1
|
Benevides ES, Sunshine MD, Rana S, Fuller DD. Optogenetic activation of the diaphragm. Sci Rep 2022; 12:6503. [PMID: 35444167 PMCID: PMC9021282 DOI: 10.1038/s41598-022-10240-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 04/04/2022] [Indexed: 11/10/2022] Open
Abstract
Impaired diaphragm activation is common in many neuromuscular diseases. We hypothesized that expressing photoreceptors in diaphragm myofibers would enable light stimulation to evoke functional diaphragm activity, similar to endogenous bursts. In a mouse model, adeno-associated virus (AAV) encoding channelrhodopsin-2 (AAV9-CAG-ChR2-mVenus, 6.12 × 1011 vg dose) was delivered to the diaphragm using a minimally invasive method of microinjection to the intrapleural space. At 8-18 weeks following AAV injection, mice were anesthetized and studied during spontaneous breathing. We first showed that diaphragm electromyographic (EMG) potentials could be evoked with brief presentations of light, using a 473 nm high intensity LED. Evoked potential amplitude increased with intensity or duration of the light pulse. We next showed that in a paralyzed diaphragm, trains of light pulses evoked diaphragm EMG activity which resembled endogenous bursting, and this was sufficient to generate respiratory airflow. Light-evoked diaphragm EMG bursts showed no diminution after up to one hour of stimulation. Histological evaluation confirmed transgene expression in diaphragm myofibers. We conclude that intrapleural delivery of AAV9 can drive expression of ChR2 in the diaphragm and subsequent photostimulation can evoke graded compound diaphragm EMG activity similar to endogenous inspiratory bursting.
Collapse
Affiliation(s)
- Ethan S Benevides
- Rehabilitation Science PhD Program, University of Florida, Gainesville, Florida, USA.,Department of Physical Therapy, University of Florida, Gainesville, Florida, USA.,Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida, USA.,McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Michael D Sunshine
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA.,Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida, USA.,McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Sabhya Rana
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA.,Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida, USA.,McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - David D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA. .,Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida, USA. .,McKnight Brain Institute, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
2
|
Bisserier M, Sun XQ, Fazal S, Turnbull IC, Bonnet S, Hadri L. Novel Insights into the Therapeutic Potential of Lung-Targeted Gene Transfer in the Most Common Respiratory Diseases. Cells 2022; 11:984. [PMID: 35326434 PMCID: PMC8947048 DOI: 10.3390/cells11060984] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 12/10/2022] Open
Abstract
Over the past decades, a better understanding of the genetic and molecular alterations underlying several respiratory diseases has encouraged the development of new therapeutic strategies. Gene therapy offers new therapeutic alternatives for inherited and acquired diseases by delivering exogenous genetic materials into cells or tissues to restore physiological protein expression and/or activity. In this review, we review (1) different types of viral and non-viral vectors as well as gene-editing techniques; and (2) the application of gene therapy for the treatment of respiratory diseases and disorders, including pulmonary arterial hypertension, idiopathic pulmonary fibrosis, cystic fibrosis, asthma, alpha-1 antitrypsin deficiency, chronic obstructive pulmonary disease, non-small-cell lung cancer, and COVID-19. Further, we also provide specific examples of lung-targeted therapies and discuss the major limitations of gene therapy.
Collapse
Affiliation(s)
- Malik Bisserier
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA; (M.B.); (S.F.); (I.C.T.)
| | - Xiao-Qing Sun
- Department of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
| | - Shahood Fazal
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA; (M.B.); (S.F.); (I.C.T.)
| | - Irene C. Turnbull
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA; (M.B.); (S.F.); (I.C.T.)
| | - Sébastien Bonnet
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec, QC G1V4G5, Canada;
- Department of Medicine, Laval University, Québec, QC G1V4G5, Canada
| | - Lahouaria Hadri
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA; (M.B.); (S.F.); (I.C.T.)
