1
|
Hunker AC, Mich JK, Taskin N, Torkelson A, Pham T, Bertagnolli D, Chakka AB, Chakrabarty R, Donadio NP, Ferrer R, Gasperini M, Goldy J, Guzman JB, Jin K, Khem S, Kutsal R, Lalanne JB, Martinez RA, Newman D, Pena N, Shapovalova NV, Weed N, Zhou T, Yao S, Shendure J, Smith KA, Lein ES, Tasic B, Levi BP, Ting JT. Technical and biological sources of noise confound multiplexed enhancer AAV screening. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.14.633018. [PMID: 39868122 PMCID: PMC11760716 DOI: 10.1101/2025.01.14.633018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Cis -acting regulatory enhancer elements are valuable tools for gaining cell type-specific genetic access. Leveraging large chromatin accessibility atlases, putative enhancer sequences can be identified and deployed in adeno-associated virus (AAV) delivery platforms. However, a significant bottleneck in enhancer AAV discovery is charting their detailed expression patterns in vivo , a process that currently requires gold-standard one-by-one testing. Here we present a barcoded multiplex strategy for screening enhancer AAVs at cell type resolution using single cell RNA sequencing and taxonomy mapping. We executed a proof-of-concept study using a small pool of validated enhancer AAVs expressing in a variety of neuronal and non-neuronal cell types across the mouse brain. Unexpectedly, we encountered substantial technical and biological noise including chimeric packaging products, necessitating development of novel techniques to accurately deconvolve enhancer expression patterns. These results underscore the need for improved methods to mitigate noise and highlight the complexity of enhancer AAV biology in vivo .
Collapse
|
2
|
Duong T, Firmo M, Li CT, Gu B, Wang P. Three-dimensional linkage analysis with digital PCR for genome integrity and identity of recombinant adeno-associated virus. Sci Rep 2025; 15:2154. [PMID: 39820513 PMCID: PMC11739598 DOI: 10.1038/s41598-024-77378-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 10/22/2024] [Indexed: 01/19/2025] Open
Abstract
Recombinant adeno-associated virus (rAAV) has emerged as the vector of choice for in vivo gene delivery, with numerous clinical trials underway for the treatment of various human diseases. Utilizing rAAV in gene therapy requires a highly precise quantification method to determine the viral genome titer and further establish the optimal therapeutic dosage for a rAAV product. The conventional single-channel droplet digital PCR (1D ddPCR) method offers only partial information regarding the viral vector genome titer, lacking insights into its integrity. In our pursuit of further advancing rAAV analysis, we have developed a novel 3D ddPCR assay with advanced 3D linkage analysis. We have designed the three amplicon sites targeting both ends of the viral genome, as well as the center of key therapeutic gene of interest (GOI). This study aims to offer a more comprehensive and insightful assessment of rAAV products which includes not only quantity of viral genome titer but also the quality, distinguishing between partial ones and intact full-length viral genomes with the right GOI. Importantly, due to the random partitioning property of a digital PCR system, the 3D linkage analysis of rAAV viral genome requires a proper mathematical model to identify the true linked DNA molecules (full-length/intact DNA) from the population of false/unlinked DNA molecules (fragmented/partial DNA). We therefore have developed an AAV 3D linkage analysis workflow to characterize genomic integrity and intact titer for rAAV gene therapy products. In this study, we focus on evaluating our 3D linkage mathematical model by performing DNA mixing experiments and a case study using multiple rAAV samples. Particularly, we rigorously tested our algorithms by conducting experiments involving the mixing of seven DNA fragments to represent various AAV viral genome populations, including 3 single partials, 3 double partials, and 1 full-length genomes. Across all 37 tested scenarios, we validated the accuracy of our workflow's output for the percentages of 3D linkage by comparing to the known percentages of input DNA. Consequently, our comprehensive AAV analytical package not only offers insights into viral genome titer but also provides valuable information on its integrity and identity. This cost-effective approach, akin to the setup of traditional 1D or 2D dPCR, holds the potential to advance the application of rAAV in cell and gene therapy for the treatment of human diseases.
