1
|
Thöny B, Ng J, Kurian MA, Mills P, Martinez A. Mouse models for inherited monoamine neurotransmitter disorders. J Inherit Metab Dis 2024; 47:533-550. [PMID: 38168036 DOI: 10.1002/jimd.12710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/07/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Several mouse models have been developed to study human defects of primary and secondary inherited monoamine neurotransmitter disorders (iMND). As the field continues to expand, current defects in corresponding mouse models include enzymes and a molecular co-chaperone involved in monoamine synthesis and metabolism (PAH, TH, PITX3, AADC, DBH, MAOA, DNAJC6), tetrahydrobiopterin (BH4) cofactor synthesis and recycling (adGTPCH1/DRD, arGTPCH1, PTPS, SR, DHPR), and vitamin B6 cofactor deficiency (ALDH7A1), as well as defective monoamine neurotransmitter packaging (VMAT1, VMAT2) and reuptake (DAT). No mouse models are available for human DNAJC12 co-chaperone and PNPO-B6 deficiencies, disorders associated with recessive variants that result in decreased stability and function of the aromatic amino acid hydroxylases and decreased neurotransmitter synthesis, respectively. More than one mutant mouse is available for some of these defects, which is invaluable as different variant-specific (knock-in) models may provide more insights into underlying mechanisms of disorders, while complete gene inactivation (knock-out) models often have limitations in terms of recapitulating complex human diseases. While these mouse models have common phenotypic traits also observed in patients, reflecting the defective homeostasis of the monoamine neurotransmitter pathways, they also present with disease-specific manifestations with toxic accumulation or deficiency of specific metabolites related to the specific gene affected. This review provides an overview of the currently available models and may give directions toward selecting existing models or generating new ones to investigate novel pathogenic mechanisms and precision therapies.
Collapse
Affiliation(s)
- Beat Thöny
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zürich, Switzerland
| | - Joanne Ng
- Genetic Therapy Accelerator Centre, University College London, Queen Square Institute of Neurology, London, UK
| | - Manju A Kurian
- Zayed Centre for Research into Rare Disease in Children, GOS Institute of Child Health, University College London, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Philippa Mills
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Aurora Martinez
- Department of Biomedicine and Center for Translational Research in Parkinson's Disease, University of Bergen, Bergen, Norway
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
2
|
Spagnoli C, Battini R, Manti F, Cordelli DM, Pession A, Bellini M, Bordugo A, Cantalupo G, Riva A, Striano P, Spada M, Porta F, Fusco C. Identification of Potential Clusters of Signs and Symptoms to Prioritize Patients' Eligibility for AADCd Screening by 3-OMD Testing: An Italian Delphi Consensus. Behav Neurol 2024; 2024:1023861. [PMID: 39280026 PMCID: PMC11401676 DOI: 10.1155/2024/1023861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 09/18/2024] Open
Abstract
Introduction AADCd is an ultrarare, underdiagnosed neurometabolic disorder for which a screening test (3-OMD dosing on dried blood spot (DBS)) and targeted gene therapy (authorized in the EU and the UK) are available. Therefore, it is mandatory to raise awareness of presenting symptoms and signs among practitioners. Delivering scientifically sound information to promote screening of patients with the correct cluster of symptoms and signs would be critical. Materials and Methods In light of the lack of sound evidence on this issue, expert opinion level of evidence was elicited with the Delphi method. Fourteen steering committee members invited a panel of 29 Italian experts to express their opinions on a series of crucial but controversial topics related to using 3-OMD DBS as a screening method in AADCd. Clusters of symptoms and signs were divided into typical or atypical, depending on age groups. Inclusion in newborn screening programs and the usefulness of a clinical score were investigated. A five-point Likert scale was used to rate the level of priority attributed to each statement. Results The following statements reached the highest priority: testing pediatric patients with hypotonia, developmental delay, movement disorders, and oculogyric crises; inclusion of 3-OMD dosing on DBS in neonatal screening programs; development of a clinical score to support patients' selection for 3-OMD screening; among atypical phenotypes based on clinical characteristics of Italian patients: testing patients with intellectual disability and parkinsonism-dystonia. Discussion. Clusters of symptoms and signs can be used to prioritize testing with 3-OMD DBS. A clinical score was rated as highly relevant for the patient's selection. The inclusion of 3-OMD dosing in newborn screening programs was advocated with high clinical priority.