| |
Collapse
|
3
|
Pulmonary transplantation of alpha-1 antitrypsin (AAT)-transgenic macrophages provides a source of functional human AAT in vivo. Gene Ther 2021; 28:477-493. [PMID: 34276045 PMCID: PMC8455329 DOI: 10.1038/s41434-021-00269-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 04/28/2021] [Accepted: 05/27/2021] [Indexed: 12/30/2022]
Abstract
Inherited deficiency of the antiprotease alpha-1 antitrypsin (AAT) is associated with liver failure and early-onset emphysema. In mice, in vivo lentiviral transduction of alveolar macrophages (AMs) has been described to yield protective pulmonary AAT levels and ameliorate emphysema development. We here investigated the pulmonary transplantation of macrophages (PMT) transgenic for AAT as a potential therapy for AAT deficiency-associated lung pathology. Employing third-generation SIN-lentiviral vectors expressing the human AAT cDNA from the CAG or Cbx-EF1α promoter, we obtained high-level AAT secretion in a murine AM cell line as well as murine bone marrow-derived macrophages differentiated in vitro (AAT MΦ). Secreted AAT demonstrated a physiologic glycosylation pattern as well as elastase-inhibitory and anti-apoptotic properties. AAT MΦ preserved normal morphology, surface phenotype, and functionality. Furthermore, in vitro generated murine AAT MΦ successfully engrafted in AM-deficient Csf2rb-/- mice and converted into a CD11c+/Siglec-F+ AM phenotype as detected in bronchoalveolar lavage fluid and homogenized lung tissue 2 months after PMT. Moreover, human AAT was detected in the lung epithelial lining fluid of transplanted animals. Efficient AAT expression and secretion were also demonstrated for human AAT MΦ, confirming the applicability of our vectors in human cells.
Collapse
|
4
|
Vu A, McCray PB. New Directions in Pulmonary Gene Therapy. Hum Gene Ther 2020; 31:921-939. [PMID: 32814451 PMCID: PMC7495918 DOI: 10.1089/hum.2020.166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
The lung has long been a target for gene therapy, yet efficient delivery and phenotypic disease correction has remained challenging. Although there have been significant advancements in gene therapies of other organs, including the development of several ex vivo therapies, in vivo therapeutics of the lung have been slower to transition to the clinic. Within the past few years, the field has witnessed an explosion in the development of new gene addition and gene editing strategies for the treatment of monogenic disorders. In this review, we will summarize current developments in gene therapy for cystic fibrosis, alpha-1 antitrypsin deficiency, and surfactant protein deficiencies. We will explore the different gene addition and gene editing strategies under investigation and review the challenges of delivery to the lung.
Collapse
Affiliation(s)
- Amber Vu
- Stead Family Department of Pediatrics, Center for Gene Therapy, The University of Iowa, Iowa City, Iowa, USA
| | - Paul B. McCray
- Stead Family Department of Pediatrics, Center for Gene Therapy, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
5
|
Sutter MA, Cremona TP, Nita I, Cavarra E, Lungarella G, Lewis EC, Schittny JC, Geiser T, Gazdhar A. In Vivo Electroporation-Mediated, Intrahepatic Alpha1 Antitrypsin Gene Transfer Reduces Pulmonary Emphysema in Pallid Mice. Pharmaceutics 2020; 12:pharmaceutics12090793. [PMID: 32825773 PMCID: PMC7559762 DOI: 10.3390/pharmaceutics12090793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
Rationale: Mutation in the alpha1 antitrypsin (AAT) gene leads to low circulating levels of AAT, which is associated with several disease processes including pulmonary emphysema. The standard of care relies on substitution with plasma-purified AAT. We studied a novel approach to obtain sustained therapeutic levels of circulating AAT using nonviral in vivo electroporation-mediated gene transfer to the liver. Methods: In vivo intrahepatic electroporation-mediated human AAT gene transfer was performed in C57 Bl/6J mice carrying a genetic deficiency of murine AAT (pallid mice) and suffering from pulmonary emphysema. The animals were evaluated for lung function using flexiVent and detailed stereological assessments. Lung neutrophilic burden was assessed. Results: Pallid mice showed morphologically detectable pulmonary emphysema. Thirty days after in vivo electroporation-mediated gene transfer directly aimed at the liver, circulating human AAT was elevated and lung function was significantly improved compared to non-treated pallid mice. Stereological analysis revealed a reduction in pulmonary emphysema. Conclusion: Our data indicate that in vivo intrahepatic electroporation-mediated gene transfer of AAT is a safe and efficient procedure resulting in reduction of pulmonary emphysema in pallid mice.
Collapse
Affiliation(s)
- Marco A. Sutter
- Department of Pulmonary Medicine, University Hospital Bern, 3010 Bern, Switzerland; (M.A.S.); (I.N.)
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| | - Tiziana P. Cremona
- Institute of Anatomy, University of Bern, 3010 Bern, Switzerland; (T.P.C.)
| | - Izabela Nita
- Department of Pulmonary Medicine, University Hospital Bern, 3010 Bern, Switzerland; (M.A.S.); (I.N.)
