1
|
Eshghi S, Mousakhan Bakhtiari M, Behfar M, Izadi E, Naji P, Jafari L, Mohseni R, Saltanatpour Z, Hamidieh AA. Viral-based gene therapy clinical trials for immune deficiencies and blood disorders from 2013 until 2023 - an overview. Regen Ther 2025; 28:262-279. [PMID: 39844821 PMCID: PMC11751425 DOI: 10.1016/j.reth.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/16/2024] [Accepted: 12/04/2024] [Indexed: 01/24/2025] Open
Abstract
Gene therapy (GT) as a groundbreaking approach holds promise for treating many diseases including immune deficiencies and blood disorders. GT can benefit patients suffering from these diseases, especially those without matched donors or who are at risk after hematopoietic stem cell transplantation (HSCT). Due to all the advances in the field of GT, its main challenge is still gene delivery. Generally, gene delivery systems are categorized into two types depending on utilized vectors: non-viral and viral. Viral vectors are commonly used in GT because of their high efficiency compared to non-viral vectors. In this article, all clinical trials on viral-based GT (with the exclusion of CRISPR and CAR-T cell Therapy) in the last decade for immune deficiencies and blood disorders including Severe combined immune deficiency (SCID), Wiskott-Aldrich syndrome (WAS), Chronic granulomatous disease (CGD), Leukocyte adhesion deficiency (LAD), Fanconi anemia (FA), Hemoglobinopathies, and Hemophilia will thoroughly be discussed. Moreover, viral vectors used in these trials including Retroviruses (RVs), Lentiviruses (LVs), and Adeno-Associated Viruses (AAVs) will be reviewed. This review provides a concise overview of traditional treatments for the mentioned disease and precise details of their viral-based GT clinical trial studies in the last decade, then presents the advantages, disadvantages, and potential adverse events of GT. In conclusion, this review presents GT as a hopeful and growing field in healthcare that could offer cures to diseases that were previously thought to be untreatable.
Collapse
Affiliation(s)
- Shirin Eshghi
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Mahsa Mousakhan Bakhtiari
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Maryam Behfar
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Elaheh Izadi
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
- Stem Cell and Regenerative Medicine Innovation Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Naji
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Leila Jafari
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Rashin Mohseni
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Zohreh Saltanatpour
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
- Stem Cell and Regenerative Medicine Innovation Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
2
|
Liu S, Vivona ES, Kurre P. Why hematopoietic stem cells fail in Fanconi anemia: Mechanisms and models. Bioessays 2025; 47:e2400191. [PMID: 39460396 DOI: 10.1002/bies.202400191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/27/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
Fanconi anemia (FA) is generally classified as a DNA repair disorder, conferring a genetic predisposition to cancer and prominent bone marrow failure (BMF) in early childhood. Corroborative human and murine studies point to a fetal origin of hematopoietic stem cell (HSC) attrition under replicative stress. Along with intriguing recent insights into non-canonical roles and domain-specific functions of FA proteins, these studies have raised the possibility of a DNA repair-independent BMF etiology. However, deeper mechanistic insight is critical as current curative options of allogeneic stem cell transplantation and emerging gene therapy have limited eligibility, carry significant side effects, and involve complex procedures restricted to resource-rich environments. To develop rational and broadly accessible therapies for FA patients, the field will need more faithful disease models that overcome the scarcity of patient samples, leverage technological advances, and adopt investigational clinical trial designs tailored for rare diseases.
Collapse
Affiliation(s)
- Suying Liu
- Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia, Philadelphia, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - E S Vivona
- Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Peter Kurre
- Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia, Philadelphia, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
3
|
Repczynska A, Ciastek B, Haus O. New Insights into the Fanconi Anemia Pathogenesis: A Crosstalk Between Inflammation and Oxidative Stress. Int J Mol Sci 2024; 25:11619. [PMID: 39519169 PMCID: PMC11547024 DOI: 10.3390/ijms252111619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Fanconi anemia (FA) represents a rare hereditary disease; it develops due to germline pathogenic variants in any of the 22 currently discovered FANC genes, which interact with the Fanconi anemia/breast cancer-associated (FANC/BRCA) pathway to maintain genome integrity. FA is characterized by a triad of clinical traits, including congenital anomalies, bone marrow failure (BMF) and multiple cancer susceptibility. Due to the complex genetic background and a broad spectrum of FA clinical symptoms, the diagnostic process is complex and requires the use of classical cytogenetic, molecular cytogenetics and strictly molecular methods. Recent findings indicate the interplay of inflammation, oxidative stress, disrupted mitochondrial metabolism, and impaired intracellular signaling in the FA pathogenesis. Additionally, a shift in the balance towards overproduction of proinflammatory cytokines and prooxidant components in FA is associated with advanced myelosuppression and ultimately BMF. Although the mechanism of BMF is very complex and needs further clarification, it appears that mutual interaction between proinflammatory cytokines and redox imbalance causes pancytopenia. In this review, we summarize the available literature regarding the clinical phenotype, genetic background, and diagnostic procedures of FA. We also highlight the current understanding of disrupted autophagy process, proinflammatory state, impaired signaling pathways and oxidative genotoxic stress in FA pathogenesis.