Collapse
Affiliation(s)
- Carlotta Spagnoli
- Child Neurology and Psychiatry Unit, AUSL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Roberta Battini
- Department of Developmental Neuroscience, IRCCS Stella Maris, Pisa, Italy
| | - Filippo Manti
- Child Neuropsychiatric Unit, Human Neuroscience Department, Sapienza University of Rome, Rome, Italy
| | - Duccio Maria Cordelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell'Età Pediatrica, Bologna, Italy
| | - Andrea Pession
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Pediatric Oncology & Hematology Unit 'Lalla Seràgnoli', IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Melissa Bellini
- Pediatrics and Neonatology Unit, Guglielmo da Saliceto Hospital, AUSL di Piacenza, Piacenza, Italy
| | - Andrea Bordugo
- Inherited Metabolic Diseases Unit and Regional Centre for Newborn Screening, Diagnosis and Treatment of Inherited Metabolic Diseases and Congenital Endocrine Diseases, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Gaetano Cantalupo
- Innovation Biomedicine Section, Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
- Child Neuropsychiatry Unit and Center for Research on Epilepsy in Pediatric Age (CREP), University Hospital of Verona (full member of the European Reference Network EpiCARE), Verona, Italy
| | - Antonella Riva
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Marco Spada
- Department of Pediatrics, AOU Città della Salute e della Scienza di Torino, University of Torino, Turin, Italy
| | - Francesco Porta
- Department of Pediatrics, Metabolic Diseases, AOU Città della Salute e della Scienza, University of Torino, Turin, Italy
| | - Carlo Fusco
- Child Neurology and Psychiatry Unit, AUSL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
3
|
Ng J, Barral S, Waddington SN, Kurian MA. Gene Therapy for Dopamine Dyshomeostasis: From Parkinson's to Primary Neurotransmitter Diseases. Mov Disord 2023; 38:924-936. [PMID: 37147851 PMCID: PMC10946997 DOI: 10.1002/mds.29416] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/23/2023] [Accepted: 04/05/2023] [Indexed: 05/07/2023] Open
Abstract
Neurological disorders encompass a broad range of neurodegenerative and neurodevelopmental diseases that are complex and almost universally without disease modifying treatments. There is, therefore, significant unmet clinical need to develop novel therapeutic strategies for these patients. Viral gene therapies are a promising approach, where gene delivery is achieved through viral vectors such as adeno-associated virus and lentivirus. The clinical efficacy of such gene therapies has already been observed in two neurological disorders of pediatric onset; for spinal muscular atrophy and aromatic L-amino acid decarboxylase (AADC) deficiency, gene therapy has significantly modified the natural history of disease in these life-limiting neurological disorders. Here, we review recent advances in gene therapy, focused on the targeted delivery of dopaminergic genes for Parkinson's disease and the primary neurotransmitter disorders, AADC deficiency and dopamine transporter deficiency syndrome (DTDS). Although recent European Medicines Agency and Medicines and Healthcare products Regulatory Agency approval of Upstaza (eladocagene exuparvovec) signifies an important landmark, numerous challenges remain. Future research will need to focus on defining the optimal therapeutic window for clinical intervention, better understanding of the duration of therapeutic efficacy, and improved brain targeting. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Joanne Ng
- Gene Transfer Technology Group, EGA‐Institute for Women's HealthUniversity College LondonLondonUnited Kingdom
- Genetic Therapy Accelerator Centre, Department of Neurodegenerative Disease, Queen Square Institute of NeurologyUniversity College LondonLondonUnited Kingdom
| | - Serena Barral
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, GOS‐Institute of Child HealthUniversity College LondonLondonUnited Kingdom
| | - Simon N. Waddington
- Gene Transfer Technology Group, EGA‐Institute for Women's HealthUniversity College LondonLondonUnited Kingdom
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Manju A. Kurian
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, GOS‐Institute of Child HealthUniversity College LondonLondonUnited Kingdom
- Department of NeurologyGreat Ormond Street Hospital for ChildrenLondonUnited Kingdom
| |
Collapse
|
4
|
Uchitel J, Kantor B, Smith EC, Mikati MA. Viral-Mediated Gene Replacement Therapy in the Developing Central Nervous System: Current Status and Future Directions. Pediatr Neurol 2020; 110:5-19. [PMID: 32684374 DOI: 10.1016/j.pediatrneurol.2020.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/17/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022]
