1
|
Bergman PJ. Cancer Immunotherapy. Vet Clin North Am Small Anim Pract 2024; 54:441-468. [PMID: 38158304 DOI: 10.1016/j.cvsm.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The enhanced understanding of immunology experienced over the last 5 decades afforded through the tools of molecular biology has recently translated into cancer immunotherapy becoming one of the most exciting and rapidly expanding fields. Human cancer immunotherapy is now recognized as one of the pillars of treatment alongside surgery, radiation, and chemotherapy. The field of veterinary cancer immunotherapy has also rapidly advanced in the last decade with a handful of commercially available products and a plethora of investigational cancer immunotherapies, which will hopefully expand our veterinary oncology treatment toolkit over time.
Collapse
Affiliation(s)
- Philip J Bergman
- Clinical Studies, VCA; Katonah Bedford Veterinary Center, Bedford Hills, NY, USA; Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
2
|
Maqsood Q, Sumrin A, Iqbal M, Hussain N, Mahnoor M, Zafar Saleem M, Perveen R. A Winning New Combination? Toward Clinical Application in Oncology. Cancer Control 2023; 30:10732748231175240. [PMID: 37166227 PMCID: PMC10184224 DOI: 10.1177/10732748231175240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/04/2023] [Accepted: 04/17/2023] [Indexed: 05/12/2023] Open
Abstract
Immunotherapy has substantial attention in oncology due to the success of CTLA-4 and PD-1 inhibitors in the treatment of melanoma, lung cancer, head and neck cancer, renal cell carcinoma, and Hodgkin's lymphoma. A deeper understanding of interaction of tumor with its environment and the immune system provides best guide for oncology research. Recent studies in oncology have explained how a tumor alters antigen presentation, avoids detection, and activation of the host immune system to live and develop. Understanding the connections between the tumor and the immune system has resulted in several innovative therapy options. The extensive field of gene therapy has provided a number of cutting-edge medicines that are expected to play an important role in lowering cancer-related mortality. This article explains the history, important breakthroughs, and future prospects for three separate gene therapy treatment modalities: immunotherapy, oncolytic virotherapy, and gene transfer. Immunotherapies have completely changed how cancer is treated, especially for individuals whose condition was previously thought to be incurable. Examples include ACT (adoptive cell therapy) and ICB (immune checkpoint blockade). This review article will discuss the relationship between the immune response to cancer and the mechanisms of immunotherapy resistance. It will cover combination drugs authorized by the US Food and Drug Administration and provide a thorough overview of how these drugs are doing clinically right now. Cytokines, vaccines, and other soluble immunoregulatory agents, innate immune modifiers, ACT, virotherapy, and other treatment modalities will all be covered in detail.
Collapse
Affiliation(s)
- Quratulain Maqsood
- Centre for Applied Molecular Biology, University of the Punjab Quaid-i-Azam Campus, Lahore, Pakistan
| | - Aleena Sumrin
- Centre for Applied Molecular Biology, University of the Punjab Quaid-i-Azam Campus, Lahore, Pakistan
| | - Maryam Iqbal
- Centre for Applied Molecular Biology, University of the Punjab Quaid-i-Azam Campus, Lahore, Pakistan
| | - Nazim Hussain
- Centre for Applied Molecular Biology, University of the Punjab Quaid-i-Azam Campus, Lahore, Pakistan
| | - Muhammada Mahnoor
- Department of Rehabilitation Sciences, Akhtar Saeed Medical & Dental College, Lahore, Pakistan
| | - Muhammad Zafar Saleem
- Centre for Applied Molecular Biology, University of the Punjab Quaid-i-Azam Campus, Lahore, Pakistan
| | - Rukhsana Perveen
- Centre for Applied Molecular Biology, University of the Punjab Quaid-i-Azam Campus, Lahore, Pakistan
| |
Collapse
|
3
|
Allende JB, Finocchiaro LME, Glikin GC. Therapeutic potential of the cytosine deaminase::uracil phosphoribosyl transferase/5-fluorocytosine suicide system for canine melanoma. Vet Comp Oncol 2022; 20:372-380. [PMID: 34724324 DOI: 10.1111/vco.12780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/25/2021] [Indexed: 11/27/2022]
Abstract
We tested the efficacy of a yeast cytosine deaminase::uracil phosphoribosyl transferase/5-fluorocytosine (CDU/5-FC) non-viral suicide system on eight established canine melanoma cell lines. Albeit with different degree of sensitivity 5 days after lipofection, this system was significantly efficient killing melanoma cells, being four cell lines highly, two fairly and two not very sensitive to CDU/5-FC (their respective IC50 ranging from 0.20 to 800 μM 5-FC). Considering the relatively low lipofection efficiencies, a very strong bystander effect was verified in the eight cell lines: depending on the cell line, this effect accounted for most of the induced cell death (from 70% to 95%). In our assay conditions, we did not find useful interactions either with the herpes simplex thymidine kinase/ganciclovir suicide system (in sequential or simultaneous modality) or with cisplatin and bleomycin chemotherapeutic drugs. Furthermore, only two cell lines displayed limited useful interactions of the CDU/5-FC either with interferon-β gene transfer or the proteasome inhibitor bortezomib respectively. These results would preclude a wide use of these combinations. However, the fact that all the tested cells were significantly sensitive to the CDU/5-FC system encourages further research as a gene therapy tool for local control of canine melanoma.
Collapse
Affiliation(s)
- Jesica B Allende
- Unidad de Transferencia Genética, Instituto de Oncología "Ángel H. Roffo", Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Liliana M E Finocchiaro
- Unidad de Transferencia Genética, Instituto de Oncología "Ángel H. Roffo", Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gerardo C Glikin
- Unidad de Transferencia Genética, Instituto de Oncología "Ángel H. Roffo", Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
4
|
Pazzi P, Steenkamp G, Rixon AJ. Treatment of Canine Oral Melanomas: A Critical Review of the Literature. Vet Sci 2022; 9:vetsci9050196. [PMID: 35622724 PMCID: PMC9147014 DOI: 10.3390/vetsci9050196] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 01/09/2023] Open
Abstract
Critical appraisal of the available literature for the treatment of canine oral malignant melanoma (OMM) is lacking. This critical review aimed to evaluate the current literature and provide treatment recommendations and possible suggestions for future canine OMM research. PubMed, Web of Science and Google Scholar were searched in June 2021, for terms relevant to treatment of OMM. Inclusion and exclusion criteria were applied and information on clinical response and outcome extracted. Eighty-one studies were included. The overall level of evidence supporting the various canine OMM treatment options was low. The majority of studies included confounding treatment modalities and lacked randomization, control groups and consistency in reporting clinical response and outcomes. Within these limitations, surgery remains the mainstay of therapy. Adjunctive radiotherapy provided good local control and improved median survival times (MST), chemotherapy did not offer survival benefit beyond that of surgery, while electrochemotherapy may offer a potential alternative to radiotherapy. Immunotherapy holds the most promise in extending MST in the surgical adjunctive setting, in particular the combination of gene therapy and autologous vaccination. Prospective, randomized, double-blinded clinical trials, with a lack of confounding factors and reporting based on established guidelines would allow comparison and recommendations for the treatment of canine OMM.
