1
|
Zhu X, Xue J, Jiang H, Xue D. CAR-NK cells for gastrointestinal cancer immunotherapy: from bench to bedside. Mol Cancer 2024; 23:237. [PMID: 39443938 PMCID: PMC11515662 DOI: 10.1186/s12943-024-02151-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Gastrointestinal (GI) cancers represent a significant health burden worldwide. Their incidence continues to increase, and their management remains a clinical challenge. Chimeric antigen receptor (CAR) natural killer (NK) cells have emerged as a promising alternative to CAR-T cells for immunotherapy of GI cancers. Notably, CAR-NK cells offer several advantages, including reduced risk of graft-versus-host disease, lower cytokine release syndrome, and the ability to target cancer cells through both CAR-dependent and natural cytotoxic mechanisms. MAIN BODY This review comprehensively discusses the development and applications of CAR-NK cells in the treatment of GI cancers. We explored various sources of NK cells, CAR design strategies, and the current state of CAR-NK cell therapy for GI cancers, highlighting recent preclinical and clinical trials. Additionally, we addressed existing challenges and propose potential strategies to enhance the efficacy and safety of CAR-NK cell therapy. CONCLUSIONS Our findings highlight the potential of CAR-NK cells to revolutionize GI cancer treatment and pave the way for future clinical applications.
Collapse
Affiliation(s)
- Xingwang Zhu
- Department of Urinary Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110032, P.R. China
| | - Jieyun Xue
- China Medical University, Shenyang, Liaoning Province, 110000, P.R. China
| | - Hongzhou Jiang
- Department of Neurosurgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110032, P.R. China
| | - Dongwei Xue
- Department of Urinary Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110032, P.R. China.
| |
Collapse
|
2
|
Soroush A, Shahhosseini R, Ghavamikia N, Hjazi A, Roudaki S, KhalatbariLimaki M, Mirbolouk M, Pakmehr S, Karimi P. Improvement of current immunotherapies with engineered oncolytic viruses that target cancer stem cells. Cell Biochem Funct 2024; 42:e4055. [PMID: 38856033 DOI: 10.1002/cbf.4055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/04/2024] [Accepted: 05/12/2024] [Indexed: 06/11/2024]
Abstract
The heterogeneity of the solid tumor microenvironment (TME) impairs the therapeutic efficacy of standard therapies and also reduces the infiltration of antitumor immune cells, all of which lead to tumor progression and invasion. In addition, self-renewing cancer stem cells (CSCs) support tumor dormancy, drug resistance, and recurrence, all of which might pose challenges to the eradication of malignant tumor masses with current therapies. Natural forms of oncolytic viruses (OVs) or engineered OVs are known for their potential to directly target and kill tumor cells or indirectly eradicate tumor cells by involving antitumor immune responses, including enhancement of infiltrating antitumor immune cells, induction of immunogenic cell death, and reprogramming of cold TME to an immune-sensitive hot state. More importantly, OVs can target stemness factors that promote tumor progression, which subsequently enhances the efficacy of immunotherapies targeting solid tumors, particularly the CSC subpopulation. Herein, we describe the role of CSCs in tumor heterogeneity and resistance and then highlight the potential and remaining challenges of immunotherapies targeting CSCs. We then review the potential of OVs to improve tumor immunogenicity and target CSCs and finally summarize the challenges within the therapeutic application of OVs in preclinical and clinical trials.
Collapse
Affiliation(s)
| | | | - Nima Ghavamikia
- Cardiovascular Research Institute, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin AbdulAziz University, Al-Kharj, Saudi Arabia
| | - Shahrzad Roudaki
- School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mahtab Mirbolouk
- School of Pharmacy, Cyprus International University, Nicosia, North Cyprus
| | | | - Parvin Karimi
- Fars Population-Based Cancer Registry, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Bamodu OA, Chung CC, Pisanic TR, Wu ATH. The intricate interplay between cancer stem cells and cell-of-origin of cancer: implications for therapeutic strategies. Front Oncol 2024; 14:1404628. [PMID: 38800385 PMCID: PMC11116576 DOI: 10.3389/fonc.2024.1404628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Background Cancer stem cells (CSCs) have emerged as pivotal players in tumorigenesis, disease progression, and resistance to therapies. Objective This comprehensive review delves into the intricate relationship between CSCs and the cell-of-origin in diverse cancer types. Design Comprehensive review of thematically-relevant literature. Methods We explore the underlying molecular mechanisms that drive the conversion of normal cells into CSCs and the impact of the cell-of-origin on CSC properties, tumor initiation, and therapeutic responses. Moreover, we discuss potential therapeutic interventions targeting CSCs based on their distinct cell-of-origin characteristics. Results Accruing evidence suggest that the cell-of-origin, the cell type from which the tumor originates, plays a crucial role in determining the properties of CSCs and their contribution to tumor heterogeneity. Conclusion By providing critical insights into the complex interplay between CSCs and their cellular origins, this article aims to enhance our understanding of cancer biology and pave the way for more effective and personalized cancer treatments.
Collapse
Affiliation(s)
- Oluwaseun Adebayo Bamodu
- Directorate of Postgraduate Studies, School of Clinical Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Ocean Road Cancer Institute, Dar es Salaam, Tanzania
| | - Chen-Chih Chung
- Department of Neurology, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan
| | - Thomas R. Pisanic
- Johns Hopkins Institute for NanoBioTechnology, Baltimore, MD, United States
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Oncology - Cancer Genetics and Epigenetics, Johns Hopkins University, Baltimore, MD, United States
| | - Alexander T. H. Wu
- The Program for Translational Medicine, Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
4
|
MacLean MR, Walker OL, Arun RP, Fernando W, Marcato P. Informed by Cancer Stem Cells of Solid Tumors: Advances in Treatments Targeting Tumor-Promoting Factors and Pathways. Int J Mol Sci 2024; 25:4102. [PMID: 38612911 PMCID: PMC11012648 DOI: 10.3390/ijms25074102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Cancer stem cells (CSCs) represent a subpopulation within tumors that promote cancer progression, metastasis, and recurrence due to their self-renewal capacity and resistance to conventional therapies. CSC-specific markers and signaling pathways highly active in CSCs have emerged as a promising strategy for improving patient outcomes. This review provides a comprehensive overview of the therapeutic targets associated with CSCs of solid tumors across various cancer types, including key molecular markers aldehyde dehydrogenases, CD44, epithelial cellular adhesion molecule, and CD133 and signaling pathways such as Wnt/β-catenin, Notch, and Sonic Hedgehog. We discuss a wide array of therapeutic modalities ranging from targeted antibodies, small molecule inhibitors, and near-infrared photoimmunotherapy to advanced genetic approaches like RNA interference, CRISPR/Cas9 technology, aptamers, antisense oligonucleotides, chimeric antigen receptor (CAR) T cells, CAR natural killer cells, bispecific T cell engagers, immunotoxins, drug-antibody conjugates, therapeutic peptides, and dendritic cell vaccines. This review spans developments from preclinical investigations to ongoing clinical trials, highlighting the innovative targeting strategies that have been informed by CSC-associated pathways and molecules to overcome therapeutic resistance. We aim to provide insights into the potential of these therapies to revolutionize cancer treatment, underscoring the critical need for a multi-faceted approach in the battle against cancer. This comprehensive analysis demonstrates how advances made in the CSC field have informed significant developments in novel targeted therapeutic approaches, with the ultimate goal of achieving more effective and durable responses in cancer patients.
Collapse
Affiliation(s)
- Maya R. MacLean
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.M.); (O.L.W.); (R.P.A.); (W.F.)
| | - Olivia L. Walker
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.M.); (O.L.W.); (R.P.A.); (W.F.)
| | - Raj Pranap Arun
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.M.); (O.L.W.); (R.P.A.); (W.F.)
| | - Wasundara Fernando
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.M.); (O.L.W.); (R.P.A.); (W.F.)
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada
| | - Paola Marcato
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.M.); (O.L.W.); (R.P.A.); (W.F.)
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Nova Scotia Health Authority, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
5
|
Li J, Hu H, Lian K, Zhang D, Hu P, He Z, Zhang Z, Wang Y. CAR-NK cells in combination therapy against cancer: A potential paradigm. Heliyon 2024; 10:e27196. [PMID: 38486782 PMCID: PMC10937699 DOI: 10.1016/j.heliyon.2024.e27196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/17/2024] Open
Abstract
Various preclinical and a limited number of clinical studies of CAR-NK cells have shown promising results: efficient elimination of target cells without side effects similar to CAR-T therapy. However, the homing and infiltration abilities of CAR-NK cells are poor due to the inhibitory tumor microenvironment. From the perspective of clinical treatment strategies, combined with the biological and tumor microenvironment characteristics of NK cells, CAR-NK combination therapy strategies with anti-PD-1/PD-L1, radiotherapy and chemotherapy, kinase inhibitors, proteasome inhibitors, STING agonist, oncolytic virus, photothermal therapy, can greatly promote the proliferation, migration and cytotoxicity of the NK cells. In this review, we will summarize the targets selection, structure constructions and combinational therapies of CAR-NK cells for tumors to provide feasible combination strategies for overcoming the inhibitory tumor microenvironment and improving the efficacy of CAR-NK cells.
Collapse
Affiliation(s)
- Junping Li
- Department of Radiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, 441000, China
| | - Hong Hu
- Department of Radiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, 441000, China
| | - Kai Lian
- Department of Orthopedics, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, 441000, China
| | - Dongdong Zhang
- Department of Oncology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, 441000, China
| | - Pengchao Hu
- Department of Oncology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, 441000, China
| | - Zhibing He
- Department of Radiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, 441000, China
| | - Zhenfeng Zhang
- Department of Radiology, Translational Medicine Center, Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy & Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Central Laboratory, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yong Wang
- Department of Radiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, 441000, China
| |
Collapse
|
6
|
Hou Y, Zhao X, Nie X. Enhancing the therapeutic efficacy of NK cells in the treatment of ovarian cancer (Review). Oncol Rep 2024; 51:50. [PMID: 38299257 PMCID: PMC10851334 DOI: 10.3892/or.2024.8709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/03/2024] [Indexed: 02/02/2024] Open
Abstract
Ovarian cancer is a prevalent gynecological malignancy associated with a high mortality rate and a low 5‑year survival rate. Typically, >70% of patients present with an advanced stage of the disease, resulting in a high number of ovarian cancer‑associated deaths worldwide. Over the past decade, adoptive cellular immunotherapy has been investigated in clinical trials, and the results have led to the increased use in cancer treatment. Natural killer (NK) cells are cytotoxic lymphoid cells that recognize and lyse transformed cells, thereby impeding tumor growth. Thus, NK cells exhibit potential as a form of immunotherapy in the treatment of cancer. However, some patients with ovarian cancer treated with NK cells have experienced unsatisfactory outcomes. Therefore, further optimization of NK cells is required to increase the number of patients achieving long‑term remission. In the present review article, studies focusing on improving NK cell function were systematically summarized, and innovative strategies that augment the anticancer properties of NK cells were proposed.
Collapse
Affiliation(s)
- Yuzhu Hou
- Department of Gynecology, Qingdao Eighth People's Hospital, Qingdao, Shandong 266000, P.R. China
| | - Xiujun Zhao
- Department of Gynecology, Qingdao Eighth People's Hospital, Qingdao, Shandong 266000, P.R. China
| | - Xiaoqian Nie
- Department of Gynecology, Qingdao Eighth People's Hospital, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
7
|
Omran MM, Fouda MS, Mekkawy SA, Tabll AA, Abdelaziz AG, Omran AM, Emran TM. Molecular Biomarkers and Signaling Pathways of Cancer Stem Cells in Colorectal Cancer. Technol Cancer Res Treat 2024; 23:15330338241254061. [PMID: 38794896 PMCID: PMC11128179 DOI: 10.1177/15330338241254061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/27/2018] [Indexed: 05/26/2024] Open
Abstract
Colorectal cancer (CRC) is the third most frequently found cancer in the world, and it is frequently discovered when it is already far along in its development. About 20% of cases of CRC are metastatic and incurable. There is more and more evidence that colorectal cancer stem cells (CCSCs), which are in charge of tumor growth, recurrence, and resistance to treatment, are what make CRC so different. Because we know more about stem cell biology, we quickly learned about the molecular processes and possible cross-talk between signaling pathways that affect the balance of cells in the gut and cancer. Wnt, Notch, TGF-β, and Hedgehog are examples of signaling pathway members whose genes may change to produce CCSCs. These genes control self-renewal and pluripotency in SCs and then decide the function and phenotype of CCSCs. However, in terms of their ability to create tumors and susceptibility to chemotherapeutic drugs, CSCs differ from normal stem cells and the bulk of tumor cells. This may be the reason for the higher rate of cancer recurrence in patients who underwent both surgery and chemotherapy treatment. Scientists have found that a group of uncontrolled miRNAs related to CCSCs affect stemness properties. These miRNAs control CCSC functions like changing the expression of cell cycle genes, metastasis, and drug resistance mechanisms. CCSC-related miRNAs mostly control signal pathways that are known to be important for CCSC biology. The biomarkers (CD markers and miRNA) for CCSCs and their diagnostic roles are the main topics of this review study.