Abstract
The past few years have witnessed rapid developments in viral-mediated gene replacement therapy for pediatric central nervous system neurogenetic disorders. Here, we provide pediatric neurologists with an up-to-date, comprehensive overview of these developments and note emerging trends for future research. This review presents the different types of viral vectors used in viral-mediated gene replacement therapy; the fundamental properties of viral-mediated gene replacement therapy; the challenges associated with the use of this therapy in the central nervous system; the pathway for therapy development, from translational basic science studies to clinical trials; and an overview of the therapies that have reached clinical trials in patients. Current viral platforms under investigation include adenovirus vectors, adeno-associated viral vectors, lentiviral/retroviral vectors, and herpes simplex virus type 1 vectors. This review also presents an in-depth analysis of numerous studies that investigated these viral platforms in cultured cells and in transgenic animal models for pediatric neurogenetic disorders. Viral vectors have been applied to clinical trials for many different pediatric neurogenetic disorders, including Canavan disease, metachromatic leukodystrophy, neuronal ceroid lipofuscinosis, mucopolysaccharidosis III, spinal muscular atrophy, and aromatic l-amino acid decarboxylase deficiency. Of these diseases, only spinal muscular atrophy has a viral-mediated gene replacement therapy approved for marketing. Despite significant progress in therapy development, many challenges remain. Surmounting these challenges is critical to advancing the current status of viral-mediated gene replacement therapy for pediatric central nervous system neurogenetic disorders.
Collapse
Affiliation(s)
- Julie Uchitel
- Division of Pediatric Neurology and Developmental Medicine, Duke University Medical Center, Durham, North Carolina
| | - Boris Kantor
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina
| | - Edward C Smith
- Division of Pediatric Neurology and Developmental Medicine, Duke University Medical Center, Durham, North Carolina
| | - Mohamad A Mikati
- Division of Pediatric Neurology and Developmental Medicine, Duke University Medical Center, Durham, North Carolina; Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina.
| |
Collapse
|
5
|
Hyland K, Reott M. Prevalence of Aromatic l-Amino Acid Decarboxylase Deficiency in At-Risk Populations. Pediatr Neurol 2020; 106:38-42. [PMID: 32111562 DOI: 10.1016/j.pediatrneurol.2019.11.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 11/21/2019] [Accepted: 11/29/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Aromatic l-amino acid decarboxylase (AADC) deficiency is an autosomal recessive metabolic disorder that results from disease-causing pathogenic variants of the dopa decarboxylase (DDC) gene. Loss of dopamine and serotonin production in the brain from infancy prevents achievement of motor developmental milestones. METHODS We retrospectively evaluated data obtained from requests to Medical Neurogenetics Laboratories for analyses of neurotransmitter metabolites in the cerebrospinal fluid, AADC enzyme activity in plasma, and/or Sanger sequencing of the DDC gene. Our primary objective was to estimate the prevalence of AADC deficiency in an at-risk population. RESULTS Approximately 20,000 cerebrospinal fluid samples were received with a request for neurotransmitter metabolite analysis in the eight-year study period; 22 samples tested positive for AADC deficiency based on decreased concentrations of 5-hydroxyindoleacetic acid and homovanillic acid, and increased 3-O-methyldopa, establishing an estimated prevalence of approximately 0.112%, or 1:900. Of the 81 requests received for plasma AADC enzyme analysis, 25 samples had very low plasma AADC activity consistent with AADC deficiency, resulting in identification of nine additional cases. A total of five additional patients were identified by Sanger sequencing as the primary request leading to the diagnosis of AADC deficiency. CONCLUSIONS Overall, these analyses identified 36 new cases of AADC deficiency. Sequencing findings showed substantial diversity with identification of 26 different DDC gene variants; five had not previously been associated with AADC deficiency. The results of the present study align with the emerging literature and understanding of the epidemiology and genetics of AADC deficiency.