Collapse
|
5
|
Proliferation index and pseudoprogression as predictors of the therapeutic efficacy of suicide gene therapy for canine melanoma. Melanoma Res 2020; 30:126-135. [PMID: 32142496 DOI: 10.1097/cmr.0000000000000567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In our veterinary clinical trials, the combination of systemic immunotherapy with local herpes simplex virus thymidine kinase/ganciclovir suicide gene (SG) treatment induced tumor pseudoprogression as part of a strong local antitumor response. This phenomenon could be owing to tumor inflammation, increased vascular permeability and to different tumor growth rates before, during and after SG therapy. The proliferation index (PI: the fraction of viable cells in S, G2/M, and hyperdiploid phases) would reflect the in-vivo and in-vitro proportion of proliferating melanoma cells in the absence of treatment (PIB) or in response to SG (PISG). The extent of in-vivo and in-vitro melanoma cells responses to SG exhibited a reverse correlation with PIB and a direct correlation with PISG. Then, the final SG outcome depended on the balance between PIB-dependent 'regrowth resistance' versus 'regrowth sensitivity' to SG treatment. In all the cell lines derived from canine tumors presenting partial responses to SG treatment, PISG prevailed over PIB. Conversely, as more aggressive was the tumor (greater PIB of the cell line), the more the balance displacement towards 'regrowth resistance' over SG 'regrowth sensitivity'. All these parameters could have a prognostic value for SG treatment response and provide a glimpse at the clinical benefit of this therapy.
Collapse
|
6
|
Particulate mediators of the bystander effect linked to suicide and interferon-β transgene expression in melanoma cells. Gene Ther 2020; 28:38-55. [PMID: 32127652 DOI: 10.1038/s41434-020-0136-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/15/2020] [Accepted: 02/19/2020] [Indexed: 11/08/2022]
Abstract
In the context of comparative oncology, melanoma cells derived from companion animal tumors are good models for optimizing and predicting their in vivo response to therapeutic strategies. Here, we report that human, canine, and feline melanoma cells driven to death by bleomycin, interferon-β gene, or herpes simplex virus thymidine kinase/ganciclovir suicide gene (SG) treatment significantly increased their internal granularity. This fact correlated with the release of a heterogeneous collection of nano- and micro-sized granules as revealed by transmission electron microscopy. While killing lipofected cells, the expressed transgenes and their derived products were incorporated into these granules that were isolated by differential centrifugation. These particulate factors (PFs) were able to transfer, in a dose- and time-dependent manner, appreciable levels of therapeutic genes, related proteins, and drugs. Thus, when recipient cells of SG-carrying PFs were exposed to ganciclovir, this prodrug was efficiently activated, eliminating them. These PFs kept the functionality of their cargo, even after being subjected to adverse conditions, such as the presence of DNase, freezing, or heating. Since our in vitro system did not include any of the immune mechanisms that could provide additional antitumor activity, the chemo-gene treatments amplified by these delivery bags of therapeutic agents offer a great clinical potential.
Collapse
|
7
|
Thamm DH. Canine Cancer: Strategies in Experimental Therapeutics. Front Oncol 2019; 9:1257. [PMID: 31803625 PMCID: PMC6873901 DOI: 10.3389/fonc.2019.01257] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022] Open
Abstract
Cancer is the most common cause of death in adult dogs. Many features of spontaneously developing tumors in pet dogs contribute to their potential utility as a human disease model. These include similar environmental exposures, similar clonal evolution as it applies to important factors such as immune avoidance, a favorable body size for imaging and serial biopsy, and a relatively contracted time course of disease progression, which makes evaluation of temporal endpoints such as progression free or overall survival feasible in a comparatively short time frame. These criteria have been leveraged to evaluate novel local therapies, demonstrate proof of tumor target inhibition or tumor localization, evaluate potential antimetastatic approaches, and assess the efficacy, safety and immune effects of a variety of immune-based therapeutics. Some of these canine proof of concept studies have been instrumental in informing subsequent human clinical trials. This review will cover key aspects of clinical trials in dogs with spontaneous neoplasia, with examples of how these studies have contributed to human cancer therapeutic development.
Collapse
Affiliation(s)
- Douglas H Thamm
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, United States.,Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, United States.,University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
8
|
Overgaard NH, Fan TM, Schachtschneider KM, Principe DR, Schook LB, Jungersen G. Of Mice, Dogs, Pigs, and Men: Choosing the Appropriate Model for Immuno-Oncology Research. ILAR J 2019; 59:247-262. [PMID: 30476148 DOI: 10.1093/ilar/ily014] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 07/30/2018] [Indexed: 02/06/2023] Open
Abstract
The immune system plays dual roles in response to cancer. The host immune system protects against tumor formation via immunosurveillance; however, recognition of the tumor by immune cells also induces sculpting mechanisms leading to a Darwinian selection of tumor cell variants with reduced immunogenicity. Cancer immunoediting is the concept used to describe the complex interplay between tumor cells and the immune system. This concept, commonly referred to as the three E's, is encompassed by 3 distinct phases of elimination, equilibrium, and escape. Despite impressive results in the clinic, cancer immunotherapy still has room for improvement as many patients remain unresponsive to therapy. Moreover, many of the preclinical results obtained in the widely used mouse models of cancer are lost in translation to human patients. To improve the success rate of immuno-oncology research and preclinical testing of immune-based anticancer therapies, using alternative animal models more closely related to humans is a promising approach. Here, we describe 2 of the major alternative model systems: canine (spontaneous) and porcine (experimental) cancer models. Although dogs display a high rate of spontaneous tumor formation, an increased number of genetically modified porcine models exist. We suggest that the optimal immuno-oncology model may depend on the stage of cancer immunoediting in question. In particular, the spontaneous canine tumor models provide a unique platform for evaluating therapies aimed at the escape phase of cancer, while genetically engineered swine allow for elucidation of tumor-immune cell interactions especially during the phases of elimination and equilibrium.