Collapse
Affiliation(s)
- Mohamed M. Omran
- Biochemistry Division, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Manar S. Fouda
- Biochemistry Division, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Sara A. Mekkawy
- Molecular Biotechnology Program, Faculty of Science, Helwan University, Cairo, Egypt
| | - Ashraf A. Tabll
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, Dokki, Egypt
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | - Ahmed G. Abdelaziz
- Biochemistry Division, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Azza M. Omran
- Clinical Pharma Program, Faculty of Pharmacy, Delta University, Dakahlia, Egypt
| | - Tarek M. Emran
- Clinical Pathology Department, Faculty of Medicine, Al-Azhar University, New Damietta, Egypt
| |
Collapse
|
8
|
Li YN, Xie B, Zhang Y, He MH, Xing Y, Mu DM, Wang H, Guo R. Advances and key focus areas in gastric cancer immunotherapy: A comprehensive scientometric and clinical trial review (1999-2023). World J Gastroenterol 2023; 29:5593-5617. [PMID: 37970478 PMCID: PMC10642438 DOI: 10.3748/wjg.v29.i40.5593] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/25/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is the sixth most common cancer and third leading cause of cancer-related deaths worldwide. Current treatments mainly rely on surgery- and chemotherapy-based systemic; however, the prognosis remains poor for advanced disease. Recent studies have suggested that immunotherapy has significant potential in cancer therapy; thus, GC immunotherapy may improve quality of life and survival for patients with this disease. AIM To provide a comprehensive overview of the knowledge structure and research hotspots of GC immunotherapy. METHODS We conducted a bibliometric analysis of publications on immunotherapy related to GC in the Web of Science Core Collection database. We analyzed 2013 pub-lications from 1999 to February 1, 2023, using the VOSviewer and CiteSpace software. We assessed publication and citation distributions using the WoS platform and explored research countries, institutions, journals, authors, references, and keywords (co-occurrence, timeline view, and burst analysis). In addition, we examined 228 trials on immunotherapy, 137 on adoptive cell therapy, 274 on immune checkpoint inhibitors (ICIs), and 23 on vaccines from ClinicalTrials.gov and the International Clinical Trials Registry Platform. The Impact Index Per Article for the top ten high-cited papers collected from Reference Citation Analysis (RCA) are presented. RESULTS Our bibliometric analysis revealed that the study of immunotherapy in GC has developed rapidly in recent years. China accounted for almost half the publications, followed by the United States. The number of publications in recent years has been growing continuously, and most institutions and authors with the most publications are from China. The main keywords or clusters identified were "tumor microenvironment", "adoptive immunotherapy", "dendritic therapy", and "microsatellite instability". CONCLUSION Our analysis of 2013 publications indicated that immunotherapy for GC has led to several new developments in recent years. Considerable progress has been made in vaccinations, immune checkpoint therapy, and adoptive cellular therapy. In particular, ICIs and chimeric antigen receptor T-cells are novel options for the treatment of GC. We suggest that the combination of ICIs, chemotherapy, targeted therapy, and other immunotherapies should be the primary research direction in the future.
Collapse
Affiliation(s)
- Yao-Nan Li
- Clinical Laboratory, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China
| | - Bin Xie
- Cancer Center, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China
| | - Ying Zhang
- Cancer Center, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China
| | - Ming-Hua He
- College of Computer Science and Technology, Jilin University, Changchun 130012, Jilin Province, China
| | - Yang Xing
- Cancer Center, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China
| | - Dong-Mei Mu
- Division of Clinical Research, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China
| | - Hong Wang
- Cancer Center, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China
| | - Rui Guo
- Clinical Laboratory, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China
| |
Collapse
|
9
|
Izadpanah A, Mohammadkhani N, Masoudnia M, Ghasemzad M, Saeedian A, Mehdizadeh H, Poorebrahim M, Ebrahimi M. Update on immune-based therapy strategies targeting cancer stem cells. Cancer Med 2023; 12:18960-18980. [PMID: 37698048 PMCID: PMC10557910 DOI: 10.1002/cam4.6520] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/16/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023] Open
Abstract
Accumulating data reveals that tumors possess a specialized subset of cancer cells named cancer stem cells (CSCs), responsible for metastasis and recurrence of malignancies, with various properties such as self-renewal, heterogenicity, and capacity for drug resistance. Some signaling pathways or processes like Notch, epithelial to mesenchymal transition (EMT), Hedgehog (Hh), and Wnt, as well as CSCs' surface markers such as CD44, CD123, CD133, and epithelial cell adhesion molecule (EpCAM) have pivotal roles in acquiring CSCs properties. Therefore, targeting CSC-related signaling pathways and surface markers might effectively eradicate tumors and pave the way for cancer survival. Since current treatments such as chemotherapy and radiation therapy cannot eradicate all of the CSCs and tumor relapse may happen following temporary recovery, improving novel and more efficient therapeutic options to combine with current treatments is required. Immunotherapy strategies are the new therapeutic modalities with promising results in targeting CSCs. Here, we review the targeting of CSCs by immunotherapy strategies such as dendritic cell (DC) vaccines, chimeric antigen receptors (CAR)-engineered immune cells, natural killer-cell (NK-cell) therapy, monoclonal antibodies (mAbs), checkpoint inhibitors, and the use of oncolytic viruses (OVs) in pre-clinical and clinical studies. This review will mainly focus on blood malignancies but also describe solid cancers.
Collapse
Affiliation(s)
- Amirhossein Izadpanah
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Niloufar Mohammadkhani
- Department of Clinical BiochemistrySchool of Medicine, Shahid Beheshti University of Medical SciencesTehranIran
| | - Mina Masoudnia
- Department of ImmunologySchool of Medicine, Shahid Beheshti University of Medical SciencesTehranIran
| | - Mahsa Ghasemzad
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Department of Molecular Cell Biology‐Genetics, Faculty of Basic Sciences and Advanced Technologies in BiologyUniversity of Science and CultureTehranIran
| | - Arefeh Saeedian
- Radiation Oncology Research CenterCancer Research Institute, Tehran University of Medical SciencesTehranIran
- Department of Radiation OncologyCancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical SciencesTehranIran
| | - Hamid Mehdizadeh
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Mansour Poorebrahim
- Arnie Charbonneau Cancer Research Institute, University of CalgaryAlbertaCalgaryCanada
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Department of regenerative medicineCell Science research Center, Royan Institute for stem cell biology and technology, ACECRTehranIran
| |
Collapse
|
10
|
Geng Z, Pan X, Xu J, Jia X. Friend and foe: the regulation network of ascites components in ovarian cancer progression. J Cell Commun Signal 2023; 17:391-407. [PMID: 36227507 PMCID: PMC10409702 DOI: 10.1007/s12079-022-00698-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/11/2022] [Indexed: 10/17/2022] Open
Abstract
The tumor microenvironment (TME) and its complex role in cancer progression have been hotspots of cancer research in recent years. Ascites, which occurs frequently in patients with ovarian cancer especially in advanced stages, represents a unique TME. Malignant ascites contains abundant cellular and acellular components that play important roles in tumorigenesis, growth, metastasis, and chemoresistance of ovarian cancer through complex molecular mechanisms and signaling pathways. As a valuable liquid biopsy sample, ascites fluid is also of great significance for the prognostic analysis of ovarian cancer. The components of ovarian cancer ascites are generally considered to comprise tumor-promoting factors; however, in recent years studies have found that ascites also contains tumor-suppressing factors, raising new perspectives on interactions between ascites and tumors. Malignant ascites directly constitutes the ovarian cancer microenvironment, therefore, the study of its components will aid in the development of new therapeutic strategies. This article reviews the current research on tumor-promoting and tumor-suppressing factors and molecular mechanisms of their actions in ovarian cancer-derived ascites and therapeutic strategies targeting ascites, which may provide references for the development of novel therapeutic targets for ovarian cancer in the future.
Collapse
Affiliation(s)
- Zhe Geng
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Mochou Rd, Nanjing, 210004, China
| | - Xinxing Pan
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Mochou Rd, Nanjing, 210004, China
| | - Juan Xu
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Mochou Rd, Nanjing, 210004, China.
| | - Xuemei Jia
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Mochou Rd, Nanjing, 210004, China.
| |
Collapse
|
11
|
Guo F, Zhang Y, Bai L, Cui J. Natural killer cell therapy targeting cancer stem cells: Old wine in a new bottle. Cancer Lett 2023; 570:216328. [PMID: 37499742 DOI: 10.1016/j.canlet.2023.216328] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/14/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023]
Abstract
A small proportion of cancer cells that have stem cell-like properties are known as cancer stem cells (CSCs). They can be used to identify malignant tumor phenotypes and patients with poor prognosis. Targeting these cells has been shown to improve the effectiveness of cancer therapies. Owing to the nature of CSCs, they are resistant to conventional treatment methods such as radio- and chemotherapy. Therefore, more effective anti-CSC therapies are required. Immunotherapy, including natural killer (NK) and T cell therapy, has demonstrated the ability to eliminate CSCs. NK cells have demonstrated superior anti-CSC capabilities compared to T cells in recognizing low levels of major histocompatibility complex (MHC) class I expression. However, CSC escape also occurs during NK cell therapy. It is important to determine CSC-specific immune evasion mechanisms and find out potential solutions to optimize NK cell function. Therefore, this review discusses promising strategies that can improve the efficiency of NK cell therapy in treating CSCs, and aims to provide a reference for future research.
Collapse
Affiliation(s)
- Feifei Guo
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Yi Zhang
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Ling Bai
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.
| |
Collapse
|
12
|
Zhang Y, Zhou W, Yang J, Yang J, Wang W. Chimeric antigen receptor engineered natural killer cells for cancer therapy. Exp Hematol Oncol 2023; 12:70. [PMID: 37563648 PMCID: PMC10413722 DOI: 10.1186/s40164-023-00431-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023] Open
Abstract
Natural killer (NK) cells, a unique component of the innate immune system, are inherent killers of stressed and transformed cells. Based on their potent capacity to kill cancer cells and good tolerance of healthy cells, NK cells have been successfully employed in adoptive cell therapy to treat cancer patients. In recent years, the clinical success of chimeric antigen receptor (CAR)-T cells has proven the vast potential of gene-manipulated immune cells as the main force to fight cancer. Following the lessons learned from mature gene-transfer technologies and advanced strategies in CAR-T therapy, NK cells have been rapidly explored as a promising candidate for CAR-based therapy. An exponentially growing number of studies have employed multiple sources of CAR-NK cells to target a wide range of cancer-related antigens, showing remarkable outcomes and encouraging safety profiles. Clinical trials of CAR-NK cells have also shown their impressive therapeutic efficacy in the treatment of hematological tumors, but CAR-NK cell therapy for solid tumors is still in the initial stages. In this review, we present the favorable profile of NK cells as a potential platform for CAR-based engineering and then summarize the outcomes and strategies of CAR-NK therapies in up-to-date preclinical and clinical investigations. Finally, we evaluate the challenges remaining in CAR-NK therapy and describe existing strategies that can assist us in devising future prospective solutions.
Collapse
Affiliation(s)
- Yalan Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Weilin Zhou
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Jiangping Yang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041, People's Republic of China
- Department of Head and Neck Oncology and Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Jinrong Yang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041, People's Republic of China
- Hematology Research Laboratory, Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Wei Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
13
|
Wilczyński JR, Wilczyński M, Paradowska E. "DEPHENCE" system-a novel regimen of therapy that is urgently needed in the high-grade serous ovarian cancer-a focus on anti-cancer stem cell and anti-tumor microenvironment targeted therapies. Front Oncol 2023; 13:1201497. [PMID: 37448521 PMCID: PMC10338102 DOI: 10.3389/fonc.2023.1201497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023] Open
Abstract
Ovarian cancer, especially high-grade serous type, is the most lethal gynecological malignancy. The lack of screening programs and the scarcity of symptomatology result in the late diagnosis in about 75% of affected women. Despite very demanding and aggressive surgical treatment, multiple-line chemotherapy regimens and both approved and clinically tested targeted therapies, the overall survival of patients is still unsatisfactory and disappointing. Research studies have recently brought some more understanding of the molecular diversity of the ovarian cancer, its unique intraperitoneal biology, the role of cancer stem cells, and the complexity of tumor microenvironment. There is a growing body of evidence that individualization of the treatment adjusted to the molecular and biochemical signature of the tumor as well as to the medical status of the patient should replace or supplement the foregoing therapy. In this review, we have proposed the principles of the novel regimen of the therapy that we called the "DEPHENCE" system, and we have extensively discussed the results of the studies focused on the ovarian cancer stem cells, other components of cancer metastatic niche, and, finally, clinical trials targeting these two environments. Through this, we have tried to present the evolving landscape of treatment options and put flesh on the experimental approach to attack the high-grade serous ovarian cancer multidirectionally, corresponding to the "DEPHENCE" system postulates.