Collapse
Affiliation(s)
- Keith Hyland
- Department of Neurochemistry, Medical Neurogenetics Laboratories, Atlanta, Georgia.
| | - Michael Reott
- Department of Neurochemistry, Medical Neurogenetics Laboratories, Atlanta, Georgia
| |
Collapse
|
6
|
Huang D, Liu H, Zhu A, Zhou Y, Li Y. Forebrain excitatory neuron-specific SENP2 knockout mouse displays hyperactivity, impaired learning and memory, and anxiolytic-like behavior. Mol Brain 2020; 13:59. [PMID: 32290845 PMCID: PMC7155287 DOI: 10.1186/s13041-020-00591-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/18/2020] [Indexed: 12/21/2022] Open
Abstract
Sentrin/SUMO-specific protease 2 (SENP2) is a member of SENPs family involved in maturation of SUMO precursors and deSUMOylation of specific target, and is highly expressed in the central nervous system (CNS). Although SENP2 has been shown to modulate embryonic development, fatty acid metabolism, atherosclerosis and epilepsy, the function of SENP2 in the CNS remains poorly understood. To address the role of SENP2 in the CNS and its potential involvement in neuropathology, we generated SENP2 conditional knockout mice by crossing floxed SENP2 mice with CaMKIIα-Cre transgenic mice. Behavioral tests revealed that SENP2 ablation induced hyper-locomotor activity, anxiolytic-like behaviors, spatial working memory impairment and fear-associated learning defect. In line with these observations, our RNA sequencing (RNA-seq) data identified a variety of differential expression genes that are particularly enriched in locomotion, learning and memory related biologic process. Taken together, our results indicated that SENP2 plays a critical role in emotional and cognitive regulation. This SENP2 conditional knockout mice model may help reveal novel mechanisms that underlie a variety of neuropsychiatric disorders associated with anxiety and cognition.
Collapse
Affiliation(s)
- Dehua Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Huiqing Liu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Aoxue Zhu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Yi Zhou
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Yong Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| |
Collapse
|
7
|
Keeler AM, Flotte TR. Recombinant Adeno-Associated Virus Gene Therapy in Light of Luxturna (and Zolgensma and Glybera): Where Are We, and How Did We Get Here? Annu Rev Virol 2019; 6:601-621. [PMID: 31283441 PMCID: PMC7123914 DOI: 10.1146/annurev-virology-092818-015530] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The recent market approvals of recombinant adeno-associated virus (rAAV) gene therapies in Europe and the United States are landmark achievements in the history of modern science. These approvals are also anticipated to herald the emergence of a new class of therapies for monogenic disorders, which had hitherto been considered untreatable. These events can be viewed as stemming from the convergence of several important historical trends: the study of basic virology, the development of genomic technologies, the imperative for translational impact of National Institutes of Health-funded research, and the development of economic models for commercialization of rare disease therapies. In this review, these historical trends are described and the key developments that have enabled clinical rAAV gene therapies are discussed, along with an overview of the current state of the field and future directions.