Collapse
Affiliation(s)
- Anna Repczynska
- Department of Clinical Genetics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Curie Sklodowskiej 9, 85-094 Bydgoszcz, Poland;
| | - Barbara Ciastek
- Institute of Health Sciences, University of Opole, Katowicka 68, 45-060 Opole, Poland
| | - Olga Haus
- Department of Clinical Genetics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Curie Sklodowskiej 9, 85-094 Bydgoszcz, Poland;
| |
Collapse
|
4
|
Galy A, Dewannieux M. Recent advances in hematopoietic gene therapy for genetic disorders. Arch Pediatr 2023; 30:8S24-8S31. [PMID: 38043980 DOI: 10.1016/s0929-693x(23)00224-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Hematopoietic gene therapy is based on the transplantation of gene-modified autologous hematopoietic stem cells and since the inception of this approach, many technological and medical improvements have been achieved. This review focuses on the clinical studies that have used hematopoietic gene therapy to successfully treat several rare and severe genetic disorders of the blood or immune system as well as some non-hematological diseases. Today, in some cases hematopoietic gene therapy has progressed to the point of being equal to, or better than, allogeneic bone marrow transplant. In others, further improvements are needed to obtain more consistent efficacy or to reduce the risks posed by vectors or protocols. Several hematopoietic gene therapy products showing both long-term efficacy and safety have reached the market, but economic considerations challenge the possibility of patient access to novel disease-modifying therapies. © 2023 Published by Elsevier Masson SAS on behalf of French Society of Pediatrics.
Collapse
Affiliation(s)
- Anne Galy
- ART-TG, Inserm US35, Corbeil-Essonnes, France.
| | | |
Collapse
|
5
|
Martínez-Balsalobre E, Guervilly JH, van Asbeck-van der Wijst J, Pérez-Oliva AB, Lachaud C. Beyond current treatment of Fanconi Anemia: What do advances in cell and gene-based approaches offer? Blood Rev 2023; 60:101094. [PMID: 37142543 DOI: 10.1016/j.blre.2023.101094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023]
Abstract
Fanconi anemia (FA) is a rare inherited disorder that mainly affects the bone marrow. This condition causes decreased production of all types of blood cells. FA is caused by a defective repair of DNA interstrand crosslinks and to date, mutations in over 20 genes have been linked to the disease. Advances in science and molecular biology have provided new insight between FA gene mutations and the severity of clinical manifestations. Here, we will highlight the current and promising therapeutic options for this rare disease. The current standard treatment for FA patients is hematopoietic stem cell transplantation, a treatment associated to exposure to radiation or chemotherapy, immunological complications, plus opportunistic infections from prolonged immune incompetence or increased risk of morbidity. New arising treatments include gene addition therapy, genome editing using CRISPR-Cas9 nuclease, and hematopoietic stem cell generation from induced pluripotent stem cells. Finally, we will also discuss the revolutionary developments in mRNA therapeutics as an opportunity for this disease.
Collapse
Affiliation(s)
- Elena Martínez-Balsalobre
- Cancer Research Center of Marseille, Aix-Marseille Univ., Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France.
| | - Jean-Hugues Guervilly
- Cancer Research Center of Marseille, Aix-Marseille Univ., Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France.
| | | | - Ana Belén Pérez-Oliva
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain.
| | - Christophe Lachaud
- Cancer Research Center of Marseille, Aix-Marseille Univ., Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France.
| |
Collapse
|
6
|
Siegner SM, Ugalde L, Clemens A, Garcia-Garcia L, Bueren JA, Rio P, Karasu ME, Corn JE. Adenine base editing efficiently restores the function of Fanconi anemia hematopoietic stem and progenitor cells. Nat Commun 2022; 13:6900. [PMID: 36371486 PMCID: PMC9653444 DOI: 10.1038/s41467-022-34479-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Fanconi Anemia (FA) is a debilitating genetic disorder with a wide range of severe symptoms including bone marrow failure and predisposition to cancer. CRISPR-Cas genome editing manipulates genotypes by harnessing DNA repair and has been proposed as a potential cure for FA. But FA is caused by deficiencies in DNA repair itself, preventing the use of editing strategies such as homology directed repair. Recently developed base editing (BE) systems do not rely on double stranded DNA breaks and might be used to target mutations in FA genes, but this remains to be tested. Here we develop a proof of concept therapeutic base editing strategy to address two of the most prevalent FANCA mutations in patient hematopoietic stem and progenitor cells. We find that optimizing adenine base editor construct, vector type, guide RNA format, and delivery conditions leads to very effective genetic modification in multiple FA patient backgrounds. Optimized base editing restored FANCA expression, molecular function of the FA pathway, and phenotypic resistance to crosslinking agents. ABE8e mediated editing in primary hematopoietic stem and progenitor cells from FA patients was both genotypically effective and restored FA pathway function, indicating the potential of base editing strategies for future clinical application in FA.