Collapse
Affiliation(s)
- Jacek R Wilczyński
- Department of Gynecological Surgery and Gynecological Oncology, Medical University of Lodz, Lodz, Poland
| | - Miłosz Wilczyński
- Department of Gynecological, Endoscopic and Oncological Surgery, Polish Mother's Health Center-Research Institute, Lodz, Poland
- Department of Surgical and Endoscopic Gynecology, Medical University of Lodz, Lodz, Poland
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, Lodz, Poland
| |
Collapse
|
14
|
Nowak J, Bentele M, Kutle I, Zimmermann K, Lühmann JL, Steinemann D, Kloess S, Koehl U, Roßberg W, Ahmed A, Schaudien D, Neubert L, Kamp JC, Kuehnel MP, Warnecke A, Schambach A, Morgan M. CAR-NK Cells Targeting HER1 (EGFR) Show Efficient Anti-Tumor Activity against Head and Neck Squamous Cell Carcinoma (HNSCC). Cancers (Basel) 2023; 15:3169. [PMID: 37370779 DOI: 10.3390/cancers15123169] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
(1) Background: HNSCC is a highly heterogeneous and relapse-prone form of cancer. We aimed to expand the immunological tool kit against HNSCC by conducting a functional screen to generate chimeric antigen receptor (CAR)-NK-92 cells that target HER1/epidermal growth factor receptor (EGFR). (2) Methods: Selected CAR-NK-92 cell candidates were tested for enhanced reduction of target cells, CD107a expression and IFNγ secretion in different co-culture models. For representative HNSCC models, patient-derived primary HNSCC (pHNSCC) cell lines were generated by employing an EpCAM-sorting approach to eliminate the high percentage of non-malignant cells found. (3) Results: 2D and 3D spheroid co-culture experiments showed that anti-HER1 CAR-NK-92 cells effectively eliminated SCC cell lines and primary HNSCC (pHNSCC) cells. Co-culture of tumor models with anti-HER1 CAR-NK-92 cells led to enhanced degranulation and IFNγ secretion of NK-92 cells and apoptosis of target cells. Furthermore, remaining pHNSCC cells showed upregulated expression of putative cancer stem cell marker CD44v6. (4) Conclusions: These results highlight the promising potential of CAR-NK cell therapy in HNSCC and the likely necessity to target multiple tumor-associated antigens to reduce currently high relapse rates.
Collapse
Affiliation(s)
- Juliette Nowak
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Marco Bentele
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Ivana Kutle
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Katharina Zimmermann
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | | | - Doris Steinemann
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany
| | - Stephan Kloess
- Institute for Cellular Therapeutics, Hannover Medical School, 30625 Hannover, Germany
| | - Ulrike Koehl
- Institute for Cellular Therapeutics, Hannover Medical School, 30625 Hannover, Germany
- Institute of Clinical Immunology, University Leipzig, 04103 Leipzig, Germany
- Fraunhofer Institute for Cell Therapy and Immunology, IZI, 04103 Leipzig, Germany
| | - Willi Roßberg
- Department of Otolaryngology, Head and Neck Surgery, Hannover Medical School, 30625 Hannover, Germany
| | - Amed Ahmed
- Department of Otolaryngology, Head and Neck Surgery, Hannover Medical School, 30625 Hannover, Germany
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine, ITEM, 30625 Hannover, Germany
| | - Lavinia Neubert
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Jan-Christopher Kamp
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany
- Department of Respiratory Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Mark P Kuehnel
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Athanasia Warnecke
- Department of Otolaryngology, Head and Neck Surgery, Hannover Medical School, 30625 Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
15
|
Köseer AS, Di Gaetano S, Arndt C, Bachmann M, Dubrovska A. Immunotargeting of Cancer Stem Cells. Cancers (Basel) 2023; 15:1608. [PMID: 36900399 PMCID: PMC10001158 DOI: 10.3390/cancers15051608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The generally accepted view is that CSCs hijack the signaling pathways attributed to normal stem cells that regulate the self-renewal and differentiation processes. Therefore, the development of selective targeting strategies for CSC, although clinically meaningful, is associated with significant challenges because CSC and normal stem cells share many important signaling mechanisms for their maintenance and survival. Furthermore, the efficacy of this therapy is opposed by tumor heterogeneity and CSC plasticity. While there have been considerable efforts to target CSC populations by the chemical inhibition of the developmental pathways such as Notch, Hedgehog (Hh), and Wnt/β-catenin, noticeably fewer attempts were focused on the stimulation of the immune response by CSC-specific antigens, including cell-surface targets. Cancer immunotherapies are based on triggering the anti-tumor immune response by specific activation and targeted redirecting of immune cells toward tumor cells. This review is focused on CSC-directed immunotherapeutic approaches such as bispecific antibodies and antibody-drug candidates, CSC-targeted cellular immunotherapies, and immune-based vaccines. We discuss the strategies to improve the safety and efficacy of the different immunotherapeutic approaches and describe the current state of their clinical development.
Collapse
Affiliation(s)
- Ayse Sedef Köseer
- National Center for Tumor Diseases (NCT), Partner Site Dresden: German Cancer Research Center (DKFZ), Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01309 Dresden, Germany
| | - Simona Di Gaetano
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01309 Dresden, Germany
| | - Claudia Arndt
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01328 Dresden, Germany
- Mildred Scheel Early Career Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Michael Bachmann
- National Center for Tumor Diseases (NCT), Partner Site Dresden: German Cancer Research Center (DKFZ), Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01328 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Anna Dubrovska
- National Center for Tumor Diseases (NCT), Partner Site Dresden: German Cancer Research Center (DKFZ), Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01309 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
| |
Collapse
|
16
|
Maalej KM, Merhi M, Inchakalody VP, Mestiri S, Alam M, Maccalli C, Cherif H, Uddin S, Steinhoff M, Marincola FM, Dermime S. CAR-cell therapy in the era of solid tumor treatment: current challenges and emerging therapeutic advances. Mol Cancer 2023; 22:20. [PMID: 36717905 PMCID: PMC9885707 DOI: 10.1186/s12943-023-01723-z] [Citation(s) in RCA: 251] [Impact Index Per Article: 125.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
In the last decade, Chimeric Antigen Receptor (CAR)-T cell therapy has emerged as a promising immunotherapeutic approach to fight cancers. This approach consists of genetically engineered immune cells expressing a surface receptor, called CAR, that specifically targets antigens expressed on the surface of tumor cells. In hematological malignancies like leukemias, myeloma, and non-Hodgkin B-cell lymphomas, adoptive CAR-T cell therapy has shown efficacy in treating chemotherapy refractory patients. However, the value of this therapy remains inconclusive in the context of solid tumors and is restrained by several obstacles including limited tumor trafficking and infiltration, the presence of an immunosuppressive tumor microenvironment, as well as adverse events associated with such therapy. Recently, CAR-Natural Killer (CAR-NK) and CAR-macrophages (CAR-M) were introduced as a complement/alternative to CAR-T cell therapy for solid tumors. CAR-NK cells could be a favorable substitute for CAR-T cells since they do not require HLA compatibility and have limited toxicity. Additionally, CAR-NK cells might be generated in large scale from several sources which would suggest them as promising off-the-shelf product. CAR-M immunotherapy with its capabilities of phagocytosis, tumor-antigen presentation, and broad tumor infiltration, is currently being investigated. Here, we discuss the emerging role of CAR-T, CAR-NK, and CAR-M cells in solid tumors. We also highlight the advantages and drawbacks of CAR-NK and CAR-M cells compared to CAR-T cells. Finally, we suggest prospective solutions such as potential combination therapies to enhance the efficacy of CAR-cells immunotherapy.
Collapse
Affiliation(s)
- Karama Makni Maalej
- grid.413548.f0000 0004 0571 546XTranslational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, P.O. Box: 3050, Doha, Qatar
| | - Maysaloun Merhi
- grid.413548.f0000 0004 0571 546XTranslational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, P.O. Box: 3050, Doha, Qatar
| | - Varghese P. Inchakalody
- grid.413548.f0000 0004 0571 546XTranslational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, P.O. Box: 3050, Doha, Qatar
| | - Sarra Mestiri
- grid.413548.f0000 0004 0571 546XTranslational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, P.O. Box: 3050, Doha, Qatar
| | - Majid Alam
- grid.413548.f0000 0004 0571 546XTranslational Research Institute, Academic Health System, Dermatology Institute, Hamad Medical Corporation, Doha, Qatar ,grid.413548.f0000 0004 0571 546XDepartment of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Cristina Maccalli
- grid.467063.00000 0004 0397 4222Laboratory of Immune and Biological Therapy, Research Department, Sidra Medicine, Doha, Qatar
| | - Honar Cherif
- grid.413548.f0000 0004 0571 546XDepartment of Hematology, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- grid.413548.f0000 0004 0571 546XTranslational Research Institute, Academic Health System, Dermatology Institute, Hamad Medical Corporation, Doha, Qatar
| | - Martin Steinhoff
- grid.413548.f0000 0004 0571 546XTranslational Research Institute, Academic Health System, Dermatology Institute, Hamad Medical Corporation, Doha, Qatar ,grid.413548.f0000 0004 0571 546XDepartment of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar ,grid.416973.e0000 0004 0582 4340Department of Dermatology, Weill Cornell Medicine-Qatar, Doha, Qatar ,grid.412603.20000 0004 0634 1084College of Medicine, Qatar University, Doha, Qatar ,grid.5386.8000000041936877XDepartment of Dermatology, Weill Cornell Medicine, New York, USA
| | - Francesco M. Marincola
- grid.418227.a0000 0004 0402 1634Global Head of Research, Kite Pharma, Santa Monica, California USA
| | - Said Dermime
- grid.413548.f0000 0004 0571 546XTranslational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, P.O. Box: 3050, Doha, Qatar ,grid.452146.00000 0004 1789 3191College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
17
|
Polten R, Kutle I, Hachenberg J, Klapdor R, Morgan M, Schambach A. Towards Novel Gene and Cell Therapy Approaches for Cervical Cancer. Cancers (Basel) 2022; 15:cancers15010263. [PMID: 36612258 PMCID: PMC9818159 DOI: 10.3390/cancers15010263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Cervical cancer is one of the most common malignancies in women, and the majority of cases are caused by infection with high-risk human papilloma virus (HPV) subtypes. Despite effective preventative measures, such as vaccinations against HPV, over 300,000 women die world-wide from cervical cancer each year. Once cervical cancer is diagnosed, treatment may consist of radial hysterectomy, or chemotherapy and radiotherapy, or a combination of therapies dependent upon the disease stage. Unfortunately, overall prognosis for patients with metastatic or recurrent disease remains poor. In these cases, immunotherapies may be useful based on promising preclinical work, some of which has been successfully translated to the clinic. For example, approaches using monoclonal antibodies directed against surface proteins important for control of immune checkpoints (i.e., immune checkpoint inhibitors) were shown to improve outcome in many cancer settings, including cervical cancer. Additionally, initial clinical studies showed that application of cytotoxic immune cells modified to express chimeric antigen receptors (CAR) or T cell receptors (TCR) for better recognition and elimination of tumor cells may be useful to control cervical cancer. This review explores these important topics, including strengths and limitations of standard and developing approaches, and how some novel treatment strategies may be optimally used to offer the best possible treatment for cervical cancer patients.
Collapse
Affiliation(s)
- Robert Polten
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Ivana Kutle
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Jens Hachenberg
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
- Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany
| | - Rüdiger Klapdor
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
- Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
- Correspondence: (M.M.); (A.S.); Tel.: +49-511-532-6067 (A.S.)
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Correspondence: (M.M.); (A.S.); Tel.: +49-511-532-6067 (A.S.)
| |
Collapse
|
18
|
Liu T, Li Y, Wang X, Yang X, Fu Y, Zheng Y, Gong H, He Z. The role of interferons in ovarian cancer progression: Hinderer or promoter? Front Immunol 2022; 13:1087620. [PMID: 36618371 PMCID: PMC9810991 DOI: 10.3389/fimmu.2022.1087620] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer (OC) is a common gynecologic malignancy with poor prognosis and high mortality. Changes in the OC microenvironment are closely related to the genesis, invasion, metastasis, recurrence, and drug-resistance. The OC microenvironment is regulated by Interferons (IFNs) known as a type of important cytokines. IFNs have a bidirectional regulation for OC cells growth and survival. Meanwhile, IFNs positively regulate the recruitment, differentiation and activation of immune cells. This review summarizes the secretion and the role of IFNs. In particular, we mainly elucidate the actions played by IFNs in various types of therapy. IFNs assist radiotherapy, targeted therapy, immunotherapy and biotherapy for OC, except for some IFN pathways that may cause chemo-resistance. In addition, we present some advances in OC treatment with the help of IFN pathways. IFNs have the ability to powerfully modulate the tumor microenvironment and can potentially provide new combination strategies for OC treatment.