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| | - Eleonora Cavarra
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (E.C.); (G.L.)
| | - Giuseppe Lungarella
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (E.C.); (G.L.)
| | - Eli C. Lewis
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel;
| | | | - Thomas Geiser
- Department of Pulmonary Medicine, University Hospital Bern, 3010 Bern, Switzerland; (M.A.S.); (I.N.)
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
- Correspondence: (T.G.); (A.G.); Tel.: +41-31-63211111 (T.G.); +41-31-6327634 (A.G.)
| | - Amiq Gazdhar
- Department of Pulmonary Medicine, University Hospital Bern, 3010 Bern, Switzerland; (M.A.S.); (I.N.)
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
- Correspondence: (T.G.); (A.G.); Tel.: +41-31-63211111 (T.G.); +41-31-6327634 (A.G.)
| |
Collapse
|
6
|
Design and characterization of α1-antitrypsin variants for treatment of contact system-driven thromboinflammation. Blood 2020; 134:1658-1669. [PMID: 31366623 DOI: 10.1182/blood.2019000481] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/22/2019] [Indexed: 01/15/2023] Open
Abstract
The contact system produces the inflammatory peptide bradykinin and contributes to experimental thrombosis. C1 esterase-inhibitor (C1INH) deficiency or gain-of-function mutations in factor XII (FXII) cause hereditary angioedema, a life-threatening tissue swelling disease. C1INH is a relatively weak contact system enzyme inhibitor. Although α1-antitrypsin (α1AT) does not naturally inhibit contact system enzymes, a human mutation (M358R; α1AT-Pittsburgh) changes it into a powerful broad-spectrum enzyme inhibitor. It blocks the contact system, but also thrombin and activated protein C (APC), making it an unattractive candidate for therapeutic contact system blockade. We adapted the reactive center loop of α1AT-Pittsburgh (AIPR/S) to overcome these obstacles. Two α1AT variants (SMTR/S and SLLR/S) strongly inhibit plasma kallikrein, activated FXII, and plasmin. α1AT-SMTR/S no longer inhibits thrombin, but residually inhibits APC. In contrast, α1AT-SLLR/S residually inhibits thrombin, but no longer APC. Additional modification at the P1' position (S→V) eliminates residual inhibition of thrombin and APC for both variants, while retaining their properties as contact system inhibitors. Both α1AT-SMTR/V and -SLLR/V are superior to C1INH in reducing bradykinin production in plasma. Owing to their capacity to selectively block contact system-driven coagulation, both variants block vascular occlusion in an in vivo model for arterial thrombosis. Furthermore, both variants block acute carrageenan-induced tissue edema in mice. Finally, α1AT-SLLR/V, our most powerful candidate, suppresses epithelial leakage of the gut in a mouse model of colitis. Our findings confirm that redesign of α1AT strongly alters its inhibitory behavior and can be used for the treatment of contact system-mediated thrombosis and inflammation.
Collapse
|
7
|
Recent Developments in mRNA-Based Protein Supplementation Therapy to Target Lung Diseases. Mol Ther 2019; 27:803-823. [PMID: 30905577 DOI: 10.1016/j.ymthe.2019.02.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 12/20/2022] Open
Abstract
Protein supplementation therapy using in vitro-transcribed (IVT) mRNA for genetic diseases contains huge potential as a new class of therapy. From the early ages of synthetic mRNA discovery, a great number of studies showed the versatile use of IVT mRNA as a novel approach to supplement faulty or absent protein and also as a vaccine. Many modifications have been made to produce high expressions of mRNA causing less immunogenicity and more stability. Recent advancements in the in vivo lung delivery of mRNA complexed with various carriers encouraged the whole mRNA community to tackle various genetic lung diseases. This review gives a comprehensive overview of cells associated with various lung diseases and recent advancements in mRNA-based protein replacement therapy. This review also covers a brief summary of developments in mRNA modifications and nanocarriers toward clinical translation.