Collapse
Affiliation(s)
- Sebastian M. Siegner
- grid.5801.c0000 0001 2156 2780Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Laura Ugalde
- grid.5515.40000000119578126Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER) and Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Alexandra Clemens
- grid.5801.c0000 0001 2156 2780Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Laura Garcia-Garcia
- grid.5515.40000000119578126Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER) and Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Juan A. Bueren
- grid.5515.40000000119578126Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER) and Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Paula Rio
- grid.5515.40000000119578126Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER) and Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Mehmet E. Karasu
- grid.5801.c0000 0001 2156 2780Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Jacob E. Corn
- grid.5801.c0000 0001 2156 2780Department of Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Fu S, Phan AT, Mao D, Wang X, Gao G, Goff SP, Zhu Y. HIV-1 exploits the Fanconi anemia pathway for viral DNA integration. Cell Rep 2022; 39:110840. [PMID: 35613597 PMCID: PMC9250337 DOI: 10.1016/j.celrep.2022.110840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 03/08/2022] [Accepted: 04/27/2022] [Indexed: 11/24/2022] Open
Abstract
The integration of HIV-1 DNA into the host genome results in single-strand gaps and 2-nt overhangs at the ends of viral DNA, which must be repaired by cellular enzymes. The cellular factors responsible for the DNA damage repair in HIV-1 DNA integration have not yet been well defined. We report here that HIV-1 infection potently activates the Fanconi anemia (FA) DNA repair pathway, and the FA effector proteins FANCI-D2 bind to the C-terminal domain of HIV-1 integrase. Knockout of FANCI blocks productive viral DNA integration and inhibits the replication of HIV-1. Finally, we show that the knockout of DNA polymerases or flap nuclease downstream of FANCI-D2 reduces the levels of integrated HIV-1 DNA, suggesting these enzymes may be responsible for the repair of DNA damages induced by viral DNA integration. These experiments reveal that HIV-1 exploits the FA pathway for the stable integration of viral DNA into host genome.
Collapse
Affiliation(s)
- Shaozu Fu
- CAS Key Laboratory of Infection and Immunity, CAS Centre for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - An Thanh Phan
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Dexin Mao
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Xinlu Wang
- CAS Key Laboratory of Infection and Immunity, CAS Centre for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangxia Gao
- CAS Key Laboratory of Infection and Immunity, CAS Centre for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Stephen P Goff
- Department of Biochemistry and Molecular Biophysics and of Microbiology and Immunology, Columbia University, New York, NY 10032, USA.
| | - Yiping Zhu
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|
8
|
García-García RD, Garay-Pacheco E, Marín-Llera JC, Chimal-Monroy J. Recombinant Limb Assay as in Vivo Organoid Model. Front Cell Dev Biol 2022; 10:863140. [PMID: 35557939 PMCID: PMC9086426 DOI: 10.3389/fcell.2022.863140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Organ formation initiates once cells become committed to one of the three embryonic germ layers. In the early stages of embryogenesis, different gene transcription networks regulate cell fate after each germ layer is established, thereby directing the formation of complex tissues and functional organs. These events can be modeled in vitro by creating organoids from induced pluripotent, embryonic, or adult stem cells to study organ formation. Under these conditions, the induced cells are guided down the developmental pathways as in embryonic development, resulting in an organ of a smaller size that possesses the essential functions of the organ of interest. Although organoids are widely studied, the formation of skeletal elements in an organoid model has not yet been possible. Therefore, we suggest that the formation of skeletal elements using the recombinant limb (RL) assay system can serve as an in vivo organoid model. RLs are formed from undissociated or dissociated-reaggregated undifferentiated mesodermal cells introduced into an ectodermal cover obtained from an early limb bud. Next, this filled ectoderm is grafted into the back of a donor chick embryo. Under these conditions, the cells can receive the nascent embryonic signals and develop complex skeletal elements. We propose that the formation of skeletal elements induced through the RL system may occur from stem cells or other types of progenitors, thus enabling the study of morphogenetic properties in vivo from these cells for the first time.