Collapse
Affiliation(s)
- Taiqing Liu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yinqi Li
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyu Wang
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaodong Yang
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yunhai Fu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yeteng Zheng
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hanlin Gong
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Hanlin Gong, ; Zhiyao He,
| | - Zhiyao He
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China,Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China,*Correspondence: Hanlin Gong, ; Zhiyao He,
| |
Collapse
|
19
|
Wang X, Yang X, Yuan X, Wang W, Wang Y. Chimeric antigen receptor-engineered NK cells: new weapons of cancer immunotherapy with great potential. Exp Hematol Oncol 2022; 11:85. [PMID: 36324149 PMCID: PMC9628181 DOI: 10.1186/s40164-022-00341-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/29/2022] [Indexed: 11/18/2022] Open
Abstract
Chimeric antigen receptor (CAR)-engineered T (CAR-T) cells have obtained prominent achievement in the clinical immunotherapy of hematological malignant tumors, leading to a rapid development of cellular immunotherapy in cancer treatment. Scientists are also aware of the prospective advantages of CAR engineering in cellular immunotherapy. Due to various limitations such as the serious side effects of CAR-T therapy, researchers began to investigate other immune cells for CAR modification. Natural killer (NK) cells are critical innate immune cells with the characteristic of non-specifically recognizing target cells and with the potential to become "off-the-shelf" products. In recent years, many preclinical studies on CAR-engineered NK (CAR-NK) cells have shown their remarkable efficacy in cancer therapy and their superiority over autologous CAR-T cells. In this review, we summarize the generation, mechanisms of anti-tumor activity and unique advantages of CAR-NK cells, and then analyze some challenges and recent clinical trials about CAR-NK cells therapy. We believe that CAR-NK therapy is a promising prospect for cancer immunotherapy in the future.
Collapse
Affiliation(s)
- Xiao Wang
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Xuejiao Yang
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Xiang Yuan
- grid.13291.380000 0001 0807 1581Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Wenbo Wang
- grid.24516.340000000123704535Department of Oncology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Yueying Wang
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| |
Collapse
|
20
|
Li H, Song W, Li Z, Zhang M. Preclinical and clinical studies of CAR-NK-cell therapies for malignancies. Front Immunol 2022; 13:992232. [PMID: 36353643 PMCID: PMC9637940 DOI: 10.3389/fimmu.2022.992232] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/13/2022] [Indexed: 12/01/2022] Open
Abstract
The development of chimeric antigen receptor T (CAR-T) cell therapy, a specific type of immunotherapy, in recent decades was a fantastic breakthrough for the treatment of hematological malignancies. However, difficulties in collecting normal T cells from patients and the time cost of manufacturing CAR-T cells have limited the application of CAR-T-cell therapy. In addition, the termination of related clinical trials on universal CAR-T cell therapy has made further research more difficult. Natural killer (NK) cells have drawn great attention in recent years. Chimeric antigen receptor-NK (CAR-NK) cell therapy is a promising strategy in the treatment of malignant tumors because of its lack of potential for causing graft-versus-host disease (GVHD). In this review, we will address the advances in and achievements of CAR-NK cell therapy.
Collapse
Affiliation(s)
- Hongwen Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment and Henan Key Laboratory for Esophageal Cancer Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenting Song
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment and Henan Key Laboratory for Esophageal Cancer Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhaoming Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment and Henan Key Laboratory for Esophageal Cancer Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment and Henan Key Laboratory for Esophageal Cancer Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Mingzhi Zhang,
| |
Collapse
|
21
|
Hu X, Bian C, Zhao X, Yi T. Efficacy evaluation of multi-immunotherapy in ovarian cancer: From bench to bed. Front Immunol 2022; 13:1034903. [PMID: 36275669 PMCID: PMC9582991 DOI: 10.3389/fimmu.2022.1034903] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022] Open
Abstract
Ovarian cancer, one of the most common gynecological malignancies, is characterized by high mortality and poor prognosis. Cytoreductive surgery and chemotherapy remain the mainstay of ovarian cancer treatment, and most women experience recurrence after standard care therapies. There is compelling evidence that ovarian cancer is an immunogenic tumor. For example, the accumulation of tumor-infiltrating lymphocytes is associated with increased survival, while increases in immunosuppressive regulatory T cells are correlated with poor clinical outcomes. Therefore, immunotherapies targeting components of the tumor microenvironment have been gradually integrated into the existing treatment options, including immune checkpoint blockade, adoptive cell therapy, and cancer vaccines. Immunotherapies have changed guidelines for maintenance treatment and established a new paradigm in ovarian cancer treatment. Despite single immunotherapies targeting DNA repair mechanisms, immune checkpoints, and angiogenesis bringing inspiring efficacy, only a subset of patients can benefit much from it. Thus, the multi-immunotherapy investigation remains an active area for ovarian cancer treatment. The current review provides an overview of various clinically oriented forms of multi-immunotherapy and explores potentially effective combinational therapies for ovarian cancer.
Collapse
|
22
|
Huang B, Miao L, Liu J, Zhang J, Li Y. A promising antitumor method: Targeting CSC with immune cells modified with CAR. Front Immunol 2022; 13:937327. [PMID: 36032145 PMCID: PMC9403009 DOI: 10.3389/fimmu.2022.937327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022] Open
Abstract
Tumors pose a great threat to human health; as a subgroup of tumor cells, cancer stem cells (CSCs) contribute to the genesis, development, metastasis, and recurrence of tumors because of their enhanced proliferation and multidirectional differentiation. Thus, a critical step in tumor treatment is to inhibit CSCs. Researchers have proposed many methods to inhibit or reduce CSCs, including monoclonal antibodies targeting specific surface molecules of CSCs, signal pathway inhibitors, and energy metabolic enzyme inhibitors and inducing differentiation therapy. Additionally, immunotherapy with immune cells engineered with a chimeric antigen receptor (CAR) showed favorable results. However, there are few comprehensive reviews in this area. In this review, we summarize the recent CSC targets used for CSC inhibition and the different immune effector cells (T cells, natural killer (NK) cells, and macrophages) which are engineered with CAR used for CSC therapy. Finally, we list the main challenges and options in targeting CSC with CAR-based immunotherapy. The design targeting two tumor antigens (one CSC antigen and one mature common tumor antigen) should be more reasonable and practical; meanwhile, we highlight the potential of CAR-NK in tumor treatment.
Collapse
Affiliation(s)
- Binjie Huang
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Lele Miao
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Jie Liu
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Jiaxing Zhang
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Yumin Li
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
- *Correspondence: Yumin Li,
| |
Collapse
|
23
|
Wang H, Wang X, Ye X, Ju Y, Cao N, Wang S, Cai J. Nonviral mcDNA-mediated bispecific CAR T cells kill tumor cells in an experimental mouse model of hepatocellular carcinoma. BMC Cancer 2022; 22:814. [PMID: 35879685 PMCID: PMC9310485 DOI: 10.1186/s12885-022-09861-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/06/2022] [Indexed: 12/24/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide and the adoptive immunotherapy of which is worth studying. CD133, a kind of cancer stem cell (CSC) antigen, together with glypican-3 (GPC3) has been proved to be highly expressed in HCC cells and both of them are used as targets to generate chimeric antigen receptor (CAR) T cells. But there are limitations like “off-target” toxicity, low transfection efficacy and weak antitumor ability in CAR T cells treatment. Methods The peripheral blood was acquired from healthy donors and T cells were separated by density-gradient centrifugation. We used an electroporation system to deliver anti-CD133 and anti-GPC3 single chain Fragment variable (scFv) structures as target genes into the T cells. The cell membrane was opened by the momentary electric current effect, and the target gene was delivered into the cell by non-viral minicircle DNA (mcDNA) vector. The flow cytometry and western blot assays were used to detect whether the two scFv were simultaneously transfected and the transfection efficacy of this bispecific CAR T cell generation method. We respectively detected the in vitro and in vivo tumor-suppression efficacy of CAR T cells through the CCK-8 assays and the HCC xenograft mice models. The CoG133-CAR T cells containing both CD133 and GPC3 antigen recognition sites were the effector cells. CD133-CAR T cells and GPC3-CAR T cells were defined as single-targeted control groups, normal T and mock T cells were defined as blank control groups. Results The mcDNA vector accommodated two target gene structures successfully transfected to generate bispecific CAR T cells. The detection methods on gene level and protein level confirmed that CoG133-CAR T cells had considerable transfection efficiency and exhibited both antigen-binding capacity of CD133 and GPC3. Compared to single-targeted CAR T cells or control T cells, CoG133-CAR T cells performed enhanced eliminated efficacy against CD133 and GPC3 double-positive HCC cell line in vitro and HCC xenograft mice in vivo. Hematoxylin and eosin (H&E) staining indicated no fatal “off-target” combination existed on CoG133-CAR T cells and major organs. Conclusion Our study suggests that it is with higher efficiency and more safety to prepare bispecific CAR T cells through non-viral mcDNA vectors. CoG133-CAR T cells have enhanced tumor-suppression capacity through dual antigen recognition and internal activation. It provides an innovative strategy for CAR T therapy of HCC, even solid tumors. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09861-1.
Collapse
Affiliation(s)
- Hezhi Wang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Xiaoxiao Wang
- Department of Endocrinology, People's Hospital of Longhua, Shenzhen, 518109, China
| | - Xueshuai Ye
- Department of Surgery, Hebei Medical University, Shijiazhuang, 050000, China
| | - Yi Ju
- Department of Medicine, Medical College of Hebei University of Engineering, Handan, 056002, China
| | - Nana Cao
- College of Life Sciences, Hebei Normal University, Shijiazhuang, 050000, China
| | - Shuqi Wang
- Department of Anorectal Surgery, Shijiazhuang Traditional Chinese Medicine Hospital, Shijiazhuang, 050000, China
| | - Jianhui Cai
- Department of Surgery, Hebei Medical University, Shijiazhuang, 050000, China. .,Department of Surgery & Oncology, Hebei General Hospital, Shijiazhuang, 050000, China. .,Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China.
| |
Collapse
|
24
|
Baghery Saghchy Khorasani A, Yousefi AM, Bashash D. CAR NK cell therapy in hematologic malignancies and solid tumors; obstacles and strategies to overcome the challenges. Int Immunopharmacol 2022; 110:109041. [PMID: 35839565 DOI: 10.1016/j.intimp.2022.109041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 02/08/2023]
Abstract
Adoptive cell treatment (ACT) utilizing chimeric antigen receptors (CAR) diverts the specificity of safe cells against a target-specific antigen and portrays exceptional potential for cancer treatment. While CAR T cell treatment has risen as a breakthrough with unprecedented results within the therapeutic procedures of human malignancies, different deficiencies including challenging and costly generation processes, strict patient qualification criteria, and undesirable toxicity have ruined its application. Unlike T cells, the application of natural killer (NK) cells has attracted consideration as a reasonable alternative owing to the major histocompatibility complex (MHC)-independency, shorter life expectancy, the potential to create an off-the-shelf immune product, and potent antitumor properties. In this article, we provide an updated review of the differences between CAR T and CAR NK cells, current enhancements in CAR NK design, the available sources for collecting NK cells, and strategies for the transduction step of the CARs to NK cells. Furthermore, we focus on the published and ongoing preclinical and clinical studies of CAR NK treatment strategies both in hematologic malignancies and solid tumors. We also discuss limitations and plausible solutions to improve the perseverance, function, safety, and efficacy of CAR NK cells with a special focus on solid tumors.
Collapse
Affiliation(s)
| | - Amir-Mohammad Yousefi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Glienke W, Dragon AC, Zimmermann K, Martyniszyn-Eiben A, Mertens M, Abken H, Rossig C, Altvater B, Aleksandrova K, Arseniev L, Kloth C, Stamopoulou A, Moritz T, Lode HN, Siebert N, Blasczyk R, Goudeva L, Schambach A, Köhl U, Eiz-Vesper B, Esser R. GMP-Compliant Manufacturing of TRUCKs: CAR T Cells targeting GD2 and Releasing Inducible IL-18. Front Immunol 2022; 13:839783. [PMID: 35401506 PMCID: PMC8988144 DOI: 10.3389/fimmu.2022.839783] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/25/2022] [Indexed: 12/04/2022] Open
Abstract
Chimeric antigen receptor (CAR)-engineered T cells can be highly effective in the treatment of hematological malignancies, but mostly fail in the treatment of solid tumors. Thus, approaches using 4th advanced CAR T cells secreting immunomodulatory cytokines upon CAR signaling, known as TRUCKs (“T cells redirected for universal cytokine-mediated killing”), are currently under investigation. Based on our previous development and validation of automated and closed processing for GMP-compliant manufacturing of CAR T cells, we here present the proof of feasibility for translation of this method to TRUCKs. We generated IL-18-secreting TRUCKs targeting the tumor antigen GD2 using the CliniMACS Prodigy® system using a recently described “all-in-one” lentiviral vector combining constitutive anti-GD2 CAR expression and inducible IL-18. Starting with 0.84 x 108 and 0.91 x 108 T cells after enrichment of CD4+ and CD8+ we reached 68.3-fold and 71.4-fold T cell expansion rates, respectively, in two independent runs. Transduction efficiencies of 77.7% and 55.1% was obtained, and yields of 4.5 x 109 and 3.6 x 109 engineered T cells from the two donors, respectively, within 12 days. Preclinical characterization demonstrated antigen-specific GD2-CAR mediated activation after co-cultivation with GD2-expressing target cells. The functional capacities of the clinical-scale manufactured TRUCKs were similar to TRUCKs generated in laboratory-scale and were not impeded by cryopreservation. IL-18 TRUCKs were activated in an antigen-specific manner by co-cultivation with GD2-expressing target cells indicated by an increased expression of activation markers (e.g. CD25, CD69) on both CD4+ and CD8+ T cells and an enhanced release of pro-inflammatory cytokines and cytolytic mediators (e.g. IL-2, granzyme B, IFN-γ, perforin, TNF-α). Manufactured TRUCKs showed a specific cytotoxicity towards GD2-expressing target cells indicated by lactate dehydrogenase (LDH) release, a decrease of target cell numbers, microscopic detection of cytotoxic clusters and detachment of target cells in real-time impedance measurements (xCELLigence). Following antigen-specific CAR activation of TRUCKs, CAR-triggered release IL-18 was induced, and the cytokine was biologically active, as demonstrated in migration assays revealing specific attraction of monocytes and NK cells by supernatants of TRUCKs co-cultured with GD2-expressing target cells. In conclusion, GMP-compliant manufacturing of TRUCKs is feasible and delivers high quality T cell products.