Collapse
Affiliation(s)
- Tam Duong
- Research & Development, Lonza Houston, Inc., 14905 Kirby Dr, Houston, TX, 77047, USA.
| | - Michele Firmo
- Global Biologics Technical Development, Lonza Basel, Inc., Muenchensteinerstrasse 38, 4052, Basel, Switzerland
| | - Chien-Ting Li
- Research & Development, Lonza Houston, Inc., 14905 Kirby Dr, Houston, TX, 77047, USA
| | - Bingnan Gu
- Research & Development, Lonza Houston, Inc., 14905 Kirby Dr, Houston, TX, 77047, USA.
| | - Peng Wang
- Research & Development, Lonza Houston, Inc., 14905 Kirby Dr, Houston, TX, 77047, USA.
| |
Collapse
|
3
|
Lalanne JB, Mich JK, Huynh C, Hunker AC, McDiarmid TA, Levi BP, Ting JT, Shendure J. Extensive length and homology dependent chimerism in pool-packaged AAV libraries. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.14.632594. [PMID: 39868341 PMCID: PMC11761685 DOI: 10.1101/2025.01.14.632594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Adeno-associated viruses (AAVs) have emerged as the foremost gene therapy delivery vehicles due to their versatility, durability, and safety profile. Here we demonstrate extensive chimerism, manifesting as pervasive barcode swapping, among complex AAV libraries that are packaged as a pool. The observed chimerism is length- and homology-dependent but capsid-independent, in some cases affecting the majority of packaged AAV genomes. These results have implications for the design and deployment of functional AAV libraries in both research and clinical settings.
Collapse
Affiliation(s)
- Jean-Benoît Lalanne
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - John K. Mich
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Chau Huynh
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Seattle Hub for Synthetic Biology, Seattle, WA, USA
| | | | - Troy A. McDiarmid
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Seattle Hub for Synthetic Biology, Seattle, WA, USA
| | - Boaz P. Levi
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Seattle Hub for Synthetic Biology, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
| |
Collapse
|
4
|
Yang R, Tran NT, Chen T, Cui M, Wang Y, Sharma T, Liu Y, Zhang J, Yuan X, Zhang D, Chen C, Shi Z, Wang L, Dai Y, Zaidi H, Liang J, Chen M, Jaijyan D, Hu H, Wang B, Xu C, Hu W, Gao G, Yu D, Tai PWL, Wang Q. AAVone: A Cost-Effective, Single-Plasmid Solution for Efficient AAV Production with Reduced DNA Impurities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631712. [PMID: 39829756 PMCID: PMC11741346 DOI: 10.1101/2025.01.07.631712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Currently, the most common approach for manufacturing GMP-grade adeno-associated virus (AAV) vectors involves transiently transfecting mammalian cells with three plasmids that carry the essential components for production. The requirement for all three plasmids to be transfected into a single cell and the necessity for high quantities of input plasmid DNA, limits AAV production efficiency, introduces variability between production batches, and increases time and labor costs. Here, we developed an all-in-one, single-plasmid AAV production system, called AAVone. In this system, the adenovirus helper genes ( E2A , E4orf6 , and VA RNA ), packaging genes ( rep and cap ), and the vector transgene cassette are consolidated into a single compact plasmid with a 13-kb backbone. The AAVone system achieves a two- to four-fold increase in yields compared to the traditional triple-plasmid system. Furthermore, the AAVone system exhibits low batch-to-batch variation and eliminates the need for fine-tuning the ratios of the three plasmids, simplifying the production process. In terms of vector quality, AAVs generated by the AAVone system show similar in vitro and in vivo transduction efficiency, but a substantial reduction in sequences attributed to plasmid backbones and a marked reduction in non-functional snap-back genomes. In Summary, the AAVone platform is a straightforward, cost-effective, and highly consistent AAV production system - making it particularly suitable for GMP-grade AAV vectors.