Collapse
Affiliation(s)
| | | | | | - Jesús Chimal-Monroy
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México
| |
Collapse
|
9
|
Li Q, Hao S, Cheng T. [Research progress on in vitro expansion and clinical application of hematopoietic stem cell]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2022; 43:167-172. [PMID: 35381684 PMCID: PMC8980649 DOI: 10.3760/cma.j.issn.0253-2727.2022.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Indexed: 11/25/2022]
Affiliation(s)
- Q Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Disease Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - S Hao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Disease Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - T Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Disease Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| |
Collapse
|
10
|
[Research progress of Fanconi anemia and DNA interstrand crosslink repair]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2022; 43:173-176. [PMID: 35381685 PMCID: PMC8980637 DOI: 10.3760/cma.j.issn.0253-2727.2022.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Domm JM, Wootton SK, Medin JA, West ML. Gene therapy for Fabry disease: Progress, challenges, and outlooks on gene-editing. Mol Genet Metab 2021; 134:117-131. [PMID: 34340879 DOI: 10.1016/j.ymgme.2021.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/14/2022]
Abstract
Gene therapy is the delivery of a therapeutic gene for endogenous cellular expression with the goal of rescuing a disease phenotype. It has been used to treat an increasing number of human diseases with many strategies proving safe and efficacious in clinical trials. Gene delivery may be viral or non-viral, performed in vivo or ex vivo, and relies on gene integration or transient expression; all of these techniques have been applied to the treatment of Fabry disease. Fabry disease is a genetic disorder of the α-galactosidase A gene, GLA, that causes an accumulation of glycosphingolipids in cells leading to cardiac, renal and cerebrovascular damage and eventually death. Currently, there are no curative treatments available, and the therapies that are used have significant drawbacks. These treatment concerns have led to the advent of gene therapies for Fabry disease. The first Fabry patients to receive gene therapy were treated with recombinant lentivirus targeting their hematopoietic stem/progenitor cells. Adeno-associated virus treatments have also begun. Alternatively, the field of gene-editing is a new and rapidly growing field. Gene-editing has been used to repair disease-causing mutations or insert genes into cellular DNA. These techniques have the potential to be applied to the treatment of Fabry disease provided the concerns of gene-editing technology, such as safety and efficiency, were addressed. This review focuses on the current state of gene therapy as it is being developed for Fabry disease, including progresses and challenges as well as an overview of gene-editing and how it may be applied to correct Fabry disease-causing mutations in the future.
Collapse
Affiliation(s)
- Jakob M Domm
- Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| | - Sarah K Wootton
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jeffrey A Medin
- Department of Pediatrics and Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Michael L West
- Department of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
12
|
Tsai YY, Su CH, Tarn WY. p53 Activation in Genetic Disorders: Different Routes to the Same Destination. Int J Mol Sci 2021; 22:9307. [PMID: 34502215 PMCID: PMC8430931 DOI: 10.3390/ijms22179307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/18/2022] Open
Abstract
The tumor suppressor p53 is critical for preventing neoplastic transformation and tumor progression. Inappropriate activation of p53, however, has been observed in a number of human inherited disorders that most often affect development of the brain, craniofacial region, limb skeleton, and hematopoietic system. Genes related to these developmental disorders are essentially involved in transcriptional regulation/chromatin remodeling, rRNA metabolism, DNA damage-repair pathways, telomere maintenance, and centrosome biogenesis. Perturbation of these activities or cellular processes may result in p53 accumulation in cell cultures, animal models, and perhaps humans as well. Mouse models of several p53 activation-associated disorders essentially recapitulate human traits, and inactivation of p53 in these models can alleviate disorder-related phenotypes. In the present review, we focus on how dysfunction of the aforementioned biological processes causes developmental defects via excessive p53 activation. Notably, several disease-related genes exert a pleiotropic effect on those cellular processes, which may modulate the magnitude of p53 activation and establish or disrupt regulatory loops. Finally, we discuss potential therapeutic strategies for genetic disorders associated with p53 misactivation.
Collapse
|
13
|
Koniali L, Lederer CW, Kleanthous M. Therapy Development by Genome Editing of Hematopoietic Stem Cells. Cells 2021; 10:1492. [PMID: 34198536 PMCID: PMC8231983 DOI: 10.3390/cells10061492] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Accessibility of hematopoietic stem cells (HSCs) for the manipulation and repopulation of the blood and immune systems has placed them at the forefront of cell and gene therapy development. Recent advances in genome-editing tools, in particular for clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) and CRISPR/Cas-derived editing systems, have transformed the gene therapy landscape. Their versatility and the ability to edit genomic sequences and facilitate gene disruption, correction or insertion, have broadened the spectrum of potential gene therapy targets and accelerated the development of potential curative therapies for many rare diseases treatable by transplantation or modification of HSCs. Ongoing developments seek to address efficiency and precision of HSC modification, tolerability of treatment and the distribution and affordability of corresponding therapies. Here, we give an overview of recent progress in the field of HSC genome editing as treatment for inherited disorders and summarize the most significant findings from corresponding preclinical and clinical studies. With emphasis on HSC-based therapies, we also discuss technical hurdles that need to be overcome en route to clinical translation of genome editing and indicate advances that may facilitate routine application beyond the most common disorders.