Collapse
Affiliation(s)
- Wolfgang Glienke
- ATMP-GMP Development Unit, Institute of Cellular Therapeutics, Integrated Research and Treatment Center for Transplantation, Hannover Medical School, Hannover, Germany
- *Correspondence: Wolfgang Glienke, ; Axel Schambach,
| | - Anna Christina Dragon
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Katharina Zimmermann
- Division of Hematology/Oncology, Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Alexandra Martyniszyn-Eiben
- ATMP-GMP Development Unit, Institute of Cellular Therapeutics, Integrated Research and Treatment Center for Transplantation, Hannover Medical School, Hannover, Germany
| | - Mira Mertens
- ATMP-GMP Development Unit, Institute of Cellular Therapeutics, Integrated Research and Treatment Center for Transplantation, Hannover Medical School, Hannover, Germany
| | - Hinrich Abken
- Leibniz Institute for Immunotherapy, Div Genetic Immunotherapy, Regensburg, Germany
| | - Claudia Rossig
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Muenster, Muenster, Germany
| | - Bianca Altvater
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Muenster, Muenster, Germany
| | - Krasimira Aleksandrova
- Cellular Therapy Center, Institute of Cellular Therapeutics, Hannover Medical School, Hannover, Germany
| | - Lubomir Arseniev
- Cellular Therapy Center, Institute of Cellular Therapeutics, Hannover Medical School, Hannover, Germany
| | - Christina Kloth
- Division of Hematology/Oncology, Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Andriana Stamopoulou
- Division of Hematology/Oncology, Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Thomas Moritz
- Division of Hematology/Oncology, Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Holger N. Lode
- Department of Pediatric Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Nikolai Siebert
- Department of Pediatric Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Lilia Goudeva
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Division of Hematology/Oncology, Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- *Correspondence: Wolfgang Glienke, ; Axel Schambach,
| | - Ulrike Köhl
- ATMP-GMP Development Unit, Institute of Cellular Therapeutics, Integrated Research and Treatment Center for Transplantation, Hannover Medical School, Hannover, Germany
- Cellular Therapy Center, Institute of Cellular Therapeutics, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
- Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Britta Eiz-Vesper
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Ruth Esser
- ATMP-GMP Development Unit, Institute of Cellular Therapeutics, Integrated Research and Treatment Center for Transplantation, Hannover Medical School, Hannover, Germany
| |
Collapse
|
26
|
Wilczyński JR, Wilczyński M, Paradowska E. Cancer Stem Cells in Ovarian Cancer-A Source of Tumor Success and a Challenging Target for Novel Therapies. Int J Mol Sci 2022; 23:ijms23052496. [PMID: 35269636 PMCID: PMC8910575 DOI: 10.3390/ijms23052496] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Ovarian cancer is the most lethal neoplasm of the female genital organs. Despite indisputable progress in the treatment of ovarian cancer, the problems of chemo-resistance and recurrent disease are the main obstacles for successful therapy. One of the main reasons for this is the presence of a specific cell population of cancer stem cells. The aim of this review is to show the most contemporary knowledge concerning the biology of ovarian cancer stem cells (OCSCs) and their impact on chemo-resistance and prognosis in ovarian cancer patients, as well as to present the treatment options targeted exclusively on the OCSCs. The review presents data concerning the role of cancer stem cells in general and then concentrates on OCSCs. The surface and intracellular OCSCs markers and their meaning both for cancer biology and clinical prognosis, signaling pathways specifically activated in OCSCs, the genetic and epigenetic regulation of OCSCs function including the recent studies on the non-coding RNA regulation, cooperation between OCSCs and the tumor microenvironment (ovarian cancer niche) including very specific environment such as ascites fluid, the role of shear stress, autophagy and metabolic changes for the function of OCSCs, and finally mechanisms of OCSCs escape from immune surveillance, are described and discussed extensively. The possibilities of anti-OCSCs therapy both in experimental settings and in clinical trials are presented, including the recent II phase clinical trials and immunotherapy. OCSCs are a unique population of cancer cells showing a great plasticity, self-renewal potential and resistance against anti-cancer treatment. They are responsible for the progression and recurrence of the tumor. Several completed and ongoing clinical trials have tested different anti-OCSCs drugs which, however, have shown unsatisfactory efficacy in most cases. We propose a novel approach to ovarian cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Jacek R Wilczyński
- Department of Gynecological Surgery and Gynecological Oncology, Medical University of Lodz, 4 Kosciuszki Str., 90-419 Lodz, Poland
- Correspondence:
| | - Miłosz Wilczyński
- Department of Gynecological, Endoscopic and Oncological Surgery, Polish Mother’s Health Center—Research Institute, 281/289 Rzgowska Str., 93-338 Lodz, Poland;
- Department of Surgical and Endoscopic Gynecology, Medical University of Lodz, 4 Kosciuszki Str., 90-419 Lodz, Poland
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland;
| |
Collapse
|
27
|
Poondla N, Sheykhhasan M, Akbari M, Samadi P, Kalhor N, Manoochehri H. The Promise of CAR T-Cell Therapy for the treatment of cancer stem cells: A Short Review. Curr Stem Cell Res Ther 2022; 17:400-406. [PMID: 35176990 DOI: 10.2174/1574888x17666220217101817] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/27/2021] [Accepted: 11/15/2021] [Indexed: 11/22/2022]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is a type of sophisticated tailored immunotherapy used to treat a variety of tumors. Immunotherapy works by utilizing the body's own immune system to discover and destroy malignant cells. In CAR-T therapy, a patient's own immune cells are genetically engineered to recognize and attack cancer. Treatments employing CAR T-cells are currently showing promising therapeutic results in patients with hematologic malignancies, and their safety and feasibility in solid tumors has been verified. In this review, we will discuss in detail the likelihood that CAR T-cells inhibit cancer stem cells (CSCs) by selectively targeting their cell surface markers will ultimately improve the therapeutic response for patients with various forms of cancer. This review addresses the major components of cancer stem cell (CSC)-targeted CAR T-cells against malignancies, from bench to bedside.
Collapse
Affiliation(s)
- Naresh Poondla
- Richmond University Medical Center, 355, Bard Avenue, Staten Island, New York 10310, United States
| | - Mohsen Sheykhhasan
- Hamadan University of Medical Sciences, Research Center for Molecular Medicine; Academic Center for Education, Culture and Research (ACECR), Qom Branch, Qom, Iran
| | - Mohammad Akbari
- General Physician, Department of Medical School, Faculty of Medical Sciences, Islamic Azad University, Tonekabon Branch, Mazandaran, Iran
| | - Pouria Samadi
- Hamadan University of Medical Sciences, Research Center for Molecular Medicine
| | - Naser Kalhor
- Academic Center for Education, Culture and Research (ACECR), Qom Branch, Qom, Iran
| | - Hamed Manoochehri
- Hamadan University of Medical Sciences, Research Center for Molecular Medicine, Iran
| |
Collapse
|
28
|
Khawar MB, Sun H. CAR-NK Cells: From Natural Basis to Design for Kill. Front Immunol 2022; 12:707542. [PMID: 34970253 PMCID: PMC8712563 DOI: 10.3389/fimmu.2021.707542] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
Chimeric antigen receptors (CARs) are fusion proteins with an extracellular antigen recognition domain and numerous intracellular signaling domains that have been genetically modified. CAR-engineered T lymphocyte-based therapies have shown great success against blood cancers; however, potential fatal toxicity, such as in cytokine release syndrome, and high costs are some shortcomings that limit the clinical application of CAR-engineered T lymphocytes and remain to overcome. Natural killer (NK) cells are the focal point of current immunological research owing to their receptors that prove to be promising immunotherapeutic candidates for treating cancer. However, to date, manipulation of NK cells to treat malignancies has been moderately successful. Recent progress in the biology of NK cell receptors has greatly transformed our understanding of how NK cells recognize and kill tumor and infected cells. CAR-NK cells may serve as an alternative candidate for retargeting cancer because of their unique recognition mechanisms, powerful cytotoxic effects especially on cancer cells in both CAR-dependent and CAR-independent manners and clinical safety. Moreover, NK cells can serve as an ‘off-the-shelf product’ because NK cells from allogeneic sources can also be used in immunotherapies owing to their reduced risk of alloreactivity. Although ongoing fundamental research is in the beginning stages, this review provides an overview of recent developments implemented to design CAR constructs to stimulate NK activation and manipulate NK receptors for improving the efficiency of immunotherapy against cancer, summarizes the preclinical and clinical advances of CAR-NK cells against both hematological malignancies and solid tumors and confronts current challenges and obstacles of their applications. In addition, this review provides insights into prospective novel approaches that further enhance the efficiency of CAR-NK therapies and highlights potential questions that require to be addressed in the future.
Collapse
Affiliation(s)
- Muhammad Babar Khawar
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research Yangzhou, Yangzhou, China.,Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan.,Laboratory of Molecular Biology & Genomics, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Haibo Sun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research Yangzhou, Yangzhou, China
| |
Collapse
|
29
|
Engineered cells as glioblastoma therapeutics. Cancer Gene Ther 2022; 29:156-166. [PMID: 33753869 PMCID: PMC8850190 DOI: 10.1038/s41417-021-00320-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/17/2021] [Accepted: 03/02/2021] [Indexed: 02/01/2023]
Abstract
In spite of significant recent advances in our understanding of the genetics and cell biology of glioblastoma, to date, this has not led to improved treatments for this cancer. In addition to small molecule, antibody, and engineered virus approaches, engineered cells are also being explored as glioblastoma therapeutics. This includes CAR-T cells, CAR-NK cells, as well as engineered neural stem cells and mesenchymal stem cells. Here we review the state of this field, starting with clinical trial studies. These have established the feasibility and safety of engineered cell therapies for glioblastoma and show some evidence for activity. Next, we review the preclinical literature and compare the strengths and weaknesses of various starting cell types for engineered cell therapies. Finally, we discuss future directions for this nascent but promising modality for glioblastoma therapy.
Collapse
|
30
|
Skurikhin E, Pershina O, Zhukova M, Widera D, Ermakova N, Pan E, Pakhomova A, Morozov S, Kubatiev A, Dygai A. Potential of Stem Cells and CART as a Potential Polytherapy for Small Cell Lung Cancer. Front Cell Dev Biol 2021; 9:778020. [PMID: 34926461 PMCID: PMC8678572 DOI: 10.3389/fcell.2021.778020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022] Open
Abstract
Despite the increasing urgency of the problem of treating small cell lung cancer (SCLC), information on the causes of its development is fragmentary. There is no complete understanding of the features of antitumor immunity and the role of the microenvironment in the development of SCLC resistance. This impedes the development of new methods for the diagnosis and treatment of SCLC. Lung cancer and chronic obstructive pulmonary disease (COPD) have common pathogenetic factors. COPD is a risk factor for lung cancer including SCLC. Therefore, the search for effective approaches to prevention, diagnosis, and treatment of SCLC in patients with COPD is an urgent task. This review provides information on the etiology and pathogenesis of SCLC, analyses the effectiveness of current treatment options, and critically evaluates the potential of chimeric antigen receptor T cells therapy (CART therapy) in SCLC. Moreover, we discuss potential links between lung cancer and COPD and the role of endothelium in the development of COPD. Finally, we propose a new approach for increasing the efficacy of CART therapy in SCLC.
Collapse
Affiliation(s)
- Evgenii Skurikhin
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Olga Pershina
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Mariia Zhukova
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Darius Widera
- Stem Cell Biology and Regenerative Medicine Group, School of Pharmacy, University of Reading, Reading, United Kingdom
| | - Natalia Ermakova
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Edgar Pan
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Angelina Pakhomova
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Sergey Morozov
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Aslan Kubatiev
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Alexander Dygai
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| |
Collapse
|
31
|
Ghoneum A, Almousa S, Warren B, Abdulfattah AY, Shu J, Abouelfadl H, Gonzalez D, Livingston C, Said N. Exploring the clinical value of tumor microenvironment in platinum-resistant ovarian cancer. Semin Cancer Biol 2021; 77:83-98. [PMID: 33476723 PMCID: PMC8286277 DOI: 10.1016/j.semcancer.2020.12.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 12/20/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022]
Abstract
Platinum resistance in epithelial ovarian cancer (OvCa) is rising at an alarming rate, with recurrence of chemo-resistant high grade serous OvCa (HGSC) in roughly 75 % of all patients. Additionally, HGSC has an abysmal five-year survival rate, standing at 39 % and 17 % for FIGO stages III and IV, respectively. Herein we review the crucial cellular interactions between HGSC cells and the cellular and non-cellular components of the unique peritoneal tumor microenvironment (TME). We highlight the role of the extracellular matrix (ECM), ascitic fluid as well as the mesothelial cells, tumor associated macrophages, neutrophils, adipocytes and fibroblasts in platinum-resistance. Moreover, we underscore the importance of other immune-cell players in conferring resistance, including natural killer cells, myeloid-derived suppressive cells (MDSCs) and T-regulatory cells. We show the clinical relevance of the key platinum-resistant markers and their correlation with the major pathways perturbed in OvCa. In parallel, we discuss the effect of immunotherapies in re-sensitizing platinum-resistant patients to platinum-based drugs. Through detailed analysis of platinum-resistance in HGSC, we hope to advance the development of more effective therapy options for this aggressive disease.