Collapse
|
5
|
Zhang J, Yu X, Chrzanowski M, Tian J, Pouchnik D, Guo P, Herzog RW, Xiao W. Thorough molecular configuration analysis of noncanonical AAV genomes in AAV vector preparations. Mol Ther Methods Clin Dev 2024; 32:101215. [PMID: 38463141 PMCID: PMC10924063 DOI: 10.1016/j.omtm.2024.101215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/16/2024] [Indexed: 03/12/2024]
Abstract
The unique palindromic inverted terminal repeats (ITRs) and single-stranded nature of adeno-associated virus (AAV) DNA are major hurdles to current sequencing technologies. Due to these characteristics, sequencing noncanonical AAV genomes present in AAV vector preparations remains challenging. To address this limitation, we developed thorough molecule configuration analysis of noncanonical AAV genomes (TMCA-AAV-seq). TMCA-AAV-seq takes advantage of the documented AAV packaging mechanism in which encapsidation initiates from its 3' ITR, for AAV-seq library construction. Any AAV genome with a 3' ITR is converted to a template suitable to adapter addition by a Bst DNA polymerase-mediated extension reaction. This extension reaction helps fix ITR heterogeneity in the AAV population and allows efficient adapter addition to even noncanonical AAV genomes. The resulting library maintains the original AAV genome configurations without introducing undesired changes. Subsequently, long-read sequencing can be performed by the Pacific Biosciences (PacBio) single-molecule, real-time (SMRT) sequencing technology platform. Finally, through comprehensive data analysis, we can recover canonical, noncanonical AAV DNA, and non-AAV vector DNA sequences, along with their molecular configurations. Our method is a robust tool for profiling thorough AAV-population genomes. TMCA-AAVseq can be further extended to all parvoviruses and their derivative vectors.
Collapse
Affiliation(s)
- Junping Zhang
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | - Jiahe Tian
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Derek Pouchnik
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4660, USA
| | - Ping Guo
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Roland W. Herzog
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Weidong Xiao
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
6
|
Tereshko L, Zhao X, Gagnon J, Lin T, Ewald T, Wang Y, Feschenko M, Mason C. A novel method for quantitation of AAV genome integrity using duplex digital PCR. PLoS One 2023; 18:e0293277. [PMID: 38096204 PMCID: PMC10721069 DOI: 10.1371/journal.pone.0293277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/10/2023] [Indexed: 12/17/2023] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors have become a reliable strategy for delivering gene therapies. As rAAV capsid content is known to be heterogeneous, methods for rAAV characterization are critical for assessing the efficacy and safety of drug products. Multiplex digital PCR (dPCR) has emerged as a popular molecular approach for characterizing capsid content due to its high level of throughput, accuracy, and replicability. Despite growing popularity, tools to accurately analyze multiplexed data are scarce. Here, we introduce a novel statistical model to estimate genome integrity from duplex dPCR assays. This work demonstrates that use of a Poisson-multinomial mixture distribution significantly improves the accuracy and quantifiable range of duplex dPCR assays over currently available models.