Collapse
Affiliation(s)
- Lola Koniali
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (L.K.); (M.K.)
| | - Carsten W. Lederer
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (L.K.); (M.K.)
- Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus
| | - Marina Kleanthous
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (L.K.); (M.K.)
- Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus
| |
Collapse
|
14
|
Anurogo D, Yuli Prasetyo Budi N, Thi Ngo MH, Huang YH, Pawitan JA. Cell and Gene Therapy for Anemia: Hematopoietic Stem Cells and Gene Editing. Int J Mol Sci 2021; 22:ijms22126275. [PMID: 34200975 PMCID: PMC8230702 DOI: 10.3390/ijms22126275] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 12/23/2022] Open
Abstract
Hereditary anemia has various manifestations, such as sickle cell disease (SCD), Fanconi anemia, glucose-6-phosphate dehydrogenase deficiency (G6PDD), and thalassemia. The available management strategies for these disorders are still unsatisfactory and do not eliminate the main causes. As genetic aberrations are the main causes of all forms of hereditary anemia, the optimal approach involves repairing the defective gene, possibly through the transplantation of normal hematopoietic stem cells (HSCs) from a normal matching donor or through gene therapy approaches (either in vivo or ex vivo) to correct the patient’s HSCs. To clearly illustrate the importance of cell and gene therapy in hereditary anemia, this paper provides a review of the genetic aberration, epidemiology, clinical features, current management, and cell and gene therapy endeavors related to SCD, thalassemia, Fanconi anemia, and G6PDD. Moreover, we expound the future research direction of HSC derivation from induced pluripotent stem cells (iPSCs), strategies to edit HSCs, gene therapy risk mitigation, and their clinical perspectives. In conclusion, gene-corrected hematopoietic stem cell transplantation has promising outcomes for SCD, Fanconi anemia, and thalassemia, and it may overcome the limitation of the source of allogenic bone marrow transplantation.
Collapse
Affiliation(s)
- Dito Anurogo
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (D.A.); (N.Y.P.B.); (M.-H.T.N.)
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Makassar, Makassar 90221, Indonesia
| | - Nova Yuli Prasetyo Budi
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (D.A.); (N.Y.P.B.); (M.-H.T.N.)
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Mai-Huong Thi Ngo
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (D.A.); (N.Y.P.B.); (M.-H.T.N.)
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yen-Hua Huang
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (D.A.); (N.Y.P.B.); (M.-H.T.N.)
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Comprehensive Cancer Center, Taipei Medical University, Taipei 11031, Taiwan
- Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (Y.-H.H.); (J.A.P.); Tel.: +886-2-2736-1661 (ext. 3150) (Y.-H.H.); +62-812-9535-0097 (J.A.P.)
| | - Jeanne Adiwinata Pawitan
- Department of Histology, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
- Stem Cell Medical Technology Integrated Service Unit, Cipto Mangunkusumo Central Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
- Stem Cell and Tissue Engineering Research Center, Indonesia Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
- Correspondence: (Y.-H.H.); (J.A.P.); Tel.: +886-2-2736-1661 (ext. 3150) (Y.-H.H.); +62-812-9535-0097 (J.A.P.)
| |
Collapse
|
15
|
Shafqat S, Tariq E, Parnes AD, Dasouki MJ, Ahmed SO, Hashmi SK. Role of gene therapy in Fanconi anemia: A systematic and literature review with future directions. Hematol Oncol Stem Cell Ther 2021; 14:290-301. [PMID: 33736979 DOI: 10.1016/j.hemonc.2021.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/24/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Gene therapy (GT) has been reported to improve bone marrow function in individuals with Fanconi anemia (FA); however, its clinical application is still in the initial stages. We conducted this systematic review, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, to assess the long-term safety and clinical outcomes of GT in FA patients. Electronic searches from PubMed, Web of Science, Cochrane Library, and Google Scholar were conducted and full texts of articles meeting our inclusion criteria were reviewed. Three clinical trials were included, with a total of nine patients and mean age of 10.7 ± 5.7 years. All patients had lentiviral-mediated GT. A 1-year follow-up showed stabilization in blood lineages, without any serious adverse effects from GT. A metaregression analysis could not be conducted, as very little long-term follow-up data of patients was observed, and the median survival rate could not be calculated. Thus, we can conclude that GT seems to be a safe procedure in FA; however, further research needs to be conducted on the longitudinal clinical effects of GT in FA, for a better insight into its potential to become a standard form of treatment.
