achieve therapeutic benefits. Here the authors review currently used methods of altering miRNA activity in vivo. They focus on the delivery of miRNAs and miRNA inhibitors using recombinant adeno-associated virus (rAAV). In general, rAAV-mediated miRNA inhibition or overexpression provides a simple, efficient, and informative way to study miRNA function in mammals. This method also provides the opportunity to explore potential miRNA therapeutics for many diseases.
Collapse
Affiliation(s)
- Jun Xie
- Gene Therapy Center, University of Massachusetts Medical School
- Microbiology and Physiology Systems, University of Massachusetts Medical School
| | - Daniel Robert Burt
- Gene Therapy Center, University of Massachusetts Medical School
- Saint Louis University School of Medical
| | - Guangping Gao
- Gene Therapy Center, University of Massachusetts Medical School
- Microbiology and Physiology Systems, University of Massachusetts Medical School
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
35
|
Chandler RJ, LaFave MC, Varshney GK, Trivedi NS, Carrillo-Carrasco N, Senac JS, Wu W, Hoffmann V, Elkahloun AG, Burgess SM, Venditti CP. Vector design influences hepatic genotoxicity after adeno-associated virus gene therapy. J Clin Invest 2015; 125:870-80. [PMID: 25607839 DOI: 10.1172/jci79213] [Citation(s) in RCA: 282] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/11/2014] [Indexed: 12/13/2022] Open
Abstract
The use of adeno-associated virus (AAV) as a gene therapy vector has been approved recently for clinical use and has demonstrated efficacy in a growing number of clinical trials. However, the safety of AAV as a vector has been challenged by a single study that documented hepatocellular carcinoma (HCC) after AAV gene delivery in mice. Most studies have not noted genotoxicity following AAV-mediated gene delivery; therefore, the possibility that there is an association between AAV and HCC is controversial. Here, we performed a comprehensive study of HCC in a large number of mice following therapeutic AAV gene delivery. Using a sensitive high-throughput integration site-capture technique and global expressional analysis, we found that AAV integration into the RNA imprinted and accumulated in nucleus (Rian) locus, and the resulting overexpression of proximal microRNAs and retrotransposon-like 1 (Rtl1) were associated with HCC. In addition, we demonstrated that the AAV vector dose, enhancer/promoter selection, and the timing of gene delivery are all critical factors for determining HCC incidence after AAV gene delivery. Together, our results define aspects of AAV-mediated gene therapy that influence genotoxicity and suggest that these features should be considered for design of both safer AAV vectors and gene therapy studies.
Collapse
|
36
|
Long-term correction of Sandhoff disease following intravenous delivery of rAAV9 to mouse neonates. Mol Ther 2014; 23:414-22. [PMID: 25515709 DOI: 10.1038/mt.2014.240] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/02/2014] [Indexed: 01/14/2023] Open
Abstract
G(M2) gangliosidoses are severe neurodegenerative disorders resulting from a deficiency in β-hexosaminidase A activity and lacking effective therapies. Using a Sandhoff disease (SD) mouse model (Hexb(-/-)) of the G(M2) gangliosidoses, we tested the potential of systemically delivered adeno-associated virus 9 (AAV9) expressing Hexb cDNA to correct the neurological phenotype. Neonatal or adult SD and normal mice were intravenously injected with AAV9-HexB or -LacZ and monitored for serum β-hexosaminidase activity, motor function, and survival. Brain G(M2) ganglioside, β-hexosaminidase activity, and inflammation were assessed at experimental week 43, or an earlier humane end point. SD mice injected with AAV9-LacZ died by 17 weeks of age, whereas all neonatal AAV9-HexB-treated SD mice survived until 43 weeks (P < 0.0001) with only three exhibiting neurological dysfunction. SD mice treated as adults with AAV9-HexB died between 17 and 35 weeks. Neonatal SD-HexB-treated mice had a significant increase in brain β-hexosaminidase activity, and a reduction in G(M2) ganglioside storage and neuroinflammation compared to adult SD-HexB- and SD-LacZ-treated groups. However, at 43 weeks, 8 of 10 neonatal-HexB injected control and SD mice exhibited liver or lung tumors. This study demonstrates the potential for long-term correction of SD and other G(M2) gangliosidoses through early rAAV9 based systemic gene therapy.
Collapse
|