Collapse
|
8
|
van Haasteren J, Hyde SC, Gill DR. Lessons learned from lung and liver in-vivo gene therapy: implications for the future. Expert Opin Biol Ther 2018; 18:959-972. [PMID: 30067117 PMCID: PMC6134476 DOI: 10.1080/14712598.2018.1506761] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/27/2018] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Ex-vivo gene therapy has had significant clinical impact over the last couple of years and in-vivo gene therapy products are being approved for clinical use. Gene therapy and gene editing approaches have huge potential to treat genetic disease and chronic illness. AREAS COVERED This article provides a review of in-vivo approaches for gene therapy in the lung and liver, exploiting non-viral and viral vectors with varying serotypes and pseudotypes to target-specific cells. Antibody responses inhibiting viral vectors continue to constrain effective repeat administration. Lessons learned from ex-vivo gene therapy and genome editing are also discussed. EXPERT OPINION The fields of lung and liver in-vivo gene therapy are thriving and a comparison highlights obstacles and opportunities for both. Overcoming immunological issues associated with repeated administration of viral vectors remains a key challenge. The addition of targeted small molecules in combination with viral vectors may offer one solution. A substantial bottleneck to the widespread adoption of in-vivo gene therapy is how to ensure sufficient capacity for clinical-grade vector production. In the future, the exploitation of gene editing approaches for in-vivo disease treatment may facilitate the resurgence of non-viral gene transfer approaches, which tend to be eclipsed by more efficient viral vectors.
Collapse
Affiliation(s)
- Joost van Haasteren
- Gene Medicine Group, Nuffield Division of Clinical Laboratory Science, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Stephen C. Hyde
- Gene Medicine Group, Nuffield Division of Clinical Laboratory Science, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Deborah R. Gill
- Gene Medicine Group, Nuffield Division of Clinical Laboratory Science, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Ezra-Elia R, Obolensky A, Ejzenberg A, Ross M, Mintz D, Banin E, Ofri R. Can an in vivo imaging system be used to determine localization and biodistribution of AAV5-mediated gene expression following subretinal and intravitreal delivery in mice? Exp Eye Res 2018; 176:227-234. [PMID: 30171858 DOI: 10.1016/j.exer.2018.08.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/24/2018] [Accepted: 08/28/2018] [Indexed: 02/07/2023]
Abstract
Recombinant adeno associated viruses (AAV) are the most commonly used vectors in animal model studies of gene therapy for retinal diseases. The ability of a vector to localize and remain in the target tissue, and in this manner to avoid off-target effects beyond the site of delivery, is critical to the efficacy and safety of the treatment. The in vivo imaging system (IVIS) is a non-invasive imaging tool used for detection and quantification of bioluminescence activity in rodents. Our aim was to investigate whether IVIS can detect localization and biodistribution of AAV5 vector in mice following subretinal (SR) and intravitreal (IVT) injections. AAV5 carrying firefly luciferase DNA under control of the ubiquitous cytomegalovirus (CMV) promoter was injected unilaterally IVT or SR (in the central or peripheral retina) of forty-one mice. Luciferase activity was tracked for up to 60 weeks in the longest surviving animals, using repeated (up to 12 times) IVIS bioluminescence imaging. Luciferase presence was also confirmed immunohistochemically (IHC) and by PCR in representative animals. In the SR group, IVIS readings demonstrated luciferase activity in all (32/32) eyes, and luciferase presence was confirmed by IHC (4/4 eyes) and PCR (12/12 eyes). In the IVT group, IVIS readings demonstrated luciferase activity in 7/9 eyes, and luciferase presence was confirmed by PCR in 5/5 eyes and by IHC (2/2 eyes). In two SR-injected animals (one each from the central and peripheral injection sites), PCR detected luciferase presence in the ipsilateral optic nerves, a finding that was not detected by IVIS or IHC. Our results show that when evaluating SR delivery, IVIS has a sensitivity and specificity of 100% compared with the gold standard PCR. When evaluating IVT delivery, IVIS has a sensitivity of 78% and specificity of 100%. These finding confirm the ability of IVIS to detect in-vivo localized expression of AAV following SR delivery in the retina up to 60 weeks post-treatment, using repeated imaging for longitudinal evaluation, without fading of the biological signal, thereby replacing the need for post mortem processing in order to confirm vector expression. However, IVIS is probably not sensitive enough, compared with genome detection, to demonstrate biodistribution to the optic nerve, as it could not detect luciferase activity in ipsilateral optic nerves following SR delivery in mice.