Collapse
Affiliation(s)
| | - Eleze Tariq
- Medical College, Aga Khan University, Karachi, Pakistan
| | - Aric D Parnes
- Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA
| | - Majed J Dasouki
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Syed O Ahmed
- Department of Adult Hematology and Stem Cell Transplantation, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Shahrukh K Hashmi
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
16
|
Animal models of Fanconi anemia: A developmental and therapeutic perspective on a multifaceted disease. Semin Cell Dev Biol 2021; 113:113-131. [PMID: 33558144 DOI: 10.1016/j.semcdb.2020.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/17/2020] [Accepted: 11/18/2020] [Indexed: 12/31/2022]
Abstract
Fanconi anemia (FA) is a genetic disorder characterized by developmental abnormalities, progressive bone marrow failure, and increased susceptibility to cancer. FA animal models have been useful to understand the pathogenesis of the disease. Herein, we review FA developmental models that have been developed to simulate human FA, focusing on zebrafish and mouse models. We summarize the recapitulated phenotypes observed in these in vivo models including bone, gametogenesis and sterility defects, as well as marrow failure. We also discuss the relevance of aldehydes in pathogenesis of FA, emphasizing on hematopoietic defects. In addition, we provide a summary of potential therapeutic agents, such as aldehyde scavengers, TGFβ inhibitors, and gene therapy for FA. The diversity of FA animal models makes them useful for understanding FA etiology and allows the discovery of new therapies.
Collapse
|
17
|
Zorina T, Black L. Mesenchymal–Hematopoietic Stem Cell Axis: Applications for Induction of Hematopoietic Chimerism and Therapies for Malignancies. Stem Cells 2021. [DOI: 10.1007/978-3-030-77052-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Repczynska A, Pastorczak A, Babol-Pokora K, Skalska-Sadowska J, Drozniewska M, Mlynarski W, Haus O. Novel FANCA mutation in the first fully-diagnosed patient with Fanconi anemia in Polish population - case report. Mol Cytogenet 2020; 13:33. [PMID: 32793304 PMCID: PMC7418427 DOI: 10.1186/s13039-020-00503-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/16/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Fanconi anemia is a rare genetic disorder caused by mutations in genes which protein products are involved in replication, cell cycle control and DNA repair. It is characterized by congenital malformations, bone marrow failure, and high risk of cancer. The diagnosis is based on morphological and hematological abnormalities such as pancytopenia, macrocytic anaemia and progressive bone marrow failure. Genetic examination, often very complex, includes chromosomal breakage testing and mutational analysis. CASE PRESENTATION We present a child with clinical diagnosis of Fanconi anemia. Although morphological abnormalities of skin and bones were present from birth, diagnosis was only suspected at the age of 8. Chromosome breakage test in patient's lymphocytes showed increased level of aberrations (gaps, chromatid breaks, chromosome breaks, radial figures and rearrangements) compared to control. Next generation sequencing revealed presence of two pathogenic variants in FANCA gene, one of which was not previously reported. CONCLUSIONS The article provides additional supportive evidence that compound biallelic mutations of FANCA are associated with Fanconi anemia. It also illustrates the utility of combination of cytogenetic and molecular tests, together with detailed clinical evaluation in providing accurate diagnosis of Fanconi anemia. This report, to the best of our knowledge, describes the first fully diagnosed FA patient in Polish population.
Collapse
Affiliation(s)
- Anna Repczynska
- Department of Clinical Genetics, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, ul. Sklodowskiej-Curie 9, 85-094 Bydgoszcz, Poland
| | - Agata Pastorczak
- Laboratory of Immunopathology and Genetics, Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, ul. Sporna 36/50, 91-738 Lodz, Poland
| | - Katarzyna Babol-Pokora
- Laboratory of Immunopathology and Genetics, Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, ul. Sporna 36/50, 91-738 Lodz, Poland
| | - Jolanta Skalska-Sadowska
- Department of Oncology, Hematology and Pediatric Transplantology, Medical University in Poznan, ul. Szpitalna 27/33, 60-572 Poznan, Poland
| | - Malgorzata Drozniewska
- West Midlands Regional Genetics Laboratory, Birmingham Women’s and Children’s Hospital NHS Foundation Trust, Mindelsohn Way, B15 2TG Birmingham, UK
| | - Wojciech Mlynarski
- Laboratory of Immunopathology and Genetics, Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, ul. Sporna 36/50, 91-738 Lodz, Poland
| | - Olga Haus
- Department of Clinical Genetics, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, ul. Sklodowskiej-Curie 9, 85-094 Bydgoszcz, Poland
| |
Collapse
|
19
|
Reddy OL, Savani BN, Stroncek DF, Panch SR. Advances in gene therapy for hematologic disease and considerations for transfusion medicine. Semin Hematol 2020; 57:83-91. [PMID: 32892847 DOI: 10.1053/j.seminhematol.2020.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Indexed: 12/26/2022]
Abstract
As the list of regulatory agency-approved gene therapies grows, these products are now in the therapeutic spotlight with the potential to cure or dramatically alleviate several benign and malignant hematologic diseases. The mechanisms for gene manipulation are diverse, and include the use of a variety of cell sources and both viral vector- and nuclease-based targeted approaches. Gene editing has also reached the realm of blood component therapy and testing, where cultured products are being developed to improve transfusion support for individuals with rare blood types. In this review, we summarize the milestones in the development of gene therapies for hematologic diseases, mechanisms for gene manipulation, and implications for transfusion medicine and blood centers as these therapies continue to advance and grow.