Collapse
Affiliation(s)
- Nana H Overgaard
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Timothy M Fan
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana-Champaign, Illinois
| | | | - Daniel R Principe
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, Illinois
| | - Lawrence B Schook
- Department of Radiology, University of Illinois, Chicago, Illinois.,Department of Animal Sciences, University of Illinois, Urbana-Champaign, Illinois
| | - Gregers Jungersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
9
|
Tarone L, Barutello G, Iussich S, Giacobino D, Quaglino E, Buracco P, Cavallo F, Riccardo F. Naturally occurring cancers in pet dogs as pre-clinical models for cancer immunotherapy. Cancer Immunol Immunother 2019; 68:1839-1853. [PMID: 31222484 PMCID: PMC11028358 DOI: 10.1007/s00262-019-02360-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022]
Abstract
Despite the significant progress in tumor prevention, early detection, diagnosis and treatment made over recent decades, cancer is still an enormous public health challenge all around the world, with the number of people affected increasing every year. A great deal of effort is therefore being devoted to the search for novel safe, effective and economically sustainable treatments for the growing population of neoplastic patients. One main obstacle to this process is the extremely low percentage of therapeutic approaches that, after successfully passing pre-clinical testing, actually demonstrate activity when finally tested in humans. This disappointing and expensive failure rate is partly due to the pre-clinical murine models used for in vivo testing, which cannot faithfully recapitulate the multifaceted nature and evolution of human malignancies. These features are better mirrored in natural disease models, i.e., companion animals affected by cancers. Herein, we discuss the relevance of spontaneous canine tumors for the evaluation of the safety and anti-tumor activity of novel therapeutic strategies before in-human trials, and present our experience in the development of a vaccine that targets chondroitin sulphate proteoglycan (CSPG)4 as an example of these comparative oncology studies.
Collapse
Affiliation(s)
- Lidia Tarone
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Via Nizza, 52, 10126, Turin, Italy
| | - Giuseppina Barutello
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Via Nizza, 52, 10126, Turin, Italy
| | - Selina Iussich
- Department of Veterinary Sciences, University of Turin, Largo Braccini, 2, 10095, Grugliasco, Italy
| | - Davide Giacobino
- Department of Veterinary Sciences, University of Turin, Largo Braccini, 2, 10095, Grugliasco, Italy
| | - Elena Quaglino
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Via Nizza, 52, 10126, Turin, Italy
| | - Paolo Buracco
- Department of Veterinary Sciences, University of Turin, Largo Braccini, 2, 10095, Grugliasco, Italy
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Via Nizza, 52, 10126, Turin, Italy.
| | - Federica Riccardo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Via Nizza, 52, 10126, Turin, Italy
| |
Collapse
|
10
|
Tan YJ, Crowley RJ, Ioannidis JPA. An empirical assessment of research practices across 163 clinical trials of tumor-bearing companion dogs. Sci Rep 2019; 9:11877. [PMID: 31417164 PMCID: PMC6695388 DOI: 10.1038/s41598-019-48425-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/26/2019] [Indexed: 11/23/2022] Open
Abstract
Comparative clinical trials of domestic dogs with spontaneously-occurring cancers are increasingly common. Canine cancers are likely more representative of human cancers than induced murine tumors. These trials could bridge murine models and human trials and better prioritize drug candidates. Such investigations also benefit veterinary patients. We aimed to evaluate the design and reporting practices of clinical trials containing ≥2 arms and involving tumor-bearing dogs. 163 trials containing 8552 animals were systematically retrieved from PubMed (searched 1/18/18). Data extracted included sample sizes, response criteria, study design, and outcome reporting. Low sample sizes were prevalent (median n = 33). The median detectable hazard ratio was 0.3 for overall survival and 0.06 for disease progression. Progressive disease thresholds for studies that did not adopt VCOG-RECIST guidelines varied in stringency. Additionally, there was significant underreporting across all Cochrane risk of bias categories. The proportion of studies with unclear reporting ranged from 44% (randomization) to 94% (selective reporting). 72% of studies also failed to define a primary outcome. The present study confirms previous findings that clinical trials in dogs need to be improved, particularly regarding low statistical power and underreporting of design and outcomes.
Collapse
Affiliation(s)
- Yuan Jin Tan
- Department of Health Research and Policy, Division of Epidemiology, Stanford School of Medicine, Stanford, CA, USA.,Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, CA, USA
| | - Ryan J Crowley
- Department of Statistics, Stanford University School of Humanities and Sciences, Stanford, CA, USA.,Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, CA, USA
| | - John P A Ioannidis
- Department of Health Research and Policy, Division of Epidemiology, Stanford School of Medicine, Stanford, CA, USA. .,Department of Statistics, Stanford University School of Humanities and Sciences, Stanford, CA, USA. .,Stanford Prevention Research Center, Department of Medicine, and Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA. .,Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, CA, USA.
| |
Collapse
|
11
|
Hutchison S, Sahay B, de Mello SC, Sayour EJ, Lejeune A, Szivek A, Livaccari AM, Fox-Alvarez S, Salute M, Powers L, Milner RJ. Characterization of myeloid-derived suppressor cells and cytokines GM-CSF, IL-10 and MCP-1 in dogs with malignant melanoma receiving a GD3-based immunotherapy. Vet Immunol Immunopathol 2019; 216:109912. [PMID: 31446208 DOI: 10.1016/j.vetimm.2019.109912] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/23/2019] [Accepted: 07/30/2019] [Indexed: 01/04/2023]
Abstract
Melanoma in humans and canines is an aggressive and highly metastatic cancer. The mucosal forms in both species share genetic and histopathologic features, making dogs a valuable spontaneous disease animal model. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of cells of myeloid origin with immunosuppressive capabilities, which are increased in many human cancers and contribute to tumor immune evasion. They are a possible target to improve immunotherapy outcomes. Current information regarding MDSCs in canines is minimal, limiting their use as translational model for the study of MDSCs. The objective of this study was to characterize major MDSCs subsets (monocytic and polymorphonuclear) and the cytokines granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin 10 (IL-10) and monocyte chemoattractant protein-1 (MCP-1) in canines with malignant melanoma and to evaluate changes in MDSCs and the cytokines over time in response to a GD3-based active immunotherapy. Whole blood and serum collected from 30 healthy controls and 33 patients enrolled in the University of Florida melanoma vaccine trial were analyzed by flow cytometry with canine specific CD11b, MHCII and anti-human CD14 antibodies to assess ostensibly polymorphonuclear-MDSC (CD11b+ MHCII- CD14-) and monocytic-MDSC (CD11b+ MHCII- CD14+) subsets. IL-10, MCP-1 and both MDSCs subsets were significantly elevated in melanoma dogs versus controls. Both MDSCs subsets decreased significantly following GD3-based immunotherapy administration but no significant changes in cytokines were seen over time. To our knowledge, this is the first report documenting increased monocytic-MDSCs in canine melanoma. This is consistent with human malignant melanoma data, supporting dogs as a valuable model for therapeutic intervention studies.