Collapse
Affiliation(s)
- Raaya Ezra-Elia
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - Alexey Obolensky
- Center for Retinal and Macular Degenerations (CRMD), Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ayala Ejzenberg
- Center for Retinal and Macular Degenerations (CRMD), Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Maya Ross
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - Dvir Mintz
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - Eyal Banin
- Center for Retinal and Macular Degenerations (CRMD), Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ron Ofri
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
10
|
Stiles KM, Sondhi D, Kaminsky SM, De BP, Rosenberg JB, Crystal RG. Intrapleural Gene Therapy for Alpha-1 Antitrypsin Deficiency-Related Lung Disease. CHRONIC OBSTRUCTIVE PULMONARY DISEASES-JOURNAL OF THE COPD FOUNDATION 2018; 5:244-257. [PMID: 30723782 DOI: 10.15326/jcopdf.5.4.2017.0160] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alpha-1 antitrypsin deficiency (AATD) manifests primarily as early-onset emphysema caused by the destruction of the lung by neutrophil elastase due to low amounts of the serine protease inhibitor alpha-1 antitrypsin (AAT). The current therapy involves weekly intravenous infusions of AAT-derived from pooled human plasma that is efficacious, yet costly. Gene therapy applications designed to provide constant levels of the AAT protein are currently under development. The challenge is for gene therapy to provide sufficient amounts of AAT to normalize the inhibitor level and anti-neutrophil elastase capacity in the lung. One strategy involves administration of an adeno-associated virus (AAV) gene therapy vector to the pleural space providing both local and systemic production of AAT to reach consistent therapeutic levels. This review focuses on the strategy, advantages, challenges, and updates for intrapleural administration of gene therapy vectors for the treatment of AATD.
Collapse
Affiliation(s)
- Katie M Stiles
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York.,KMS and DS contributed equally to this review
| | - Dolan Sondhi
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York.,KMS and DS contributed equally to this review
| | - Stephen M Kaminsky
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Bishnu P De
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Jonathan B Rosenberg
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
11
|
Borel F, Tang Q, Gernoux G, Greer C, Wang Z, Barzel A, Kay MA, Shultz LD, Greiner DL, Flotte TR, Brehm MA, Mueller C. Survival Advantage of Both Human Hepatocyte Xenografts and Genome-Edited Hepatocytes for Treatment of α-1 Antitrypsin Deficiency. Mol Ther 2017; 25:2477-2489. [PMID: 29032169 PMCID: PMC5675605 DOI: 10.1016/j.ymthe.2017.09.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/14/2017] [Accepted: 09/20/2017] [Indexed: 12/26/2022] Open
Abstract
Hepatocytes represent an important target for gene therapy and editing of single-gene disorders. In α-1 antitrypsin (AAT) deficiency, one missense mutation results in impaired secretion of AAT. In most patients, lung damage occurs due to a lack of AAT-mediated protection of lung elastin from neutrophil elastase. In some patients, accumulation of misfolded PiZ mutant AAT protein triggers hepatocyte injury, leading to inflammation and cirrhosis. We hypothesized that correcting the Z mutant defect in hepatocytes would confer a selective advantage for repopulation of hepatocytes within an intact liver. A human PiZ allele was crossed onto an immune-deficient (NSG) strain to create a recipient strain (NSG-PiZ) for human hepatocyte xenotransplantation. Results indicate that NSG-PiZ recipients support heightened engraftment of normal human primary hepatocytes as compared with NSG recipients. This model can therefore be used to test hepatocyte cell therapies for AATD, but more broadly it serves as a simple, highly reproducible liver xenograft model. Finally, a promoterless adeno-associated virus (AAV) vector, expressing a wild-type AAT and a synthetic miRNA to silence the endogenous allele, was integrated into the albumin locus. This gene-editing approach leads to a selective advantage of edited hepatocytes, by silencing the mutant protein and augmenting normal AAT production, and improvement of the liver pathology.