Collapse
Affiliation(s)
- Alia Ghoneum
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Sameh Almousa
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Bailey Warren
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Ammar Yasser Abdulfattah
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; Alexandria University School of Medicine, Alexandria, Egypt
| | - Junjun Shu
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; The Third Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Hebatullah Abouelfadl
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; Department of Genetics, Animal Health Research Institute, Dokki, Egypt
| | - Daniela Gonzalez
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Christopher Livingston
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Neveen Said
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; Departments of Urology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; Comprehensive Cancer Center, Winston Salem, NC, 27157, USA.
| |
Collapse
|
32
|
Lee G, Karunanithi S, Posner B, Niederstrasser H, Cheng H, Federov Y, Manjappa S, Musaitif K, Wang H, Jackson Z, Wald D. Chemical screening identifies novel small molecule activators of natural killer cell cytotoxicity against cancer cells. Cancer Immunol Immunother 2021; 71:1671-1680. [PMID: 34816323 DOI: 10.1007/s00262-021-03117-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
Natural killer (NK) cells are cytotoxic lymphocytes that play a major role in the innate immune system. NK cells exhibit potent cytotoxic activity against cancer cells and virally infected cells without antigen priming. These unique cytotoxic properties make NK cells a promising therapeutic against cancer. Limitations of NK cell therapy include deficiencies in high clinical efficacy often due to a need for a high NK cell to target cell ratio to achieve effective killing. In order to address the suboptimal efficacy of current adoptive NK cell therapy, a high throughput screen (HTS) was designed and performed to identify drug-like compounds that increase NK cytotoxic activity against tumor cells without affecting the normal cells. This screen was performed in a 384-well plate format utilizing an expanded primary NK cell product and ovarian cancer cells as a target cell (TC) line. Of the 8000 diverse small molecules screened, 16 hits were identified (0.2% hit rate) based on both a robust Z (RZ) score < -3 and a greater than 10% increase in NK cell killing. A validation screen had a confirmation rate of 70%. Select compounds were further validated and characterized by additional cytotoxicity assays including activity against multiple blood cancer and solid tumor cell lines, with no effect on primary human T cells. This work demonstrates that high-throughput screening can be reliably used to identify compounds that increase NK tumoricidal activity in vitro that can be further investigated and translated for potential clinical application. Précis: Our work led to the identification of promising compound that potently increases NK cell-mediated killing of a variety of different cancer cells, but no impact on the killing of normal cells. This compound demonstrates the utility of this assay.
Collapse
Affiliation(s)
- Grace Lee
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Sheela Karunanithi
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Bruce Posner
- High-Throughput Screening Core, Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Hanspeter Niederstrasser
- High-Throughput Screening Core, Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Hong Cheng
- High-Throughput Screening Core, Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yuriy Federov
- Small Molecule and Drug Discovery Facility, Case Western Reserve University, Cleveland, OH, USA
| | - Shivaprasad Manjappa
- Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Karam Musaitif
- Idaho College of Osteopathic Medicine, Meridian, ID, USA
| | - Huaiyu Wang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zachary Jackson
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - David Wald
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA. .,Department of Pathology, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.
| |
Collapse
|
33
|
Rudek LS, Zimmermann K, Galla M, Meyer J, Kuehle J, Stamopoulou A, Brand D, Sandalcioglu IE, Neyazi B, Moritz T, Rossig C, Altvater B, Falk CS, Abken H, Morgan MA, Schambach A. Generation of an NFκB-Driven Alpharetroviral "All-in-One" Vector Construct as a Potent Tool for CAR NK Cell Therapy. Front Immunol 2021; 12:751138. [PMID: 34804035 PMCID: PMC8595471 DOI: 10.3389/fimmu.2021.751138] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
Immune cell therapeutics are increasingly applied in oncology. Especially chimeric antigen receptor (CAR) T cells are successfully used to treat several B cell malignancies. Efforts to engineer CAR T cells for improved activity against solid tumors include co-delivery of pro-inflammatory cytokines in addition to CARs, via either constitutive cytokine expression or inducible cytokine expression triggered by CAR recognition of its target antigen-so-called "T cells redirected for universal cytokine-mediated killing" (TRUCKs) or fourth-generation CARs. Here, we tested the hypothesis that TRUCK principles could be expanded to improve anticancer functions of NK cells. A comparison of the functionality of inducible promoters responsive to NFAT or NFκB in NK cells showed that, in contrast to T cells, the inclusion of NFκB-responsive elements within the inducible promoter construct was essential for CAR-inducible expression of the transgene. We demonstrated that GD2CAR-specific activation induced a tight NFκB-promoter-driven cytokine release in NK-92 and primary NK cells together with an enhanced cytotoxic capacity against GD2+ target cells, also shown by increased secretion of cytolytic cytokines. The data demonstrate biologically relevant differences between T and NK cells that are important when clinically translating the TRUCK concept to NK cells for the treatment of solid malignancies.
Collapse
Affiliation(s)
- Loreen Sophie Rudek
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Katharina Zimmermann
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Melanie Galla
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Johann Meyer
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Johannes Kuehle
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Department I of Internal Medicine, University Hospital Cologne, Cologne, Germany
| | - Andriana Stamopoulou
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Daniel Brand
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - I Erol Sandalcioglu
- Department of Neurosurgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Belal Neyazi
- Department of Neurosurgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Thomas Moritz
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Claudia Rossig
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Bianca Altvater
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Christine S Falk
- Institute of Transplant Immunology, Integrated Research and Treatment Center Transplantation, Hannover Medical School, Hannover, Germany
| | - Hinrich Abken
- Regensburg Centre for Interventional Immunology, Department of Genetic Immunotherapy, University Hospital Regensburg, Regensburg, Germany
| | | | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
34
|
Hosseini M, Habibi Z, Hosseini N, Abdoli S, Rezaei N. Preclinical studies of chimeric antigen receptor-modified natural killer cells in cancer immunotherapy: a review. Expert Opin Biol Ther 2021; 22:349-366. [PMID: 34541989 DOI: 10.1080/14712598.2021.1983539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION As one of the most efficacious methods of cancer immunotherapy, chimeric antigen receptor-modified immune cells have recently drawn enormous attention. After the great success achieved with CAR-T-cells in cancer treatment both in preclinical setting and in the clinic, other types of immune cells, including natural killer (NK)-cells and macrophages, have been evaluated for their anti-cancer effects along with their potential superiority against CAR-T-cells, especially in terms of safety. First introduced by Tran et al. almost 26 years ago, CAR-NK-cells are now being considered as efficient immunotherapeutic modalities in various types of cancers, not only in preclinical setting but also in numerous phase I and II clinical studies. AREAS COVERED In this review, we aim to provide a comprehensive survey of the preclinical studies on CAR-NK-cells' development, with an evolutional approach on CAR structures and their associated signaling moieties. Current NK-cell sources and modes of gene transfer are also reviewed. EXPERT OPINION CAR-NK-cells have appeared as safe and effective immunotherapeutic tools in preclinical settings; however, designing CAR structures with an eye on their specific biology, along with choosing the optimal cell source and gene transfer method require further investigation to support clinical studies.
Collapse
Affiliation(s)
- Mina Hosseini
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Habibi
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Narges Hosseini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sina Abdoli
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
NK Cell-Mediated Eradication of Ovarian Cancer Cells with a Novel Chimeric Antigen Receptor Directed against CD44. Biomedicines 2021; 9:biomedicines9101339. [PMID: 34680456 PMCID: PMC8533227 DOI: 10.3390/biomedicines9101339] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/09/2022] Open
Abstract
Ovarian cancer is the most common cause of gynecological cancer-related death in the developed world. Disease recurrence and chemoresistance are major causes of poor survival rates in ovarian cancer patients. Ovarian cancer stem cells (CSCs) were shown to represent a source of tumor recurrence owing to the high resistance to chemotherapy and enhanced tumorigenicity. Chimeric antigen receptor (CAR)-based adoptive immunotherapy represents a promising strategy to reduce the risk for recurrent disease. In this study, we developed a codon-optimized third-generation CAR to specifically target CD44, a marker widely expressed on ovarian cancer cells and associated with CSC-like properties and intraperitoneal tumor spread. We equipped NK-92 cells with the anti-CD44 CAR (CD44NK) and an anti-CD19 control CAR (CD19NK) using lentiviral SIN vectors. Compared to CD19NK and untransduced NK-92 cells, CD44NK showed potent and specific cytotoxic activity against CD44-positive ovarian cancer cell lines (SKOV3 and OVCAR3) and primary ovarian cancer cells harvested from ascites. In contrast, CD44NK had less cytotoxic activity against CD44-negative A2780 cells. Specific activation of engineered NK cells was also demonstrated by interferon-γ (IFNγ) secretion assays. Furthermore, CD44NK cells still demonstrated cytotoxic activity under cisplatin treatment. Most importantly, the simultaneous treatment with CD44NK and cisplatin showed higher anti-tumor activity than sequential treatment.
Collapse
|
36
|
Chimeric Antigen Receptor-Engineered Natural Killer (CAR NK) Cells in Cancer Treatment; Recent Advances and Future Prospects. Stem Cell Rev Rep 2021; 17:2081-2106. [PMID: 34472037 PMCID: PMC8410173 DOI: 10.1007/s12015-021-10246-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2021] [Indexed: 12/28/2022]
Abstract
Natural Killer (NK) cells are critical members of the innate immunity lymphocytes and have a critical role in host defense against malignant cells. Adoptive cell therapy (ACT) using chimeric antigen receptor (CAR) redirects the specificity of the immune cell against a target-specific antigen. ACT has recently created an outstanding opportunity for cancer treatment. Unlike CAR-armored T cells which hadnsome shortcomings as the CAR-receiving construct, Major histocompatibility complex (MHC)-independency, shorter lifespan, the potential to produce an off-the-shelf immune product, and potent anti-tumor properties of the NK cells has introduced NK cells as a potent alternative target for expression of CAR. Here, we aim to provide an updated overview on the current improvements in CAR NK design and immunobiology and describe the potential of CAR-modified NK cells as an alternative “off-the-shelf” carrier of CAR. We also provide lists for the sources of NK cells in the process of CAR NK cell production, different methods for transduction of the CAR genetic sequence to NK cells, the differences between CAR T and CAR NK, and CAR NK-targeted tumor antigens in current studies. Additionally, we provide data on recently published preclinical and clinical studies of CAR NK therapy and a list of finished and ongoing clinical trials. For achieving CAR NK products with higher efficacy and safety, we discuss current challenges in transduction and expansion of CAR NK cells, CAR NK therapy side effects, and challenges that limit the optimal efficacy of CAR NK cells and recommend possible solutions to enhance the persistence, function, safety, and efficacy of CAR NK cells with a special focus on solid tumors.
Collapse
|
37
|
Masoumi J, Jafarzadeh A, Abdolalizadeh J, Khan H, Philippe J, Mirzaei H, Mirzaei HR. Cancer stem cell-targeted chimeric antigen receptor (CAR)-T cell therapy: Challenges and prospects. Acta Pharm Sin B 2021; 11:1721-1739. [PMID: 34386318 PMCID: PMC8343118 DOI: 10.1016/j.apsb.2020.12.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/03/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) with their self-renewal ability are accepted as cells which initiate tumors. CSCs are regarded as interesting targets for novel anticancer therapeutic agents because of their association with tumor recurrence and resistance to conventional therapies, including radiotherapy and chemotherapy. Chimeric antigen receptor (CAR)-T cells are engineered T cells which express an artificial receptor specific for tumor associated antigens (TAAs) by which they accurately target and kill cancer cells. In recent years, CAR-T cell therapy has shown more efficiency in cancer treatment, particularly regarding blood cancers. The expression of specific markers such as TAAs on CSCs in varied cancer types makes them as potent tools for CAR-T cell therapy. Here we review the CSC markers that have been previously targeted with CAR-T cells, as well as the CSC markers that may be used as possible targets for CAR-T cell therapy in the future. Furthermore, we will detail the most important obstacles against CAR-T cell therapy and suggest solutions.
Collapse
Affiliation(s)
- Javad Masoumi
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan 77181759111, Iran
| | - Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Jalal Abdolalizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Jeandet Philippe
- Research Unit “Induced Resistance and Plant Bioprotection”, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences University of Reims Champagne-Ardenne, BP 1039, 51687, Reims Cedex 2, France
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan 8713781147, Iran
- Corresponding authors. Tel./fax: +98 31 55540022; Tel./fax: +98 21 66419536.