Collapse
Affiliation(s)
- S Hutchison
- Department of Small Animal Clinical Sciences, University of Florida, Gainesville, FL, USA
| | - B Sahay
- Department of Infectious Disease and Immunology, University of Florida, Gainesville, FL, USA
| | - Souza Ch de Mello
- Department of Small Animal Clinical Sciences, University of Florida, Gainesville, FL, USA
| | - E J Sayour
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida Brain Tumor Immunotherapy Program, McKnight Brain Institute, Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - A Lejeune
- Department of Small Animal Clinical Sciences, University of Florida, Gainesville, FL, USA
| | - A Szivek
- Department of Small Animal Clinical Sciences, University of Florida, Gainesville, FL, USA
| | - A M Livaccari
- Department of Small Animal Clinical Sciences, University of Florida, Gainesville, FL, USA
| | - S Fox-Alvarez
- Department of Small Animal Clinical Sciences, University of Florida, Gainesville, FL, USA
| | - M Salute
- Department of Small Animal Clinical Sciences, University of Florida, Gainesville, FL, USA
| | - L Powers
- Department of Small Animal Clinical Sciences, University of Florida, Gainesville, FL, USA
| | - R J Milner
- Department of Small Animal Clinical Sciences, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
12
|
Abstract
The enhanced understanding of immunology experienced over the last 4 decades afforded through the tools of molecular biology has recently translated into cancer immunotherapy becoming one of the most exciting and rapidly expanding fields. Human cancer immunotherapy is now recognized as one of the pillars of treatment alongside surgery, radiation, and chemotherapy. The field of veterinary cancer immunotherapy has also rapidly advanced in the last decade with a handful of commercially available products and a plethora of investigational cancer immunotherapies that will hopefully expand the veterinary oncology treatment toolkit over time.
Collapse
|
13
|
Finocchiaro LME, Agnetti L, Fondello C, Glikin GC. Combination of cytokine-enhanced vaccine and chemo-gene therapy as surgery adjuvant treatments for spontaneous canine melanoma. Gene Ther 2019; 26:418-431. [PMID: 30858538 DOI: 10.1038/s41434-019-0066-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 11/09/2022]
Abstract
After 6 years of follow-up treating 364 canine melanoma patients, we present here results about the proof-of-concept, safety, and efficacy of a new surgery adjuvant combined gene therapy. The adjuvant treatment (AT) group was divided in three arms as follows: (i) complete surgery plus vaccine (CS-V), (ii) complete surgery plus combined treatment (CS-CT), and (iii) partial surgery plus combined treatment (PS-CT). Besides the genetic vaccines composed by tumor extracts and lipoplexes carrying human interleukin-2 and granulocyte-macrophage colony-stimulating factor genes, the patients were subjected to combined treatment received in the post-surgical bed injections of lipid-complexed thymidine kinase suicide gene plus ganciclovir and canine interferon-β gene plus bleomycin. As compared with surgery-only treated controls (So), CS-CT and CS-V treatments significantly increased the fraction of local disease-free (from 20 to 89 and 74%) and distant metastases-free patients (M0: from 45 to 87 and 84%). Although less effective than CS arms, PS-CT arm demonstrated a significantly improved control of metastatic disease (M0: 80%) compared with So (M0: 44%). In addition, AT produced a significant 9.3- (CS-CT), 6.5- (CS-V), and 5.4-fold (PS-CT) increase of overall survival as compared with their respective So controls. In general terms, the AT changed a lethal disease into a chronic disease where 70% of CS-CT, 51% of CS-V, and 14% of PS-CT patients died of melanoma unrelated causes. These surgery adjuvant treatments delayed or prevented post-surgical recurrence and distant metastasis, and improved disease-free and overall survival while maintaining quality of life. These successful outcomes encourage assaying a similar scheme for human melanoma.
Collapse
Affiliation(s)
- Liliana M E Finocchiaro
- Unidad de Transferencia Genética, Instituto de Oncología "Ángel H. Roffo", Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Lucrecia Agnetti
- Unidad de Transferencia Genética, Instituto de Oncología "Ángel H. Roffo", Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Chiara Fondello
- Unidad de Transferencia Genética, Instituto de Oncología "Ángel H. Roffo", Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gerardo C Glikin
- Unidad de Transferencia Genética, Instituto de Oncología "Ángel H. Roffo", Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
14
|
A Review of Immunotherapeutic Strategies in Canine Malignant Melanoma. Vet Sci 2019; 6:vetsci6010015. [PMID: 30759787 PMCID: PMC6466282 DOI: 10.3390/vetsci6010015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 12/13/2022] Open
Abstract
In dogs, melanomas are relatively common tumors and the most common form of oral malignancy. Biological behavior is highly variable, usually aggressive, and frequently metastatic, with reported survival times of three months for oral or mucosal melanomas in advanced disease stages. Classical clinical management remains challenging; thus, novel and more efficacious treatment strategies are needed. Evidence-based medicine supports the role of the immune system to treat neoplastic diseases. Besides, immunotherapy offers the possibility of a precise medicinal approach to treat cancer. In recent years, multiple immunotherapeutic strategies have been developed, and are now recognized as a pillar of treatment. In addition, dogs represent a good model for translational medicine purposes. This review will cover the most relevant immunotherapeutic strategies for the treatment of canine malignant melanoma, divided among five different categories, namely, monoclonal antibodies, nonspecific immunotherapy activated by bacteria, vaccines, gene therapy, and lymphokine-activated killer cell therapy.