Collapse
Affiliation(s)
- Allison M Keeler
- Horae Gene Therapy Center and Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA;
| | - Terence R Flotte
- Horae Gene Therapy Center and Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA;
| |
Collapse
|
8
|
Ho SY, Chien YH, Tsai LK, Muramatsu SI, Hwu WL, Liou HH, Lee NC. Electrical Abnormalities in Dopaminergic Neurons of the Substantia Nigra in Mice With an Aromatic L-Amino Acid Decarboxylase Deficiency. Front Cell Neurosci 2019; 13:9. [PMID: 30766478 PMCID: PMC6365702 DOI: 10.3389/fncel.2019.00009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/10/2019] [Indexed: 12/25/2022] Open
Abstract
Aromatic L-acid decarboxylase (AADC) deficiency causes severe motor disturbances in affected children. A putamen-targeted gene therapy improves the motor function of patients. The present study investigated the electrical properties of dopaminergic (DA) neurons in the substantia nigra compacta (SNc) of mice with an AADC deficiency (DdcKI). The basal firing of DA neurons, which determines DA release in the putamen, was abnormal in the DdcKI mice, including a low frequency and irregular firing pattern, because of a decrease in the after-hyperpolarization (AHP) amplitude of action potentials (APs). The frequency of spontaneous excitatory postsynaptic currents (sEPSCs) increased and that of spontaneous inhibitory PSCs (sIPSCs) decreased in the SNc DA neurons from the DdcKI mice, suggesting an elevation in glutamatergic excitatory stimuli and a reduction in GABAergic inhibitory stimuli, respectively. Altered expression patterns of genes encoding receptors and channels were also observed in the DdcKI mice. Administration of a widespread neuron-specific gene therapy to the brains of the DdcKI mice partially corrected these electric abnormalities. The overexcitability of SNc DA neurons in the presence of generalized dopamine deficiency likely underlies the occurrence of motor disturbances.
Collapse
Affiliation(s)
- Shih-Yin Ho
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.,Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yin-Hsiu Chien
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan.,Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Li-Kai Tsai
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Shin-Ichi Muramatsu
- Division of Neurology, Department of Medicine, Jichi Medical University, Tochigi, Japan.,Center for Gene & Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Wuh-Liang Hwu
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan.,Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Horng-Huei Liou
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.,Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Neurology, National Taiwan University Hospital Yunlin Branch, Douliu, Taiwan
| | - Ni-Chung Lee
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan.,Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
9
|
Lee NC, Chien YH, Hwu WL. A review of aromatic l
-amino acid decarboxylase (AADC) deficiency in Taiwan. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 181:226-229. [DOI: 10.1002/ajmg.c.31670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Ni-Chung Lee
- Department of Medical Genetics; National Taiwan University Hospital and National Taiwan University College of Medicine; Taipei Taiwan
- Department of Pediatrics; National Taiwan University Hospital and National Taiwan University College of Medicine; Taipei Taiwan
| | - Yin-Hsiu Chien
- Department of Medical Genetics; National Taiwan University Hospital and National Taiwan University College of Medicine; Taipei Taiwan
- Department of Pediatrics; National Taiwan University Hospital and National Taiwan University College of Medicine; Taipei Taiwan
| | - Wuh-Liang Hwu
- Department of Medical Genetics; National Taiwan University Hospital and National Taiwan University College of Medicine; Taipei Taiwan
- Department of Pediatrics; National Taiwan University Hospital and National Taiwan University College of Medicine; Taipei Taiwan
| |
Collapse
|
10
|
Tsai CR, Lee HF, Chi CS, Yang MT, Hsu CC. Antisense oligonucleotides modulate dopa decarboxylase function in aromatic l-amino acid decarboxylase deficiency. Hum Mutat 2018; 39:2072-2082. [PMID: 30260058 DOI: 10.1002/humu.23659] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/22/2018] [Accepted: 09/25/2018] [Indexed: 12/24/2022]
Abstract
Aromatic l-amino acid decarboxylase deficiency (AADCD), attributed to mutations in the dopa decarboxylase (DDC) gene, is a rare neurometabolic disease resulting from a defect in the biosynthesis of dopamine and serotonin. The DDC c.714+4A>T mutation is the most prevalent mutation among patients with AADCD, and is also a founder mutation among Taiwanese patients. In this study, the molecular consequences and function of this mutation were examined in AADCD patient-derived lymphoblastoid cells. We identified novel DDC mRNA isoforms spliced with a new exon (exon 6a) in normal and c.714+4A>T lymphoblastoid cells. In addition, we identified the SR proteins (SRSF9 and SRSF6), as well as cis-elements involved in modulating the splicing of this mutated transcript. Notably, we demonstrated that antisense oligonucleotides (ASOs) were able to restore the normal mRNA splicing and increase the level of DDC protein, as well as its downstream product serotonin, in lymphoblastoid cells derived from the patient with AADCD, suggesting that these ASOs might represent a feasible alternative strategy for gene therapy of AADCD in patients with the common c.714+4A>T mutation.