Collapse
Affiliation(s)
- Florie Borel
- Department of Pediatrics and Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Qiushi Tang
- Department of Pediatrics and Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Gwladys Gernoux
- Department of Pediatrics and Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Cynthia Greer
- Department of Pediatrics and Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ziqiong Wang
- Department of Pediatrics and Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Adi Barzel
- LogicBio Therapeutics, Inc., Cambridge, MA 02139; Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; Departments of Pediatrics and Genetics, Stanford Medical School, Stanford, CA 94305, USA
| | - Mark A Kay
- Departments of Pediatrics and Genetics, Stanford Medical School, Stanford, CA 94305, USA
| | | | - Dale L Greiner
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Terence R Flotte
- Department of Pediatrics and Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Michael A Brehm
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Christian Mueller
- Department of Pediatrics and Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
12
|
Sondhi D, Stiles KM, De BP, Crystal RG. Genetic Modification of the Lung Directed Toward Treatment of Human Disease. Hum Gene Ther 2017; 28:3-84. [PMID: 27927014 DOI: 10.1089/hum.2016.152] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Genetic modification therapy is a promising therapeutic strategy for many diseases of the lung intractable to other treatments. Lung gene therapy has been the subject of numerous preclinical animal experiments and human clinical trials, for targets including genetic diseases such as cystic fibrosis and α1-antitrypsin deficiency, complex disorders such as asthma, allergy, and lung cancer, infections such as respiratory syncytial virus (RSV) and Pseudomonas, as well as pulmonary arterial hypertension, transplant rejection, and lung injury. A variety of viral and non-viral vectors have been employed to overcome the many physical barriers to gene transfer imposed by lung anatomy and natural defenses. Beyond the treatment of lung diseases, the lung has the potential to be used as a metabolic factory for generating proteins for delivery to the circulation for treatment of systemic diseases. Although much has been learned through a myriad of experiments about the development of genetic modification of the lung, more work is still needed to improve the delivery vehicles and to overcome challenges such as entry barriers, persistent expression, specific cell targeting, and circumventing host anti-vector responses.
Collapse
Affiliation(s)
- Dolan Sondhi
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Katie M Stiles
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Bishnu P De
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| |
Collapse
|
13
|
Chiuchiolo MJ, Crystal RG. Gene Therapy for Alpha-1 Antitrypsin Deficiency Lung Disease. Ann Am Thorac Soc 2016; 13 Suppl 4:S352-69. [PMID: 27564673 PMCID: PMC5059492 DOI: 10.1513/annalsats.201506-344kv] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 08/28/2015] [Indexed: 12/16/2022] Open
Abstract
Alpha-1 antitrypsin (AAT) deficiency, characterized by low plasma levels of the serine protease inhibitor AAT, is associated with emphysema secondary to insufficient protection of the lung from neutrophil proteases. Although AAT augmentation therapy with purified AAT protein is efficacious, it requires weekly to monthly intravenous infusion of AAT purified from pooled human plasma, has the risk of viral contamination and allergic reactions, and is costly. As an alternative, gene therapy offers the advantage of single administration, eliminating the burden of protein infusion, and reduced risks and costs. The focus of this review is to describe the various strategies for AAT gene therapy for the pulmonary manifestations of AAT deficiency and the state of the art in bringing AAT gene therapy to the bedside.
Collapse
Affiliation(s)
- Maria J Chiuchiolo
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
14
|
Abstract
α1-Antitrypsin deficiency (A1ATD) is an inherited disorder caused by mutations in SERPINA1, leading to liver and lung disease. It is not a rare disorder but frequently goes underdiagnosed or misdiagnosed as asthma, chronic obstructive pulmonary disease (COPD) or cryptogenic liver disease. The most frequent disease-associated mutations include the S allele and the Z allele of SERPINA1, which lead to the accumulation of misfolded α1-antitrypsin in hepatocytes, endoplasmic reticulum stress, low circulating levels of α1-antitrypsin and liver disease. Currently, there is no cure for severe liver disease and the only management option is liver transplantation when liver failure is life-threatening. A1ATD-associated lung disease predominately occurs in adults and is caused principally by inadequate protease inhibition. Treatment of A1ATD-associated lung disease includes standard therapies that are also used for the treatment of COPD, in addition to the use of augmentation therapy (that is, infusions of human plasma-derived, purified α1-antitrypsin). New therapies that target the misfolded α1-antitrypsin or attempt to correct the underlying genetic mutation are currently under development.
Collapse
|
15
|
Manufacturing of recombinant adeno-associated viral vectors for clinical trials. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16002. [PMID: 27014711 PMCID: PMC4804725 DOI: 10.1038/mtm.2016.2] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/08/2015] [Accepted: 11/10/2015] [Indexed: 01/08/2023]
Abstract
The ability to elicit robust and long-term transgene expression in vivo together with minimal immunogenicity and little to no toxicity are only a few features that make recombinant adeno-associated virus (rAAV) vectors ideally suited for many gene therapy applications. Successful preclinical studies have encouraged the use of rAAV for therapeutic gene transfer to patients in the clinical setting. Nevertheless, the use of rAAV in clinical trials has underscored the need for production and purification systems capable of generating large amounts of highly pure rAAV particles. To date, generating vector quantities sufficient to meet the expanding clinical demand is still a hurdle when using current production systems. In this chapter, we will provide a description of the current methods to produce clinical grade of rAAV under current good manufacturing practice (cGMP) settings.
Collapse
|