Collapse
|
15
|
Strauss BE, Silva GRO, de Luna Vieira I, Cerqueira OLD, Del Valle PR, Medrano RFV, Mendonça SA. Perspectives for cancer immunotherapy mediated by p19Arf plus interferon-beta gene transfer. Clinics (Sao Paulo) 2018; 73:e479s. [PMID: 30208166 PMCID: PMC6113850 DOI: 10.6061/clinics/2018/e479s] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/22/2018] [Indexed: 12/13/2022] Open
Abstract
While cancer immunotherapy has gained much deserved attention in recent years, many areas regarding the optimization of such modalities remain unexplored, including the development of novel approaches and the strategic combination of therapies that target multiple aspects of the cancer-immunity cycle. Our own work involves the use of gene transfer technology to promote cell death and immune stimulation. Such immunogenic cell death, mediated by the combined transfer of the alternate reading frame (p14ARF in humans and p19Arf in mice) and the interferon-β cDNA in our case, was shown to promote an antitumor immune response in mouse models of melanoma and lung carcinoma. With these encouraging results, we are now setting out on the road toward translational and preclinical development of our novel immunotherapeutic approach. Here, we outline the perspectives and challenges that we face, including the use of human tumor and immune cells to verify the response seen in mouse models and the incorporation of clinically relevant models, such as patient-derived xenografts and spontaneous tumors in animals. In addition, we seek to combine our immunotherapeutic approach with other treatments, such as chemotherapy or checkpoint blockade, with the goal of reducing dosage and increasing efficacy. The success of any translational research requires the cooperation of a multidisciplinary team of professionals involved in laboratory and clinical research, a relationship that is fostered at the Cancer Institute of Sao Paulo.
Collapse
Affiliation(s)
- Bryan E Strauss
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
- *Corresponding author. E-mail: /
| | - Gissele Rolemberg Oliveira Silva
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Igor de Luna Vieira
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Otto Luiz Dutra Cerqueira
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Paulo Roberto Del Valle
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Ruan Felipe Vieira Medrano
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Samir Andrade Mendonça
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| |
Collapse
|
16
|
Finocchiaro LME, Spector AIM, Agnetti L, Arbe MF, Glikin GC. Combination of Suicide and Cytokine Gene Therapies as Surgery Adjuvant for Canine Mammary Carcinoma. Vet Sci 2018; 5:vetsci5030070. [PMID: 30081470 PMCID: PMC6164682 DOI: 10.3390/vetsci5030070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/20/2018] [Accepted: 07/31/2018] [Indexed: 02/08/2023] Open
Abstract
The incidence of canine mammary carcinoma varies with age, breed, and spay status, being among the main tumors appearing in intact female dogs. Thirty-six canine mammary carcinoma patients received injections of canine interferon-β (cIFN-β) and HSV-thymidine kinase/ganciclovir (HSV-tk/GCV) carrying lipoplexes, into the tumor bed, immediately after surgery. Next, they started periodic subcutaneous injections of lipoplexes carrying a human granulocyte-macrophage colony stimulating factor and interleukin-2 mixed with allogeneic mammary carcinoma extracts. This combined strategy was safe and well tolerated. In addition, only two out of 26 patients treated with complete surgery developed a local relapse, and 0 out of 29 stage II and III patients displayed distant metastases, suggesting both local and systemic antitumor activities. The most encouraging result was the long survival times: 22 > 1 year (where 13 > 2 and 4 > 3 years), while maintaining a good quality of life. The preliminary results in five patients presenting with local disease, an additional HSV-tk/GCV plus cIFN-β gene treatment induced local antitumor activity, evidenced by four objective responses (one complete, three partial) and one stable disease. This successful outcome supports further studies to validate this approach not only for canine veterinary patients, but also for translation to human patients.
Collapse
Affiliation(s)
- Liliana M E Finocchiaro
- Unidad de Transferencia Genética, Instituto de Oncología "Ángel H. Roffo", Universidad de Buenos Aires, Av. San Martín 5481, 1417 Buenos Aires, Argentina.
| | - Agustina I M Spector
- Unidad de Transferencia Genética, Instituto de Oncología "Ángel H. Roffo", Universidad de Buenos Aires, Av. San Martín 5481, 1417 Buenos Aires, Argentina.
| | - Lucrecia Agnetti
- Unidad de Transferencia Genética, Instituto de Oncología "Ángel H. Roffo", Universidad de Buenos Aires, Av. San Martín 5481, 1417 Buenos Aires, Argentina.
| | - M Florencia Arbe
- Unidad de Transferencia Genética, Instituto de Oncología "Ángel H. Roffo", Universidad de Buenos Aires, Av. San Martín 5481, 1417 Buenos Aires, Argentina.
| | - Gerardo C Glikin
- Unidad de Transferencia Genética, Instituto de Oncología "Ángel H. Roffo", Universidad de Buenos Aires, Av. San Martín 5481, 1417 Buenos Aires, Argentina.
| |
Collapse
|
17
|
Nonviral Gene Therapy for Cancer: A Review. Diseases 2018; 6:diseases6030057. [PMID: 29970866 PMCID: PMC6164850 DOI: 10.3390/diseases6030057] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/29/2018] [Accepted: 07/01/2018] [Indexed: 12/29/2022] Open
Abstract
Although the development of effective viral vectors put gene therapy on the road to commercialization, nonviral vectors show promise for practical use because of their relative safety and lower cost. A significant barrier to the use of nonviral vectors, however, is that they have not yet proven effective. This apparent lack of interest can be attributed to the problem of the low gene transfer efficiency associated with nonviral vectors. The efficiency of gene transfer via nonviral vectors has been reported to be 1/10th to 1/1000th that of viral vectors. Despite the fact that new gene transfer methods and nonviral vectors have been developed, no significant improvements in gene transfer efficiency have been achieved. Nevertheless, some notable progress has been made. In this review, we discuss studies that report good results using nonviral vectors in vivo in animal models, with a particular focus on studies aimed at in vivo gene therapy to treat cancer, as this disease has attracted the interest of researchers developing nonviral vectors. We describe the conditions in which nonviral vectors work more efficiently for gene therapy and discuss how the goals might differ for nonviral versus viral vector development and use.