Collapse
Affiliation(s)
- Chi-Ren Tsai
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 402, Taiwan.,Department of Pediatrics, Taichung Veterans General Hospital, Taichung, 407, Taiwan
| | - Hsiu-Fen Lee
- Department of Pediatrics, Taichung Veterans General Hospital, Taichung, 407, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Ching-Shiang Chi
- School of Medicine, Chung Shan Medical University, Taichung, 402, Taiwan.,Department of Pediatrics, Tung's Taichung Metroharbor Hospital, Taichung, 435, Taiwan
| | - Ming-Te Yang
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 402, Taiwan
| | - Chia-Chi Hsu
- Department of Pediatrics, Taichung Veterans General Hospital, Taichung, 407, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, 112, Taiwan
| |
Collapse
|
11
|
Lee NC, Lee YM, Chen PW, Byrne BJ, Hwu WL. Mutation-adapted U1 snRNA corrects a splicing error of the dopa decarboxylase gene. Hum Mol Genet 2017; 25:5142-5147. [PMID: 27658936 DOI: 10.1093/hmg/ddw323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/16/2016] [Indexed: 12/29/2022] Open
Abstract
Aromatic l-amino acid decarboxylase (AADC) deficiency is an inborn error of monoamine neurotransmitter synthesis, which results in dopamine, serotonin, epinephrine and norepinephrine deficiencies. The DDC gene founder mutation IVS6 + 4A > T is highly prevalent in Chinese patients with AADC deficiency. In this study, we designed several U1 snRNA vectors to adapt U1 snRNA binding sequences of the mutated DDC gene. We found that only the modified U1 snRNA (IVS-AAA) that completely matched both the intronic and exonic U1 binding sequences of the mutated DDC gene could correct splicing errors of either the mutated human DDC minigene or the mouse artificial splicing construct in vitro. We further injected an adeno-associated viral (AAV) vector to express IVS-AAA in the brain of a knock-in mouse model. This treatment was well tolerated and improved both the survival and brain dopamine and serotonin levels of mice with AADC deficiency. Therefore, mutation-adapted U1 snRNA gene therapy can be a promising method to treat genetic diseases caused by splicing errors, but the efficiency of such a treatment still needs improvements.
Collapse
Affiliation(s)
- Ni-Chung Lee
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan.,Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-May Lee
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Pin-Wen Chen
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Barry J Byrne
- Powell Gene Therapy Center, University of Florida, Gainesville, FL, USA
| | - Wuh-Liang Hwu
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan.,Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
12
|
Abstract
More than 15% of all disease-causing mutations result in mRNA splicing defects. U1 snRNA binds to the 5' splice site (5'ss) through base pairing. Mutation-adapted U1 snRNA (with compensatory U1 snRNA changes) and exon-specific U1 snRNA (complementary to intronic sequences) have been shown to suppress 5'ss mutations in cellular and animal models. Areas covered: The history, mechanism of action, and efficacy of U1 snRNA-mediated gene therapy are covered. The clinical utility of this technology and its limitations will be discussed. Expert commentary: Recently, gene therapies with mutation-adapted U1 snRNAs have been conducted on animal models, including aromatic l-amino acid decarboxylase deficiency and spinal muscular atrophy. However, although U1-mediated therapy has the advantage of maintaining the regulated expression of defective genes, its accuracy and efficacy needs to be improved before clinical application of this technique is possible.