Collapse
Affiliation(s)
- Opal L Reddy
- Center for Cellular Engineering, National institutes of Health, Clinical Center, Bethesda, Maryland
| | - Bipin N Savani
- Vanderbilt University Medical Center, Nashville, Tennessee
| | - David F Stroncek
- Center for Cellular Engineering, National institutes of Health, Clinical Center, Bethesda, Maryland
| | - Sandhya R Panch
- Center for Cellular Engineering, National institutes of Health, Clinical Center, Bethesda, Maryland.
| |
Collapse
|
20
|
Taylor AMR, Rothblum-Oviatt C, Ellis NA, Hickson ID, Meyer S, Crawford TO, Smogorzewska A, Pietrucha B, Weemaes C, Stewart GS. Chromosome instability syndromes. Nat Rev Dis Primers 2019; 5:64. [PMID: 31537806 PMCID: PMC10617425 DOI: 10.1038/s41572-019-0113-0] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/29/2019] [Indexed: 01/28/2023]
Abstract
Fanconi anaemia (FA), ataxia telangiectasia (A-T), Nijmegen breakage syndrome (NBS) and Bloom syndrome (BS) are clinically distinct, chromosome instability (or breakage) disorders. Each disorder has its own pattern of chromosomal damage, with cells from these patients being hypersensitive to particular genotoxic drugs, indicating that the underlying defect in each case is likely to be different. In addition, each syndrome shows a predisposition to cancer. Study of the molecular and genetic basis of these disorders has revealed mechanisms of recognition and repair of DNA double-strand breaks, DNA interstrand crosslinks and DNA damage during DNA replication. Specialist clinics for each disorder have provided the concentration of expertise needed to tackle their characteristic clinical problems and improve outcomes. Although some treatments of the consequences of a disorder may be possible, for example, haematopoietic stem cell transplantation in FA and NBS, future early intervention to prevent complications of disease will depend on a greater understanding of the roles of the affected DNA repair pathways in development. An important realization has been the predisposition to cancer in carriers of some of these gene mutations.
Collapse
Affiliation(s)
- A Malcolm R Taylor
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.
| | | | - Nathan A Ellis
- The University of Arizona Cancer Center, Tucson, AZ, USA
| | - Ian D Hickson
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Stefan Meyer
- Stem Cell and Leukaemia Proteomics Laboratory, and Paediatric and Adolescent Oncology, Institute of Cancer Sciences, University of Manchester, Manchester, UK
- Department of Paediatric and Adolescent Haematology and Oncology, Royal Manchester Children's Hospital and The Christie NHS Trust, Manchester, UK
| | - Thomas O Crawford
- Department of Neurology and Pediatrics, Johns Hopkins University, Baltimore, MD, USA
| | - Agata Smogorzewska
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY, USA
| | - Barbara Pietrucha
- Department of Immunology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Corry Weemaes
- Department of Pediatrics (Pediatric Immunology), Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, Netherlands
| | - Grant S Stewart
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
21
|
Bueren JA, Quintana-Bustamante O, Almarza E, Navarro S, Río P, Segovia JC, Guenechea G. Advances in the gene therapy of monogenic blood cell diseases. Clin Genet 2019; 97:89-102. [PMID: 31231794 DOI: 10.1111/cge.13593] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/12/2019] [Accepted: 05/21/2019] [Indexed: 01/19/2023]
Abstract
Hematopoietic gene therapy has markedly progressed during the last 15 years both in terms of safety and efficacy. While a number of serious adverse events (SAE) were initially generated as a consequence of genotoxic insertions of gamma-retroviral vectors in the cell genome, no SAEs and excellent outcomes have been reported in patients infused with autologous hematopoietic stem cells (HSCs) transduced with self-inactivated lentiviral and gammaretroviral vectors. Advances in the field of HSC gene therapy have extended the number of monogenic diseases that can be treated with these approaches. Nowadays, evidence of clinical efficacy has been shown not only in primary immunodeficiencies, but also in other hematopoietic diseases, including beta-thalassemia and sickle cell anemia. In addition to the rapid progression of non-targeted gene therapies in the clinic, new approaches based on gene editing have been developed thanks to the discovery of designed nucleases and improved non-integrative vectors, which have markedly increased the efficacy and specificity of gene targeting to levels compatible with its clinical application. Based on advances achieved in the field of gene therapy, it can be envisaged that these therapies will soon be part of the therapeutic approaches used to treat life-threatening diseases of the hematopoietic system.