Collapse
|
18
|
|
19
|
Agnetti L, Fondello C, Villaverde MS, Glikin GC, Finocchiaro LME. Therapeutic potential of bleomycin plus suicide or interferon-β gene transfer combination for spontaneous feline and canine melanoma. Oncoscience 2017; 4:199-214. [PMID: 29344558 PMCID: PMC5769984 DOI: 10.18632/oncoscience.387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/26/2017] [Indexed: 02/06/2023] Open
Abstract
We originated and characterized melanoma cell lines derived from tumors of two feline and two canine veterinary patients. These lines reestablished the morphology, physiology and cell heterogeneity of their respective parental tumors. We evaluated the cytotoxicity of bleomycin (BLM) alone, or combined with interferon-β (IFN-β) or HSVtk/GCV suicide gene (SG) lipofection on these cells. Although the four animals presented stage III disease (WHO system), SG treated feline tumors displayed stable disease in vivo, while the canine ones exhibited partial response. Their derived cell lines reflected this behavior. Feline were significantly more sensitive than canine cells to IFN-β gene transfer. BLM improved the antitumor effects of both genes. The higher levels of reactive oxygen species (ROS) significantly correlated with membrane and DNA damages, emphasizing ROS intervention in apoptotic and necrotic cell death. After 3 days of BLM alone or combined with gene treatments, the colony forming capacity of two canine and one feline treatments survivor cells almost disappeared. Taken together, these results suggest that the treatments eradicated tumor initiating cells and support the clinical potential of the tested combinations.
Collapse
Affiliation(s)
- Lucrecia Agnetti
- Unidad de Transferencia Genética Instituto de Oncología "Ángel H. Roffo" Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Chiara Fondello
- Unidad de Transferencia Genética Instituto de Oncología "Ángel H. Roffo" Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marcela S Villaverde
- Unidad de Transferencia Genética Instituto de Oncología "Ángel H. Roffo" Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gerardo C Glikin
- Unidad de Transferencia Genética Instituto de Oncología "Ángel H. Roffo" Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Liliana M E Finocchiaro
- Unidad de Transferencia Genética Instituto de Oncología "Ángel H. Roffo" Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
20
|
Finocchiaro LME, Glikin GC. Recent clinical trials of cancer immunogene therapy in companion animals. World J Exp Med 2017; 7:42-48. [PMID: 28589078 PMCID: PMC5439171 DOI: 10.5493/wjem.v7.i2.42] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/22/2017] [Accepted: 05/05/2017] [Indexed: 02/06/2023] Open
Abstract
This mini-review presents the results of veterinary clinical trials on immunogene therapy published from 2014 to 2016. A variety of tumors, among them melanoma (canine and equine), mastocytoma (canine), mammary adenocarcinoma (canine) and fibrosarcoma (feline) were treated by using diverse strategies. Non-viral vectors were usually employed to transfer genes of cytokines, suicide enzymes and/or tumor associated antigens. In general terms, minor or no adverse collateral effects were related to these procedures, and treated patients frequently improved their conditions (better quality of life, delayed or suppressed recurrence or metastatic spread, increased survival). Some of these new methodologies have a promising future if applied as adjuvant treatments of standard approaches. The auspicious results, derived from immunogene therapy studies carried out in companion animals, warrant their imperative usage in veterinary clinical oncology. Besides, they provide a strong preclinical basis (safety assays and proofs of concept) for analogous human clinical trials.
Collapse
|
21
|
Wang H, Zhang L, Yang L, Liu C, Zhang Q, Zhang L. Targeting macrophage anti-tumor activity to suppress melanoma progression. Oncotarget 2017; 8:18486-18496. [PMID: 28060744 PMCID: PMC5392344 DOI: 10.18632/oncotarget.14474] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 12/27/2016] [Indexed: 01/09/2023] Open
Abstract
By phagocytosing cancer cells and their cellular debris, macrophages play a critical role in nonspecific defense (innate immunity) and, as antigen presenters, they help initiate specific defense mechanisms (adaptive immunity). Malignant melanoma is a lethal disease due to its aggressive capacity for metastasis and resistance to therapy. For decades, considerable effort has gone into development of an effective immunotherapy for treatment of metastatic melanoma. In this review, we focus on the anti-tumor activities of macrophages in melanoma and their potential as therapeutic targets in melanoma. Although macrophages can be re-educated through intercellular signaling to promote tumor survival owing to their plasticity, we expect that targeting the anti-tumor activity of macrophages remains a promising strategy for melanoma inhibition. The combination of tumoricidal macrophage activation and other treatments such as surgery, chemotherapy, and radiotherapy, may provide an effective and comprehensive anti-melanoma strategy.
Collapse
Affiliation(s)
- Huafeng Wang
- Modern College of Arts and Science, or School of Life Science, Shanxi Normal University, Linfen, China
| | - Lijuan Zhang
- Modern College of Arts and Science, or School of Life Science, Shanxi Normal University, Linfen, China
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Luhong Yang
- Modern College of Arts and Science, or School of Life Science, Shanxi Normal University, Linfen, China
| | - Chengfang Liu
- Department of Human Anatomy, Shanxi Medical University, Shanxi Sheng, China
| | | | - Linjing Zhang
- Modern College of Arts and Science, or School of Life Science, Shanxi Normal University, Linfen, China
| |
Collapse
|
22
|
Cicchelero L, Denies S, Vanderperren K, Stock E, Van Brantegem L, de Rooster H, Sanders NN. Immunological, anti-angiogenic and clinical effects of intratumoral interleukin 12 electrogene therapy combined with metronomic cyclophosphamide in dogs with spontaneous cancer: A pilot study. Cancer Lett 2016; 400:205-218. [PMID: 27693635 DOI: 10.1016/j.canlet.2016.09.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/08/2016] [Accepted: 09/13/2016] [Indexed: 12/18/2022]
Abstract
The immunological, anti-angiogenic and clinical effects of metronomic cyclophosphamide and 3 consecutive intratumoral interleukin (IL)-12 gene therapy (electrogene therapy (EGT)) treatments were evaluated in 6 dogs with spontaneous cancer. In all dogs, a decrease in peripheral leukocytes 2 days after IL-12 EGT coincided with erythema and swelling of the tumor. In the tumor, a transient increase in IL-12 levels was measured, whereas a continuous increase in interferon γ (IFNγ) and thrombospondin 1 (TSP-1) were determined in contrast to a continuous decrease in vascular endothelial growth factor (VEGF). In the serum, a transient increase in IL-12 and IL-10 levels were noted in contrast to a transient decrease in VEGF and TSP-1. The treatment resulted in a significant anti-angiogenic effect. Although all primary tumors continued to progress in time, this progression was slower than before treatment according to the contrast-enhanced ultrasound data. Besides the encouraging immunostimulatory and anti-angiogenic effects observed in all dogs we also noticed in 4 out of 6 dogs clinically relevant improvements in quality of life and weight. These results hold great promise for combinatorial strategies of IL-12 EGT and metronomic chemotherapy with conventional antitumor (immuno)therapies.