Collapse
Affiliation(s)
- Wuh-Liang Hwu
- a Department of Pediatrics and Medical Genetics , National Taiwan University Hospital and National Taiwan University College of Medicine , Taipei , Taiwan
| | - Yu-May Lee
- a Department of Pediatrics and Medical Genetics , National Taiwan University Hospital and National Taiwan University College of Medicine , Taipei , Taiwan
| | - Ni-Chung Lee
- a Department of Pediatrics and Medical Genetics , National Taiwan University Hospital and National Taiwan University College of Medicine , Taipei , Taiwan
| |
Collapse
|
13
|
Zhu J, Yu F. [Feeding difficulty and developmental delay for 8 months and nystagmus for 4 months in an infant]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19:68-72. [PMID: 28100326 PMCID: PMC7390117 DOI: 10.7499/j.issn.1008-8830.2017.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/02/2016] [Indexed: 06/06/2023]
Abstract
Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare autosomal recessive hereditary disease and is a congenital metabolic disorder of neurotransmitter biosynthesis. It is mainly manifested as hypotonia, oculogyric crisis, autonomic dysfunction, and developmental delay. This article reports a boy manifested as delayed motor development, hypotonia, and oculogyric crisis. Gene screening for metabolic disorders revealed new compound heterozygous mutations, c.1063dupA (p.I355fs) and c.250A>C (p.S84R), in the exon of DDC gene. The boy had a significant increase in 3-O-methyldopa as measured by dried blood spot. Therefore, he was diagnosed with AADC deficiency. After treatment with the dopamine receptor agonist pramipexole dihydrochloride, the catechol-O-methyltransferase inhibitor entacapone, and vitamin B6, the boy showed mild improvements in hypotonia, blepharoptosis, and oculogyric crisis. Clinical physicians should enhance their ability for identifying AADC deficiency, so as to facilitate early diagnosis and treatment of this disorder. Genetic counseling for birth health and prenatal diagnosis should be performed for parents in need.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Pediatric Endocrine and Genetic Metabolic Disease, Maternal and Children's Hospital of Hubei Province, Wuhan 430070, China.
| | | |
Collapse
|
14
|
Kim JY, Grunke SD, Jankowsky JL. Widespread Neuronal Transduction of the Rodent CNS via Neonatal Viral Injection. Methods Mol Biol 2016; 1382:239-50. [PMID: 26611591 DOI: 10.1007/978-1-4939-3271-9_17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The rapid pace of neuroscience research demands equally efficient and flexible methods for genetically manipulating and visualizing selected neurons within the rodent brain. The use of viral vectors for gene delivery saves the time and cost of traditional germline transgenesis and offers the versatility of readily available reagents that can be easily customized to meet individual experimental needs. Here, we present a protocol for widespread neuronal transduction based on intraventricular viral injection of the neonatal mouse brain. Injections can be done either free-hand or assisted by a stereotaxic device to produce lifelong expression of virally delivered transgenes.
Collapse
Affiliation(s)
- Ji-Yoen Kim
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Stacy D Grunke
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Joanna L Jankowsky
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA. .,Departments of Neurology and Neurosurgery, Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
15
|
Benefits of Neuronal Preferential Systemic Gene Therapy for Neurotransmitter Deficiency. Mol Ther 2015; 23:1572-81. [PMID: 26137853 DOI: 10.1038/mt.2015.122] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 06/24/2015] [Indexed: 11/08/2022] Open
Abstract
Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare autosomal recessive disease that impairs synthesis of dopamine and serotonin. Children with AADC deficiency exhibit severe motor, behavioral, and autonomic dysfunctions. We previously generated an IVS6+4A>T knock-in mouse model of AADC deficiency (Ddc(KI) mice) and showed that gene therapy at the neonatal stage can rescue this phenotype. In the present study, we extended this treatment to systemic therapy on young mice. After intraperitoneal injection of AADC viral vectors into 7-day-old Ddc(KI) mice, the treated mice exhibited improvements in weight gain, survival, motor function, autonomic function, and behavior. The yfAAV9/3-Syn-I-mAADC-treated mice showed greater neuronal transduction and higher brain dopamine levels than AAV9-CMV-hAADC-treated mice, whereas AAV9-CMV-hAADC-treated mice exhibited hyperactivity. Therefore, neurotransmitter-deficient animals can be rescued at a young age using systemic gene therapy, although a vector for preferential neuronal expression may be necessary to avoid hyperactivity caused by this treatment.