Collapse
Affiliation(s)
- Juan A Bueren
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Oscar Quintana-Bustamante
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Elena Almarza
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Susana Navarro
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Paula Río
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - José C Segovia
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Guillermo Guenechea
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| |
Collapse
|
22
|
González-Romero E, Martínez-Valiente C, García-Ruiz C, Vázquez-Manrique RP, Cervera J, Sanjuan-Pla A. CRISPR to fix bad blood: a new tool in basic and clinical hematology. Haematologica 2019; 104:881-893. [PMID: 30923099 PMCID: PMC6518885 DOI: 10.3324/haematol.2018.211359] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/19/2019] [Indexed: 12/13/2022] Open
Abstract
Advances in genome engineering in the last decade, particularly in the development of programmable nucleases, have made it possible to edit the genomes of most cell types precisely and efficiently. Chief among these advances, the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system is a novel, versatile and easy-to-use tool to edit genomes irrespective of their complexity, with multiple and broad applications in biomedicine. In this review, we focus on the use of CRISPR/Cas9 genome editing in the context of hematologic diseases and appraise the major achievements and challenges in this rapidly moving field to gain a clearer perspective on the potential of this technology to move from the laboratory to the clinic. Accordingly, we discuss data from studies editing hematopoietic cells to understand and model blood diseases, and to develop novel therapies for hematologic malignancies. We provide an overview of the applications of gene editing in experimental, preclinical and clinical hematology including interrogation of gene function, target identification and drug discovery and chimeric antigen receptor T-cell engineering. We also highlight current limitations of CRISPR/Cas9 and the possible strategies to overcome them. Finally, we consider what advances in CRISPR/Cas9 are needed to move the hematology field forward.
Collapse
Affiliation(s)
| | | | | | - Rafael P Vázquez-Manrique
- Grupo de Investigación en Biomedicina Molecular, Celular y Genómica, Instituto de Investigación Sanitaria La Fe, Valencia
- CIBER de Enfermedades Raras, Madrid
| | - José Cervera
- Hematology Department, Hospital Universitari i Politècnic La Fe, Valencia
- CIBER de Oncología, Madrid, Spain
| | | |
Collapse
|
23
|
Jensen TI, Axelgaard E, Bak RO. Therapeutic gene editing in haematological disorders withCRISPR/Cas9. Br J Haematol 2019; 185:821-835. [DOI: 10.1111/bjh.15851] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | | | - Rasmus O. Bak
- Department of Biomedicine Aarhus University Aarhus CDenmark
- Aarhus Institute of Advanced Studies (AIAS) Aarhus University Aarhus C Denmark
| |
Collapse
|
24
|
Naldini L. Genetic engineering of hematopoiesis: current stage of clinical translation and future perspectives. EMBO Mol Med 2019; 11:e9958. [PMID: 30670463 PMCID: PMC6404113 DOI: 10.15252/emmm.201809958] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/03/2019] [Accepted: 01/07/2019] [Indexed: 01/03/2023] Open
Abstract
Here I review the scientific background, current stage of development and future perspectives that I foresee in the field of genetic manipulation of hematopoietic stem cells with a special emphasis on clinical applications.
Collapse
Affiliation(s)
- Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Hospital and Research Institute, "Vita - Salute San Raffaele" University Medical School, Milan, Italy
| |
Collapse
|
25
|
Zha J, Kunselman L, Fan JM, Olson TS. Bone marrow niches of germline FANCC/FANCG deficient mice enable efficient and durable engraftment of hematopoietic stem cells after transplantation. Haematologica 2019; 104:e284-e287. [PMID: 30679321 DOI: 10.3324/haematol.2018.202143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Ji Zha
- Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia, Philadelphia
| | - Lori Kunselman
- Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia, Philadelphia
| | - Jian-Meng Fan
- Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia, Philadelphia
| | - Timothy S Olson
- Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia, Philadelphia .,Blood and Marrow Transplant Section, Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
26
|
VandenDriessche T. Gene and Cell Therapy: Tearing Down Walls. Hum Gene Ther 2018; 29:1071-1073. [PMID: 30280978 DOI: 10.1089/hum.2018.29074.tva] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Thierry VandenDriessche
- 1 European Editor-Human Gene Therapy; Department of Cardiovascular Sciences, University of Leuven , Leuven, Belgium .,2 Department of Gene Therapy and Regenerative Medicine, Vrije Universiteit Brussel (VUB) , Brussels, Belgium; and Department of Cardiovascular Sciences, University of Leuven , Leuven, Belgium .,3 Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven , Leuven, Belgium
| |
Collapse
|