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
- Corresponding authors. Tel./fax: +98 31 55540022; Tel./fax: +98 21 66419536.
| |
Collapse
|
38
|
Marofi F, Al-Awad AS, Sulaiman Rahman H, Markov A, Abdelbasset WK, Ivanovna Enina Y, Mahmoodi M, Hassanzadeh A, Yazdanifar M, Stanley Chartrand M, Jarahian M. CAR-NK Cell: A New Paradigm in Tumor Immunotherapy. Front Oncol 2021; 11:673276. [PMID: 34178661 PMCID: PMC8223062 DOI: 10.3389/fonc.2021.673276] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/14/2021] [Indexed: 12/15/2022] Open
Abstract
The tumor microenvironment (TME) is greatly multifaceted and immune escape is an imperative attribute of tumors fostering tumor progression and metastasis. Based on reports, the restricted achievement attained by T cell immunotherapy reflects the prominence of emerging other innovative immunotherapeutics, in particular, natural killer (NK) cells-based treatments. Human NK cells act as the foremost innate immune effector cells against tumors and are vastly heterogeneous in the TME. Currently, there exists a rapidly evolving interest in the progress of chimeric antigen receptor (CAR)-engineered NK cells for tumor immunotherapy. CAR-NK cells superiorities over CAR-T cells in terms of better safety (e.g., absence or minimal cytokine release syndrome (CRS) and graft-versus-host disease (GVHD), engaging various mechanisms for stimulating cytotoxic function, and high feasibility for 'off-the-shelf' manufacturing. These effector cells could be modified to target various antigens, improve proliferation and persistence in vivo, upturn infiltration into tumors, and defeat resistant TME, which in turn, result in a desired anti-tumor response. More importantly, CAR-NK cells represent antigen receptors against tumor-associated antigens (TAAs), thereby redirecting the effector NK cells and supporting tumor-related immunosurveillance. In the current review, we focus on recent progress in the therapeutic competence of CAR-NK cells in solid tumors and offer a concise summary of the present hurdles affecting therapeutic outcomes of CAR-NK cell-based tumor immunotherapies.
Collapse
Affiliation(s)
- Faroogh Marofi
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Heshu Sulaiman Rahman
- College of Medicine, University of Sulaimani, Sulaymaniyah, Iraq
- Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sulaymaniyah, Iraq
| | - Alexander Markov
- Tyumen State Medical University, Tyumen, Russia
- Tyumen Industrial University, Tyumen, Russia
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | | | - Mahnaz Mahmoodi
- Department of Biology, School of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Hassanzadeh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Yazdanifar
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, United States
| | | | - Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit (G401), Heidelberg, Germany
| |
Collapse
|
39
|
Jain S, Annett SL, Morgan MP, Robson T. The Cancer Stem Cell Niche in Ovarian Cancer and Its Impact on Immune Surveillance. Int J Mol Sci 2021; 22:4091. [PMID: 33920983 PMCID: PMC8071330 DOI: 10.3390/ijms22084091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/11/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer is an aggressive gynaecological cancer with extremely poor prognosis, due to late diagnosis as well as the development of chemoresistance after first-line therapy. Research advances have found stem-like cells present in ovarian tumours, which exist in a dynamic niche and persist through therapy. The stem cell niche interacts extensively with the immune and non-immune components of the tumour microenvironment. Significant pathways associated with the cancer stem cell niche have been identified which interfere with the immune component of the tumour microenvironment, leading to immune surveillance evasion, dysfunction and suppression. This review aims to summarise current evidence-based knowledge on the cancer stem cell niche within the ovarian cancer tumour microenvironment and its effect on immune surveillance. Furthermore, the review seeks to understand the clinical consequences of this dynamic interaction by highlighting current therapies which target these processes.
Collapse
Affiliation(s)
| | | | | | - Tracy Robson
- School of Pharmacy and Biomolecular Science, RCSI University of Medicine and Health Sciences, 123 St Stephen’s Green, D02 YN77 Dublin, Ireland; (S.J.); (S.L.A.); (M.P.M.)
| |
Collapse
|
40
|
Wang W, Bai L, Xu D, Li W, Cui J. Immunotherapy: A Potential Approach to Targeting Cancer Stem Cells. Curr Cancer Drug Targets 2021; 21:117-131. [PMID: 32364076 DOI: 10.2174/1568009620666200504111914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/14/2020] [Accepted: 04/04/2020] [Indexed: 12/24/2022]
Abstract
Tumor recurrence and drug resistance are two of the key factors affecting the prognosis of cancer patients. Cancer stem cells (CSCs) are a group of cells with infinite proliferation potential which are not sensitive to traditional therapies, including radio- and chemotherapy. These CSCs are considered to be central to tumor recurrence and the development of drug resistance. In addition, CSCs are important targets in cancer immunotherapy because of their expression of novel tumorassociated antigens, which result from mutations in cancer cells over the course of treatment. Emerging immunotherapies, including cancer vaccines, checkpoint blockade therapies, and transferred immune cell therapies, have all been shown to be more effective when they selectively target CSCs. Such therapies may also provide novel additions to the current therapeutic milieu and may offer new therapeutic combinations for treatment. This review summarizes the relationships between various immunotherapies and CSCs and provides novel insights into potential therapeutic applications for these approaches in the future.
Collapse
Affiliation(s)
- Wenjun Wang
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Ling Bai
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Dongsheng Xu
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Wei Li
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| |
Collapse
|
41
|
Donini C, Rotolo R, Proment A, Aglietta M, Sangiolo D, Leuci V. Cellular Immunotherapy Targeting Cancer Stem Cells: Preclinical Evidence and Clinical Perspective. Cells 2021; 10:cells10030543. [PMID: 33806296 PMCID: PMC8001974 DOI: 10.3390/cells10030543] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 02/08/2023] Open
Abstract
The term “cancer stem cells” (CSCs) commonly refers to a subset of tumor cells endowed with stemness features, potentially involved in chemo-resistance and disease relapses. CSCs may present peculiar immunogenic features influencing their homeostasis within the tumor microenvironment. The susceptibility of CSCs to recognition and targeting by the immune system is a relevant issue and matter of investigation, especially considering the multiple emerging immunotherapy strategies. Adoptive cellular immunotherapies, especially those strategies encompassing the genetic redirection with chimeric antigen receptors (CAR), hold relevant promise in several tumor settings and might in theory provide opportunities for selective elimination of CSC subsets. Initial dedicated preclinical studies are supporting the potential targeting of CSCs by cellular immunotherapies, indirect evidence from clinical studies may be derived and new studies are ongoing. Here we review the main issues related to the putative immunogenicity of CSCs, focusing on and highlighting the existing evidence and opportunities for cellular immunotherapy approaches with T and non-T antitumor lymphocytes.
Collapse
Affiliation(s)
- Chiara Donini
- Department of Oncology, University of Turin, 10124 Turin, Italy; (C.D.); (A.P.); (M.A.)
- Candiolo Cancer Institute, FPO–IRCCS, Str. Prov. 142, km 3,95, 10060 Candiolo (TO), Italy; (R.R.); (V.L.)
| | - Ramona Rotolo
- Candiolo Cancer Institute, FPO–IRCCS, Str. Prov. 142, km 3,95, 10060 Candiolo (TO), Italy; (R.R.); (V.L.)
| | - Alessia Proment
- Department of Oncology, University of Turin, 10124 Turin, Italy; (C.D.); (A.P.); (M.A.)
| | - Massimo Aglietta
- Department of Oncology, University of Turin, 10124 Turin, Italy; (C.D.); (A.P.); (M.A.)
- Candiolo Cancer Institute, FPO–IRCCS, Str. Prov. 142, km 3,95, 10060 Candiolo (TO), Italy; (R.R.); (V.L.)
| | - Dario Sangiolo
- Department of Oncology, University of Turin, 10124 Turin, Italy; (C.D.); (A.P.); (M.A.)
- Candiolo Cancer Institute, FPO–IRCCS, Str. Prov. 142, km 3,95, 10060 Candiolo (TO), Italy; (R.R.); (V.L.)
- Correspondence: ; Tel.: +39-011-993-3503; Fax: +39-011-993-3522
| | - Valeria Leuci
- Candiolo Cancer Institute, FPO–IRCCS, Str. Prov. 142, km 3,95, 10060 Candiolo (TO), Italy; (R.R.); (V.L.)
| |
Collapse
|
42
|
Liu S, Galat V, Galat Y, Lee YKA, Wainwright D, Wu J. NK cell-based cancer immunotherapy: from basic biology to clinical development. J Hematol Oncol 2021; 14:7. [PMID: 33407739 PMCID: PMC7788999 DOI: 10.1186/s13045-020-01014-w] [Citation(s) in RCA: 388] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
Natural killer (NK) cell is a specialized immune effector cell type that plays a critical role in immune activation against abnormal cells. Different from events required for T cell activation, NK cell activation is governed by the interaction of NK receptors with target cells, independent of antigen processing and presentation. Due to relatively unsophisticated cues for activation, NK cell has gained significant attention in the field of cancer immunotherapy. Many efforts are emerging for developing and engineering NK cell-based cancer immunotherapy. In this review, we provide our current understandings of NK cell biology, ongoing pre-clinical and clinical development of NK cell-based therapies and discuss the progress, challenges, and future perspectives.
Collapse
Affiliation(s)
- Sizhe Liu
- Department of Urology, Feinberg School of Medicine, Northwestern University, 303 E. Superior St., Lurie Research Building 6-117, Chicago, IL, 60611, USA
| | - Vasiliy Galat
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Pediatrics, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yekaterina Galat
- Department of Pediatrics, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | | | - Derek Wainwright
- Departments of Neurological Surgery, Medicine-Hematology and Oncology, Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jennifer Wu
- Department of Urology, Feinberg School of Medicine, Northwestern University, 303 E. Superior St., Lurie Research Building 6-117, Chicago, IL, 60611, USA.
| |
Collapse
|
43
|
Abstract
Since the approval in 2017 and the amazing achievement of Kymriah and Yescarta, the number of basic researchers and clinical trials investigating the safety and efficacy of chimeric antigen receptor-expressing T cells (CAR-T cells) has been relentlessly increasing. Up to now, more than 200 clinical trials are listed on clinical trial database of NIH and the basic research is countless. However, the production of allogeneic CAR-T cells products is still expensive and has toxicity. Thus, more effort is needed to develop reliable off-the-shelf cellular therapeutic methods with safety and efficiency for the treatment of patients with cancer. As a kind of innate effector lymphocyte with potent antitumor activity, natural killer cells (NK cells) have attracted much attention. Until now, basic and clinical research has shown that chimeric antigen receptor-expressing NK cell (CAR-NK) therapy may play a significant anti-tumor role and its safety is higher than CAR-T cell therapy. In this review, we discuss advantages and shortages of employing CAR-NK cells as a novel cellular therapy against cancer.
Collapse
Affiliation(s)
- Jufeng Xia
- Graduate School of Frontier Science, The University of Tokyo, Chiba, Japan.,Department of Immunology, Arai Japan Medical Institute, Tokyo, Japan
| | - Shuichi Minamino
- Department of Immunology, Arai Japan Medical Institute, Tokyo, Japan
| | - Kazuma Kuwabara
- Department of Immunology, Arai Japan Medical Institute, Tokyo, Japan
| |
Collapse
|
44
|
How to overcome the side effects of tumor immunotherapy. Biomed Pharmacother 2020; 130:110639. [PMID: 33658124 DOI: 10.1016/j.biopha.2020.110639] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/12/2020] [Accepted: 08/16/2020] [Indexed: 12/17/2022] Open
Abstract
The incidence of cancer is increasing year by year. Cancer has become one of the health threats of modern people. Simply relying on the surgery, chemotherapy or radiotherapy, not only the survival rate is not high, but also the quality of life of patients is not much better. Fortunately, the emergence and rapid development of cancer immunotherapy have brought more and more exciting results. However, when scientists think it is possible to overcome cancer, they find that not all cancer patients can benefit from immunotherapy, that is to say, the overall efficiency of immunotherapy is not high. Drug resistance and side effects of immunotherapy cannot be ignored. In order to overcome these difficulties, scientists continue to improve the strategy of immunotherapy and find that combination therapy can effectively reduce the incidence of drug resistance. They also found that by reprogramming tumor blood vessels, activating ferroptosis, utilizing thioredoxin, FATP2 and other substances, the therapeutic effect can be improved and side effects can be alleviated. This article reviews the principles of immunotherapy, new strategies to overcome drug resistance of cancer immunotherapy, and how to improve the efficacy of immunotherapy and reduce side effects.