Collapse
|
16
|
Abstract
INTRODUCTION An estimated 25 million Americans are living with rare diseases. Adeno-associated virus (AAV)-mediated gene therapy is an emerging therapeutic option for the more than 7,000 identified rare diseases. This paper highlights the benefits of AAV therapy compared to conventional small molecules, discusses current pre-clinical and clinical applications of AAV-mediated gene therapy, and offers insights into cutting edge research that will shape the future of AAV for broad therapeutic use. AREAS COVERED In this review the biology of AAV and our ability to generate disease-specific variants is summarized. Limitations of current therapy are reviewed, with an emphasis on immune detection of virus, viral tropism and tissue targeting, and limitations of gene expression. Information for this review was found using PubMed and clinicaltrials.gov. EXPERT OPINION Currently the scope of clinical trials of AAV gene therapy is concentrated in an array of phase I/II safety trials with less than two dozen rare diseases featured. Pre-clinical, translational studies are expanding in number as developments within the last decade have made generation of improved AAV vectors available to more researchers. Further, one bottleneck that is being overcome is the availability of disease models, which will allow for improved preclinical testing and advancement of AAV to more clinical applications.
Collapse
Affiliation(s)
- Eric Hastie
- Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina, USA, The University of North Carolina at Chapel Hill, 7119 Thurston Bowles Building (104 Manning Drive), Campus Box 7352, Chapel Hill, NC, 27599-7352, United States
| | - R Jude Samulski
- Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina, USA, The University of North Carolina at Chapel Hill, 7119 Thurston Bowles Building (104 Manning Drive), Campus Box 7352, Chapel Hill, NC, 27599-7352, United States; Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA, The University of North Carolina at Chapel Hill, 7119 Thurston Bowles Building (104 Manning Drive), Campus Box 7352, Chapel Hill, NC, 27599-7352, United States
| |
Collapse
|
17
|
Montioli R, Dindo M, Giorgetti A, Piccoli S, Cellini B, Voltattorni CB. A comprehensive picture of the mutations associated with aromatic amino acid decarboxylase deficiency: from molecular mechanisms to therapy implications. Hum Mol Genet 2014; 23:5429-40. [PMID: 24865461 DOI: 10.1093/hmg/ddu266] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Dopa decarboxylase (DDC), or aromatic amino acid decarboxylase (AADC), is a pyridoxal 5'-phosphate enzyme responsible for the production of the neurotransmitters dopamine and serotonin. Deficit of this enzyme causes AADC deficiency, an inherited neurometabolic disorder. To date, 18 missense homozygous mutations have been identified through genetic screening in ∼80 patients. However, little is known about the mechanism(s) by which mutations cause disease. Here we investigated the impact of these pathogenic mutations and of an artificial one on the conformation and the activity of wild-type DDC by a combined approach of bioinformatic, spectroscopic and kinetic analyses. All mutations reduce the kcat value, and, except the mutation R347Q, alter the tertiary structure, as revealed by an increased hydrophobic surface and a decreased near-UV circular dichroism signal. The integrated analysis of the structural and functional consequences of each mutation strongly suggests that the reason underlying the pathogenicity of the majority of disease-causing mutations is the incorrect apo-holo conversion. In fact, the most remarkable effects are seen upon mutation of residues His70, His72, Tyr79, Phe80, Pro81, Arg462 and Arg447 mapping to or directly interacting with loop1, a structural key element involved in the apo-holo switch. Instead, different mechanisms are responsible for the pathogenicity of R347Q, a mere catalytic mutation, and of L38P and A110Q mutations causing structural-functional defects. These are due to local perturbation transmitted to the active site, as predicted by molecular dynamic analyses. Overall, the results not only give comprehensive molecular insights into AADC deficiency, but also provide an experimental framework to suggest appropriate therapeutic treatments.
Collapse
Affiliation(s)
- Riccardo Montioli
- Department of Life Sciences and Reproduction (Section of Biological Chemistry) and
| | - Mirco Dindo
- Department of Life Sciences and Reproduction (Section of Biological Chemistry) and
| | | | - Stefano Piccoli
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Barbara Cellini
- Department of Life Sciences and Reproduction (Section of Biological Chemistry) and
| | | |
Collapse
|