Collapse
Affiliation(s)
- Laetitia Cicchelero
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, B-9820 Merelbeke, Belgium
| | - Sofie Denies
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, B-9820 Merelbeke, Belgium
| | - Katrien Vanderperren
- Department of Medical Imaging of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - Emmelie Stock
- Department of Medical Imaging of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - Leen Van Brantegem
- Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - Hilde de Rooster
- Small Animal Hospital, Department of Medicine and Clinical Biology of Small Animals, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Belgium.
| | - Niek N Sanders
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, B-9820 Merelbeke, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Belgium.
| |
Collapse
|
23
|
Cicchelero L, Denies S, Haers H, Vanderperren K, Stock E, Van Brantegem L, de Rooster H, Sanders NN. Intratumoural interleukin 12 gene therapy stimulates the immune system and decreases angiogenesis in dogs with spontaneous cancer. Vet Comp Oncol 2016; 15:1187-1205. [PMID: 27506827 DOI: 10.1111/vco.12255] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/22/2016] [Accepted: 07/03/2016] [Indexed: 12/13/2022]
Abstract
Interleukin 12 (IL-12) is a powerful immunostimulatory cytokine with a strong antitumoural activity. In this work, the immunological, anti-angiogenic and clinical effects of three consecutive intratumoural IL-12 electrogene therapy (EGT) treatments were evaluated in nine dogs with spontaneous cancer. In all the dogs, tumour biopsies and blood samples were taken prior, during and after the intratumoural IL-12 EGT (on days 1, 8, 35 and 1, 3, 8, 15, 35, respectively). An initial decrease in immune cells was followed by an increase above baseline 1-3 weeks after treatment initiation. Interestingly, the decrease in peripheral leukocytes 2 days after the first intratumoural IL-12 EGT coincided with erythema and tumour swelling. Transient increases of IL-12 and interferon γ were measured in the serum and the tumour tissue, whereas IL-10 transiently increased only in the serum. The effect of intratumoural IL-12 EGT on the levels of IL-24 and vascular endothelial growth factor in the sera and tumour biopsies differed per dog. Via contrast-enhanced ultrasound (US) (on days 1, 8 and 35), we demonstrated that intratumoural IL-12 EGT resulted in a significant decrease of the relative blood volume and blood flow speed in the tumour compared with baseline. Metastases were present in two dogs. In one of these dogs, IL-12 EGT of the primary tumour caused a transient partial regression of the metastases, but not of the primary tumour. The second dog with metastases did not survive long enough to complete the entire treatment cycle. Despite encouraging immunostimulatory and anti-angiogenic effects after intratumoural IL-12 EGT, no clinically relevant outcomes were observed in this study, as persistent tumour regression could not be obtained. On the other hand, the laboratory and US results hold great promise for combinatorial strategies of intratumoural IL-12 EGT with conventional antitumour (immuno)therapies.
Collapse
Affiliation(s)
- L Cicchelero
- Faculty of Veterinary Medicine, Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Ghent University, Merelbeke, Belgium
| | - S Denies
- Faculty of Veterinary Medicine, Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Ghent University, Merelbeke, Belgium
| | - H Haers
- Faculty of Veterinary Medicine, Department of Medical Imaging of Domestic Animals, Ghent University, Merelbeke, Belgium
| | - K Vanderperren
- Faculty of Veterinary Medicine, Department of Medical Imaging of Domestic Animals, Ghent University, Merelbeke, Belgium
| | - E Stock
- Faculty of Veterinary Medicine, Department of Medical Imaging of Domestic Animals, Ghent University, Merelbeke, Belgium
| | - L Van Brantegem
- Faculty of Veterinary Medicine, Department of Pathology, Bacteriology and Poultry Diseases, Ghent University, Merelbeke, Belgium
| | - H de Rooster
- Small Animal Hospital, Faculty of Veterinary Medicine, Department of Medicine and Clinical Biology of Small Animals, Ghent University, Merelbeke, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - N N Sanders
- Faculty of Veterinary Medicine, Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Ghent University, Merelbeke, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
24
|
Villaverde MS, Targovnik AM, Miranda MV, Finocchiaro LME, Glikin GC. Cytotoxic effects induced by interferon-ω gene lipofection through ROS generation and mitochondrial membrane potential disruption in feline mammary carcinoma cells. Cytokine 2016; 84:47-55. [DOI: 10.1016/j.cyto.2016.05.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 05/03/2016] [Accepted: 05/18/2016] [Indexed: 02/05/2023]
|
25
|
The combination of bleomycin with suicide or interferon-β gene transfer is able to efficiently eliminate human melanoma tumor initiating cells. Biomed Pharmacother 2016; 83:290-301. [PMID: 27399807 DOI: 10.1016/j.biopha.2016.06.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/23/2016] [Accepted: 06/16/2016] [Indexed: 12/30/2022] Open
Abstract
We explored the potential of a chemogene therapy combination to eradicate melanoma tumor initiating cells, key producers of recurrence and metastatic spread. Three new human melanoma cell lines, two obtained from lymph nodes and one from spleen metastasis were established and characterized. They were cultured as monolayers and spheroids and, in both spatial configurations they displayed sensitivity to single treatments with bleomycin (BLM) or human interferon-β (hIFNβ) gene or herpes simplex virus thymidine kinase/ganciclovir suicide gene (SG) lipofection. However, the combination of bleomycin with SG or hIFNβ gene transfer displayed greater antitumor efficacy. The three cell lines exhibited a proliferative behavior consistent with melan A and gp100 melanoma antigens expression, and BRAF V600E mutation. BLM and both genetic treatments increased the fraction of more differentiated and treatment-sensitive cells. Simultaneously, they significantly decreased the sub-population of tumor initiating cells. There was a significant correlation between the cytotoxicity of treatments with BLM and gene transfer and the fraction of cells exhibiting (i) high proliferation index, and (ii) high intracellular levels of reactive oxygen species. Conversely, the fraction of cells surviving to our treatments closely paralleled their (i) colony and (ii) melanosphere forming capacity. A very significant finding was that the combination of BLM with SG or hIFNβ gene almost abrogated the clonogenic capacity of the surviving cells. Altogether, the results presented here suggest that the combined chemo-gene treatments are able to eradicate tumor initiating cells, encouraging further studies aimed to apply this strategy in the clinic.