Collapse
|
45
|
Morgan MA, Büning H, Sauer M, Schambach A. Use of Cell and Genome Modification Technologies to Generate Improved "Off-the-Shelf" CAR T and CAR NK Cells. Front Immunol 2020; 11:1965. [PMID: 32903482 PMCID: PMC7438733 DOI: 10.3389/fimmu.2020.01965] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/21/2020] [Indexed: 12/27/2022] Open
Abstract
The broad success of adoptive immunotherapy to treat human cancer has resulted in a paradigm shift in modern medicine. Modification of autologous and allogenic immune cells with chimeric antigen receptors (CAR) designed to target specific antigens on tumor cells has led to production of CAR T and CAR NK cell therapies, which are ever more commonly introduced into cancer patient treatment protocols. While allogenic T cells may offer advantages such as improved anti-tumor activity, they also carry the risk of adverse reactions like graft-versus-host disease. This risk can be mitigated by use of autologous immune cells, however, the time needed for T and/or NK cell isolation, modification and expansion may be too long for some patients. Thus, there is an urgent need for strategies to robustly produce “off-the-shelf” CAR T and CAR NK cells, which could be used as a bridging therapy between cancer diagnosis or relapse and allogeneic transplantation. Advances in genome modification technologies have accelerated the generation of designer cell therapy products, including development of “off-the-shelf” CAR T cells for cancer immunotherapy. The feasibility and safety of such approaches is currently tested in clinical trials. This review will describe cell sources for CAR-based therapies, provide background of current genome editing techniques and the applicability of these approaches for generation of universal “off-the-shelf” CAR T and NK cell therapeutics.
Collapse
Affiliation(s)
- Michael A Morgan
- Institute of Experimental Hematology, Hannover Medical School, Hanover, Germany.,REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hanover, Germany
| | - Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, Hanover, Germany.,REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hanover, Germany
| | - Martin Sauer
- Department of Pediatric Hematology, Oncology, and Blood Stem Cell Transplantation, Hannover Medical School, Hanover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hanover, Germany.,REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hanover, Germany.,Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
46
|
Walcher L, Kistenmacher AK, Suo H, Kitte R, Dluczek S, Strauß A, Blaudszun AR, Yevsa T, Fricke S, Kossatz-Boehlert U. Cancer Stem Cells-Origins and Biomarkers: Perspectives for Targeted Personalized Therapies. Front Immunol 2020; 11:1280. [PMID: 32849491 PMCID: PMC7426526 DOI: 10.3389/fimmu.2020.01280] [Citation(s) in RCA: 541] [Impact Index Per Article: 108.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
The use of biomarkers in diagnosis, therapy and prognosis has gained increasing interest over the last decades. In particular, the analysis of biomarkers in cancer patients within the pre- and post-therapeutic period is required to identify several types of cells, which carry a risk for a disease progression and subsequent post-therapeutic relapse. Cancer stem cells (CSCs) are a subpopulation of tumor cells that can drive tumor initiation and can cause relapses. At the time point of tumor initiation, CSCs originate from either differentiated cells or adult tissue resident stem cells. Due to their importance, several biomarkers that characterize CSCs have been identified and correlated to diagnosis, therapy and prognosis. However, CSCs have been shown to display a high plasticity, which changes their phenotypic and functional appearance. Such changes are induced by chemo- and radiotherapeutics as well as senescent tumor cells, which cause alterations in the tumor microenvironment. Induction of senescence causes tumor shrinkage by modulating an anti-tumorigenic environment in which tumor cells undergo growth arrest and immune cells are attracted. Besides these positive effects after therapy, senescence can also have negative effects displayed post-therapeutically. These unfavorable effects can directly promote cancer stemness by increasing CSC plasticity phenotypes, by activating stemness pathways in non-CSCs, as well as by promoting senescence escape and subsequent activation of stemness pathways. At the end, all these effects can lead to tumor relapse and metastasis. This review provides an overview of the most frequently used CSC markers and their implementation as biomarkers by focussing on deadliest solid (lung, stomach, liver, breast and colorectal cancers) and hematological (acute myeloid leukemia, chronic myeloid leukemia) cancers. Furthermore, it gives examples on how the CSC markers might be influenced by therapeutics, such as chemo- and radiotherapy, and the tumor microenvironment. It points out, that it is crucial to identify and monitor residual CSCs, senescent tumor cells, and the pro-tumorigenic senescence-associated secretory phenotype in a therapy follow-up using specific biomarkers. As a future perspective, a targeted immune-mediated strategy using chimeric antigen receptor based approaches for the removal of remaining chemotherapy-resistant cells as well as CSCs in a personalized therapeutic approach are discussed.
Collapse
Affiliation(s)
- Lia Walcher
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Ann-Kathrin Kistenmacher
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Huizhen Suo
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Reni Kitte
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Sarah Dluczek
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Alexander Strauß
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - André-René Blaudszun
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Tetyana Yevsa
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Stephan Fricke
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Uta Kossatz-Boehlert
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| |
Collapse
|
47
|
Abstract
Folate receptor alpha (αFR) is overexpressed in 90% of ovarian cancers, one of the most lethal gynecologic cancers. Recent studies have suggested that natural killer (NK) cells may be better chimeric antigen receptor (CAR) drivers because of their favorable innate characteristics, such as directly recognizing and killing tumor cells. However, the therapeutic effects of CAR-engineered NK cells targeting αFR in ovarian cancer have not been reported. In this research, 3 generations of anti-αFR CAR were constructed, namely αFR-ζ (first generation), αFR-28ζ (second generation), and αFR-28BBζ (third generation), and were highly expressed on the surface of NK-92 cells by lentivirus gene transfection. Three anti-αFR CAR-engineered NK-92 cells can specifically kill αFR-positive tumor cells in vitro, especially ovarian cancer cells with high αFR expression. Compared with NK-92 cells expressing αFR-ζ or αFR-28ζ, NK-92 cells expressing αFR-28BBζ showed not only higher antigen-specific cytotoxicity and proliferation but also lower antigen-induced apoptosis. Moreover, stronger degranulation and cytokine secretion were detected in NK-92 cells expressing αFR-28BBζ cocultured with αFR-positive tumor cells. Real-time cell analysis and live cell imaging recorded the process of NK-92 cells expressing αFR-28BBζ killing ovarian cancer cells in vitro. Furthermore, NK-92 cells expressing αFR-28BBζ can effectively eliminate cancer cells in a mouse xenograft model of ovarian cancer and significantly prolong the survival of tumor-bearing mice. These results demonstrate that the anti-αFR CARs redirect NK-92 cells with specific antitumor activity, and the third-generation anti-αFR CAR-engineered NK-92 cells display more potent cytotoxicity against αFR-positive ovarian cancer, laying the foundation for future clinical research.
Collapse
|
48
|
Zhao Y, Zhou X. Engineering chimeric antigen receptor-natural killer cells for cancer immunotherapy. Immunotherapy 2020; 12:653-664. [DOI: 10.2217/imt-2019-0139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Adoptive cell transfer has attracted considerable attention as a treatment for cancer. The success of chimeric antigen receptor (CAR)-engineered T (CAR-T) cells for the treatment of haematologic tumors has demonstrated the potential of CAR. In this review, we describe the current CAR-engineered natural killer (CAR-NK) cell construction strategies, including the design principles and structural characteristics of the extracellular, transmembrane and intracellular regions of the CAR structure. In addition, we review different cellular carriers used to develop CAR-NK cells, highlighting existing problems and challenges. We further discuss possible ways to optimize CAR from the perspective of the tumor microenvironment to harness the strength of CAR-NK cells and provided rationales to combine CAR-NK cells with other treatment regimens to enhance antitumor effects.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Immunology, Nantong University, School of Medicine
| | - Xiaorong Zhou
- Department of Immunology, Nantong University, School of Medicine
| |
Collapse
|
49
|
Sabini C, Sorbi F, Cunnea P, Fotopoulou C. Ovarian cancer stem cells: ready for prime time? Arch Gynecol Obstet 2020; 301:895-899. [PMID: 32200419 DOI: 10.1007/s00404-020-05510-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/12/2020] [Indexed: 01/03/2023]
Abstract
INTRODUCTION The role of cancer stem cells (CSC) remains controversial and increasingly subject of investigation as a potential oncogenetic platform with promising therapeutic implications. Understanding the role of CSCs in a highly heterogeneous disease like epithelial ovarian cancer (EOC) may potentially lead to the better understanding of the oncogenetic and metastatic pathways of the disease, but also to develop novel strategies against its progression and platinum resistance. METHODS We have performed a review of all relevant literature that addresses the oncogenetic potential of stem cells in EOC, their mechanisms, and the associated therapeutic targets. RESULTS Cancer stem cells (CSCs) have been reported to be implicated not only in the development and pathways of intratumoral heterogeneity (ITH), but also potentially modulating the tumor microenvironment, leading to the selection of sub-clones resistant to chemotherapy. Furthermore, it appears that the enhanced DNA repair abilities of CSCs are connected with their endurance and resistance maintaining their genomic integrity during novel targeted treatments such as PARP inhibitors, allowing them to survive and causing disease relapse functioning as a tumor seeds. CONCLUSIONS It appears that CSCs play a major role in the underlying mechanisms of oncogenesis and development of relapse in EOC. Part of promising future plans would be to not only use them as therapeutic targets, but also extent their value on a preventative level through engineering mechanisms and prevention of EOC in its origin.
Collapse
Affiliation(s)
- Carlotta Sabini
- Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and Gynecology, University of Florence, 50134, Florence, Italy
| | - Flavia Sorbi
- Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and Gynecology, University of Florence, 50134, Florence, Italy
| | - Paula Cunnea
- West London Gynecological Cancer Centre, Imperial College NHS Trust, London, W12 OHS, UK.,Department of Surgery and Cancer, Imperial College London, Du Cane Road, London, W12 0HS, UK
| | - Christina Fotopoulou
- West London Gynecological Cancer Centre, Imperial College NHS Trust, London, W12 OHS, UK. .,Department of Surgery and Cancer, Imperial College London, Du Cane Road, London, W12 0HS, UK.
| |
Collapse
|
50
|
Zimmermann K, Kuehle J, Dragon AC, Galla M, Kloth C, Rudek LS, Sandalcioglu IE, Neyazi B, Moritz T, Meyer J, Rossig C, Altvater B, Eiz-Vesper B, Morgan MA, Abken H, Schambach A. Design and Characterization of an "All-in-One" Lentiviral Vector System Combining Constitutive Anti-G D2 CAR Expression and Inducible Cytokines. Cancers (Basel) 2020; 12:cancers12020375. [PMID: 32041222 PMCID: PMC7072617 DOI: 10.3390/cancers12020375] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 12/25/2022] Open
Abstract
Genetically modified T cells expressing chimeric antigen receptors (CARs) so far have mostly failed in the treatment of solid tumors owing to a number of limitations, including an immunosuppressive tumor microenvironment and insufficient CAR T cell activation and persistence. Next-generation approaches using CAR T cells that secrete transgenic immunomodulatory cytokines upon CAR signaling, known as TRUCKs (“T cells redirected for universal cytokine-mediated killing”), are currently being explored. As TRUCKs were engineered by the transduction of T cells with two separate vectors, we developed a lentiviral modular “all-in-one” vector system that combines constitutive CAR expression and inducible nuclear factor of activated T cells (NFAT)-driven transgene expression for more efficient production of TRUCKs. Activation of the GD2-specific CAR via GD2+ target cells induced NFAT promoter-driven cytokine release in primary human T cells, and indicated a tight linkage of CAR-specific activation and transgene expression that was further improved by a modified NFATsyn promoter. As proof-of-concept, we showed that T cells containing the “all-in-one” vector system secrete the immunomodulatory cytokines interleukin (IL)12 or IL18 upon co-cultivation with primary human GD2+ tumor cells, resulting in enhanced effector cell properties and increased monocyte recruitment. This highlights the potential of our system to simplify application of TRUCK-modified T cells in solid tumor therapy.
Collapse
Affiliation(s)
- Katharina Zimmermann
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (K.Z.); (M.G.); (C.K.); (L.S.R.); (T.M.); (J.M.)
| | - Johannes Kuehle
- Center for Molecular Medicine Cologne, University of Cologne, and Department I of Internal Medicine, University Hospital Cologne, 50931 Cologne, Germany;
| | - Anna Christina Dragon
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany; (A.C.D.); (B.E.-V.)
| | - Melanie Galla
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (K.Z.); (M.G.); (C.K.); (L.S.R.); (T.M.); (J.M.)
| | - Christina Kloth
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (K.Z.); (M.G.); (C.K.); (L.S.R.); (T.M.); (J.M.)
| | - Loreen Sophie Rudek
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (K.Z.); (M.G.); (C.K.); (L.S.R.); (T.M.); (J.M.)
| | - I. Erol Sandalcioglu
- Department of Neurosurgery, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; (I.E.S.); (B.N.)
| | - Belal Neyazi
- Department of Neurosurgery, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; (I.E.S.); (B.N.)
| | - Thomas Moritz
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (K.Z.); (M.G.); (C.K.); (L.S.R.); (T.M.); (J.M.)
| | - Johann Meyer
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (K.Z.); (M.G.); (C.K.); (L.S.R.); (T.M.); (J.M.)
| | - Claudia Rossig
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Muenster, 48149 Muenster, Germany; (C.R.); (B.A.)
| | - Bianca Altvater
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Muenster, 48149 Muenster, Germany; (C.R.); (B.A.)
| | - Britta Eiz-Vesper
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany; (A.C.D.); (B.E.-V.)
| | - Michael Alexander Morgan
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (K.Z.); (M.G.); (C.K.); (L.S.R.); (T.M.); (J.M.)
| | - Hinrich Abken
- Regensburg Centre for Interventional Immunology (RCI), Department of Genetic Immunotherapy, and University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (K.Z.); (M.G.); (C.K.); (L.S.R.); (T.M.); (J.M.)
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Correspondence: ; Tel.: +49-511-532-5170
| |
Collapse
|