1
|
Shah W, Zhao Q, Wang S, Zhang M, Ma H, Guan Y, Zhang Y, Liu Y, Zhu C, Wang S, Zhang X, Dong J, Ma H. Polydatin improves vascular endothelial function by maintaining mitochondrial homeostasis under high glucose conditions. Sci Rep 2023; 13:16550. [PMID: 37783713 PMCID: PMC10545827 DOI: 10.1038/s41598-023-43786-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023] Open
Abstract
Previous studies have shown that polydatin (Poly) confer cardioprotective effects. However, its underlying mechanisms remain elusive. This study showed that Poly (10 µM) treatment reversed the high glucose (HG)-induced decrease in acetylcholine-elicited vasodilation in aortas. Poly also improved the acetylcholine-induced vasodilation of aortic vessels isolated from diabetic rats. Meanwhile, Poly ameliorated the morphological damage of the thoracic aorta and improved the viability of HUVECs under HG conditions. Furthermore, analysis of the vasoprotective effect of Poly under HG conditions by transmission electron microscopy, Western blotting, and qPCR revealed that Poly improved endothelial pyroptosis through the NLRP3/Caspase/1-IL-1β pathway, enhanced dynamin-related protein 1-mediated mitochondrial fission, and increased the mitochondrial membrane potential under HG conditions. In conclusion, Poly restored acetylcholine-induced vasodilation impaired by HG incubation, which was associated with reduced oxidation, inflammation, and pyroptosis, the recovery of the mitochondrial membrane potential and maintenance of mitochondrial dynamic homeostasis of endothelial cells in the aortas.
Collapse
Affiliation(s)
- Wahid Shah
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Qiyue Zhao
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Sen Wang
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Miaomiao Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Hongyu Ma
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Yue Guan
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Yi Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, 050017, Hebei, China
| | - Yan Liu
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Ziqiang Road 139, Shijiazhuang, 050051, Hebei, China
| | - Chunhua Zhu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Sheng Wang
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, 050017, Hebei, China
- Key Laboratory of Neurophysiology of Hebei Province, Shijiazhuang, 050017, Hebei, China
| | - Xiangjian Zhang
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, 050017, Hebei, China
| | - Jinghui Dong
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| | - Huijie Ma
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, 050017, Hebei, China.
- Key Laboratory of Neurophysiology of Hebei Province, Shijiazhuang, 050017, Hebei, China.
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| |
Collapse
|
2
|
Carbon monoxide prevents TNF-α-induced eNOS downregulation by inhibiting NF-κB-responsive miR-155-5p biogenesis. Exp Mol Med 2017; 49:e403. [PMID: 29170479 PMCID: PMC5704195 DOI: 10.1038/emm.2017.193] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/24/2017] [Accepted: 05/28/2017] [Indexed: 12/22/2022] Open
Abstract
Heme oxygenase-1-derived carbon monoxide prevents inflammatory vascular disorders. To date, there is no clear evidence that HO-1/CO prevents endothelial dysfunction associated with the downregulation of endothelial NO synthesis in human endothelial cells stimulated with TNF-α. Here, we found that the CO-releasing compound CORM-2 prevented TNF-α-mediated decreases in eNOS expression and NO/cGMP production, without affecting eNOS promoter activity, by maintaining the functional activity of the eNOS mRNA 3′-untranslated region. By contrast, CORM-2 inhibited MIR155HG expression and miR-155-5p biogenesis in TNF-α-stimulated endothelial cells, resulting in recovery of the 3′-UTR activity of eNOS mRNA, a target of miR-155-5p. The beneficial effect of CORM-2 was blocked by an NF-κB inhibitor, a miR-155-5p mimic, a HO-1 inhibitor and siRNA against HO-1, indicating that CO rescues TNF-α-induced eNOS downregulation through NF-κB-responsive miR-155-5p expression via HO-1 induction; similar protective effects of ectopic HO-1 expression and bilirubin were observed in endothelial cells treated with TNF-α. Moreover, heme degradation products, except iron and N-acetylcysteine prevented H2O2-mediated miR-155-5p biogenesis and eNOS downregulation. These data demonstrate that CO prevents TNF-α-mediated eNOS downregulation by inhibiting redox-sensitive miR-155-5p biogenesis through a positive forward circuit between CO and HO-1 induction. This circuit may play an important preventive role in inflammatory endothelial dysfunction associated with human vascular diseases.
Collapse
|
3
|
Vosen S, Rieck S, Heidsieck A, Mykhaylyk O, Zimmermann K, Plank C, Gleich B, Pfeifer A, Fleischmann BK, Wenzel D. Improvement of vascular function by magnetic nanoparticle-assisted circumferential gene transfer into the native endothelium. J Control Release 2016; 241:164-173. [PMID: 27667178 DOI: 10.1016/j.jconrel.2016.09.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 12/22/2022]
Abstract
Gene therapy is a promising approach for chronic disorders that require continuous treatment such as cardiovascular disease. Overexpression of vasoprotective genes has generated encouraging results in animal models, but not in clinical trials. One major problem in humans is the delivery of sufficient amounts of genetic vectors to the endothelium which is impeded by blood flow, whereas prolonged stop-flow conditions impose the risk of ischemia. In the current study we have therefore developed a strategy for the efficient circumferential lentiviral gene transfer in the native endothelium under constant flow conditions. For that purpose we perfused vessels that were exposed to specially designed magnetic fields with complexes of lentivirus and magnetic nanoparticles thereby enabling overexpression of therapeutic genes such as endothelial nitric oxide synthase (eNOS) and vascular endothelial growth factor (VEGF). This treatment enhanced NO and VEGF production in the transduced endothelium and resulted in a reduction of vascular tone and increased angiogenesis. Thus, the combination of MNPs with magnetic fields is an innovative strategy for site-specific and efficient vascular gene therapy.
Collapse
Affiliation(s)
- Sarah Vosen
- Institute of Physiology I, Life & Brain Center, University Clinic of Bonn, Germany
| | - Sarah Rieck
- Institute of Physiology I, Life & Brain Center, University Clinic of Bonn, Germany
| | | | - Olga Mykhaylyk
- Institute of Experimental Oncology and Therapy Research, TU München, Germany
| | - Katrin Zimmermann
- Institute of Pharmacology and Toxicology, University Clinic of Bonn, Germany
| | - Christian Plank
- Institute of Experimental Oncology and Therapy Research, TU München, Germany
| | - Bernhard Gleich
- Zentralinstitut für Medizintechnik (IMETUM), TU München, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University Clinic of Bonn, Germany
| | - Bernd K Fleischmann
- Institute of Physiology I, Life & Brain Center, University Clinic of Bonn, Germany
| | - Daniela Wenzel
- Institute of Physiology I, Life & Brain Center, University Clinic of Bonn, Germany.
| |
Collapse
|