Collapse
|
26
|
Piras LA, Riccardo F, Iussich S, Maniscalco L, Gattino F, Martano M, Morello E, Lorda Mayayo S, Rolih V, Garavaglia F, De Maria R, Lardone E, Collivignarelli F, Mignacca D, Giacobino D, Ferrone S, Cavallo F, Buracco P. Prolongation of survival of dogs with oral malignant melanoma treated by en bloc surgical resection and adjuvant CSPG4-antigen electrovaccination. Vet Comp Oncol 2016; 15:996-1013. [PMID: 27146852 DOI: 10.1111/vco.12239] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/14/2016] [Accepted: 03/29/2016] [Indexed: 12/19/2022]
Abstract
Reported post-surgery 1-year survival rate for oral canine malignant melanoma (cMM) is around 30%; novel treatments are needed as the role of adjuvant chemotherapy is unclear. This prospective study regards adjuvant electrovaccination with human chondroitin sulfate proteoglycan-4 (hCSPG4)-encoded plasmid in 23 dogs with resected II/III-staged CSPG4-positive oral cMM compared with 19 dogs with resected only II/III-staged CSPG4-positive oral cMM. Vaccination resulted in 6-, 12-, 18- and 24-month survival rate of 95.6, 73.9, 47.8 and 30.4%, respectively [median survival time (MST) 684 days, range 78-1694, 8 of 23 dogs alive] and 6-, 12-, 18- and 24-month disease-free interval (DFI) rate of 82.6, 47.8, 26.1 and 17.4%, respectively (DFI 477 days, range 50-1694). Non-vaccinated dogs showed 6-, 12-, 18- and 24-month survival rate of 63.2, 26.3, 15.8 and 5.3%, respectively (MST 200 days, range 75-1507, 1 of 19 dogs alive) and 6-, 12-, 18- and 24-month DFI rate of 52.6, 26.3, 10.5 and 5.3%, respectively (DFI 180 days, range 38-1250). Overall survival and DFI of vaccinated dogs was longer in those <20 kg. In vaccinated and non-vaccinated dogs local recurrence rate was 34.8 and 42%, respectively while lung metastatic rate was 39 and 79%, respectively.
Collapse
Affiliation(s)
- L A Piras
- Department of Veterinary Sciences, University of Torino, Torino, Italy
| | - F Riccardo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - S Iussich
- Department of Veterinary Sciences, University of Torino, Torino, Italy
| | - L Maniscalco
- Department of Veterinary Sciences, University of Torino, Torino, Italy
| | - F Gattino
- Department of Veterinary Sciences, University of Torino, Torino, Italy
| | - M Martano
- Department of Veterinary Sciences, University of Torino, Torino, Italy
| | - E Morello
- Department of Veterinary Sciences, University of Torino, Torino, Italy
| | - S Lorda Mayayo
- Department of Veterinary Sciences, University of Torino, Torino, Italy
| | - V Rolih
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - F Garavaglia
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - R De Maria
- Department of Veterinary Sciences, University of Torino, Torino, Italy
| | - E Lardone
- Department of Veterinary Sciences, University of Torino, Torino, Italy
| | | | - D Mignacca
- Clinica Veterinaria Roma Sud, Roma, Italy
| | - D Giacobino
- Department of Veterinary Sciences, University of Torino, Torino, Italy
| | - S Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - F Cavallo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - P Buracco
- Department of Veterinary Sciences, University of Torino, Torino, Italy
| |
Collapse
|
27
|
van der Weyden L, Patton EE, Wood GA, Foote AK, Brenn T, Arends MJ, Adams DJ. Cross-species models of human melanoma. J Pathol 2015; 238:152-65. [PMID: 26354726 PMCID: PMC4832391 DOI: 10.1002/path.4632] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/18/2015] [Accepted: 09/06/2015] [Indexed: 01/29/2023]
Abstract
Although transformation of melanocytes to melanoma is rare, the rapid growth, systemic spread, as well as the chemoresistance of melanoma present significant challenges for patient care. Here we review animal models of melanoma, including murine, canine, equine, and zebrafish models, and detail the immense contribution these models have made to our knowledge of human melanoma development, and to melanocyte biology. We also highlight the opportunities for cross-species comparative genomic studies of melanoma to identify the key molecular events that drive this complex disease.
Collapse
Affiliation(s)
- Louise van der Weyden
- Experimental Cancer Genetics, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - E Elizabeth Patton
- MRC Human Genetics Unit, The MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Geoffrey A Wood
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Road E, Guelph, Ontario, N1G 2W1, Canada
| | - Alastair K Foote
- Rossdales Equine Hospital, Cotton End Road, Exning, Newmarket, Suffolk, CB8 7NN, UK
| | - Thomas Brenn
- Pathology Department, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Mark J Arends
- Centre for Comparative Pathology, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XR, UK
| | - David J Adams
- Experimental Cancer Genetics, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| |
Collapse
|
28
|
Clinical trials of immunogene therapy for spontaneous tumors in companion animals. ScientificWorldJournal 2014; 2014:718520. [PMID: 25506617 PMCID: PMC4251357 DOI: 10.1155/2014/718520] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/02/2014] [Indexed: 12/23/2022] Open
Abstract
Despite the important progress obtained in the treatment of some pets' malignancies, new treatments need to be developed. Being critical in cancer control and progression, the immune system's appropriate modulation may provide effective therapeutic options. In this review we summarize the outcomes of published immunogene therapy veterinary clinical trials reported by many research centers. A variety of tumors such as canine melanoma, soft tissue sarcomas, osteosarcoma and lymphoma, feline fibrosarcoma, and equine melanoma were subjected to different treatment approaches. Both viral and mainly nonviral vectors were used to deliver gene products as cytokines, xenogeneic tumor associated antigens, specific ligands, and proapoptotic regulatory factors. In some cases autologous, allogenic, or xenogeneic transgenic cytokine producing cells were assayed. In general terms, minor or no adverse collateral effects appeared during this kind of therapies and treated patients usually displayed a better course of the disease (longer survival, delayed or suppressed recurrence or metastatic spread, and improvement of the quality of life). This suggests the utility of these methodologies as standard adjuvant treatments. The encouraging outcomes obtained in companion animals support their ready application in veterinary clinical oncology and serve as preclinical proof of concept and safety assay for future human gene therapy trials.
Collapse
|