Collapse
Affiliation(s)
- Lauren Tereshko
- Analytical Development, Biogen, Cambridge, Massachusetts, United States of America
| | - Xiaohui Zhao
- Analytical Development, Biogen, Cambridge, Massachusetts, United States of America
| | - Jake Gagnon
- Biostatistics, Biogen, Cambridge, Massachusetts, United States of America
| | - Tinchi Lin
- Analytics and Data Sciences, Biogen, Cambridge, Massachusetts, United States of America
| | - Trevor Ewald
- Analytical Development, Biogen, Cambridge, Massachusetts, United States of America
| | - Yu Wang
- Analytical Development, Biogen, Cambridge, Massachusetts, United States of America
| | - Marina Feschenko
- Analytical Development, Biogen, Cambridge, Massachusetts, United States of America
| | - Cullen Mason
- Analytical Development, Biogen, Cambridge, Massachusetts, United States of America
| |
Collapse
|
7
|
Blay E, Hardyman E, Morovic W. PCR-based analytics of gene therapies using adeno-associated virus vectors: Considerations for cGMP method development. Mol Ther Methods Clin Dev 2023; 31:101132. [PMID: 37964893 PMCID: PMC10641278 DOI: 10.1016/j.omtm.2023.101132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
The field of gene therapy has evolved and improved so that today the treatment of thousands of genetic diseases is now possible. An integral aspect of the drug development process is generating analytical methods to be used throughout clinical and commercial manufacturing. Enumeration and identification assays using genetic testing are critical to ensure the safety, efficacy, and stability of many active pharmaceutical ingredients. While nucleic acid-based methods are already reliable and rapid, there are unique biological, technological, and regulatory aspects in gene therapies that must be considered. This review surveys aspects of method development and validation using nucleic acid-based testing of gene therapies by focusing on adeno-associated virus (AAV) vectors and their co-transfection factors. Key differences between quantitative PCR and droplet digital technologies are discussed to show how improvements can be made while still adhering to regulatory guidance. Example validation parameters for AAV genome titers are described to demonstrate the scope of analytical development. Finally, several areas for improving analytical testing are presented to inspire future innovation, including next-generation sequencing and artificial intelligence. Reviewing the broad characteristics of gene therapy assessment serves as an introduction for new researchers, while clarifying processes for professionals already involved in pharmaceutical manufacturing.
Collapse
Affiliation(s)
- Emmanuel Blay
- Gene & Cell Therapy, PPD GMP Laboratories, Part of ThermoFisher Scientific, Middleton, WI, USA
| | - Elaine Hardyman
- Gene & Cell Therapy, PPD GMP Laboratories, Part of ThermoFisher Scientific, Middleton, WI, USA
| | - Wesley Morovic
- Gene & Cell Therapy, PPD GMP Laboratories, Part of ThermoFisher Scientific, Middleton, WI, USA
| |
Collapse
|
8
|
Mikkelsen NS, Hernandez SS, Jensen TI, Schneller JL, Bak RO. Enrichment of transgene integrations by transient CRISPR activation of a silent reporter gene. Mol Ther Methods Clin Dev 2023; 29:1-16. [PMID: 36922985 PMCID: PMC10009645 DOI: 10.1016/j.omtm.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
CRISPR-Cas-mediated site-specific integration of transgenes by homology-directed repair (HDR) is challenging, especially in primary cells, where inferior editing efficiency may impede the development of gene- and cellular therapies. Various strategies for enrichment of cells with transgene integrations have been developed, but most strategies either generate unwanted genomic scars or rely on permanent integration and expression of a reporter gene used for selection. However, stable expression of a reporter gene may perturb cell homeostasis and function. Here we develop a broadly applicable and versatile enrichment strategy by harnessing the capability of CRISPR activation (CRISPRa) to transiently induce expression of a therapeutically relevant reporter gene used for immunomagnetic enrichment. This strategy is readily adaptable to primary human T cells and CD34+ hematopoietic stem and progenitor cells (HSPCs), where enrichment of 1.8- to 3.3-fold and 3.2- to 3.6-fold was achieved, respectively. Furthermore, chimeric antigen receptor (CAR) T cells were enriched 2.5-fold and demonstrated improved cytotoxicity over non-enriched CAR T cells. Analysis of HDR integrations showed a proportion of cells harboring deletions of the transgene cassette arising either from impartial HDR or truncated adeno-associated virus (AAV) vector genomes. Nonetheless, this novel enrichment strategy expands the possibility to enrich for transgene integrations in research settings and in gene and cellular therapies.
Collapse
Affiliation(s)
| | | | - Trine I Jensen
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Jessica L Schneller
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark.,RNA and Gene Therapies, Novo Nordisk A/S, Maaloev, Denmark
| | - Rasmus O Bak
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark.,Aarhus Institute of Advanced Studies, Aarhus University, Aarhus C, Denmark
| |
Collapse
|