1
|
Day IL, Tamboline M, Lipshutz GS, Xu S. Recent developments in translational imaging of in vivo gene therapy outcomes. Mol Ther 2024:S1525-0016(24)00849-9. [PMID: 39741403 DOI: 10.1016/j.ymthe.2024.12.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/18/2024] [Accepted: 12/27/2024] [Indexed: 01/03/2025] Open
Abstract
Gene therapy achieves therapeutic benefits by delivering genetic materials, packaged within a delivery vehicle, to target cells with defective genes. This approach has shown promise in treating various conditions, including cancer, metabolic disorders, and tissue-degenerative diseases. Over the past 5 years, molecular imaging has increasingly supported gene therapy development in both preclinical and clinical studies. High-quality images from positron emission tomography (PET), single-photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), and computed tomography (CT) enable quantitative and reliable monitoring of gene therapy. Most reported studies have applied imaging biomarkers to non-invasively evaluate the outcomes of gene therapy. This review aims to inform researchers in molecular imaging and gene therapy about the integration of these two disciplines. We highlight recent developments in using imaging biomarkers to monitor the outcome of in vivo gene therapy, where the therapeutic delivery vehicle is administered systemically. In addition, we discuss prospects for further incorporating imaging biomarkers to support the development and application of gene therapy.
Collapse
Affiliation(s)
- Isabel L Day
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mikayla Tamboline
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gerald S Lipshutz
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shili Xu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
2
|
Yang S, Zhang Q, Zhuang Y, Li J, Fu X. Plate centrifugation enhances the efficiency of polyethylenimine-based transfection and lentiviral infection. J Virol Methods 2024; 330:115039. [PMID: 39357745 DOI: 10.1016/j.jviromet.2024.115039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
PURPOSE To propose an efficient, reproducible, and consistent transgenic technology based on plate centrifugation, which is particularly useful for polyethylenimine (PEI) transfection and lentiviral infection. METHODS We optimized multiple factors that could contribute to transfection efficiency, such as the dosage of the PEI or DNA, the working solution buffer used for diluting the PEI or DNA, the incubation time for the PEI/DNA complexes, and the transfection time. RESULTS Plate centrifugation led to a 5.46-fold increase in the transfection efficiency of PEI-based transfection while maintaining the cell survival rate. Moreover, the average copy number of viral genes in each genome increased 4.96-fold with plate centrifugation. Plate centrifugation alters the spatial arrangement of the PEI/DNA complexes or lentiviruses, increasing the chances of these complexes or viruses coming into contact with target cells, ultimately resulting in improved transfection or infection efficiency. CONCLUSIONS We present a protocol based on plate centrifugation for transfection or lentiviral infection that is suitable for genetic modification of primary cells or stem cells.
Collapse
Affiliation(s)
- Shaozhe Yang
- Henan Key Laboratory of Fertility Protection and Aristogenesis, Luohe Central Hospital, 54 Renmin East Road, Luohe 462000, PR China; Prenatal Diagnostic Center, Luohe Central Hospital, 54 Renmin East Road, Luohe 462000, PR China
| | - Qingwei Zhang
- Henan Key Laboratory of Fertility Protection and Aristogenesis, Luohe Central Hospital, 54 Renmin East Road, Luohe 462000, PR China; Prenatal Diagnostic Center, Luohe Central Hospital, 54 Renmin East Road, Luohe 462000, PR China
| | - Yuan Zhuang
- Henan Key Laboratory of Fertility Protection and Aristogenesis, Luohe Central Hospital, 54 Renmin East Road, Luohe 462000, PR China; Prenatal Diagnostic Center, Luohe Central Hospital, 54 Renmin East Road, Luohe 462000, PR China
| | - Junfeng Li
- Henan Key Laboratory of Fertility Protection and Aristogenesis, Luohe Central Hospital, 54 Renmin East Road, Luohe 462000, PR China; Prenatal Diagnostic Center, Luohe Central Hospital, 54 Renmin East Road, Luohe 462000, PR China
| | - Xiuhong Fu
- Henan Key Laboratory of Fertility Protection and Aristogenesis, Luohe Central Hospital, 54 Renmin East Road, Luohe 462000, PR China; Prenatal Diagnostic Center, Luohe Central Hospital, 54 Renmin East Road, Luohe 462000, PR China.
| |
Collapse
|
3
|
Ozgür-Gunes Y, Le Stunff C, Bougnères P. Oligodendrocytes, the Forgotten Target of Gene Therapy. Cells 2024; 13:1973. [PMID: 39682723 DOI: 10.3390/cells13231973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
If the billions of oligodendrocytes (OLs) populating the central nervous system (CNS) of patients could express their feelings, they would undoubtedly tell gene therapists about their frustration with the other neural cell populations, neurons, microglia, or astrocytes, which have been the favorite targets of gene transfer experiments. This review questions why OLs have been left out of most gene therapy attempts. The first explanation is that the pathogenic role of OLs is still discussed in most CNS diseases. Another reason is that the so-called ubiquitous CAG, CBA, CBh, or CMV promoters-widely used in gene therapy studies-are unable or poorly able to activate the transcription of episomal transgene copies brought by adeno-associated virus (AAV) vectors in OLs. Accordingly, transgene expression in OLs has either not been found or not been evaluated in most gene therapy studies in rodents or non-human primates. The aims of the current review are to give OLs their rightful place among the neural cells that future gene therapy could target and to encourage researchers to test the effect of OL transduction in various CNS diseases.
Collapse
Affiliation(s)
- Yasemin Ozgür-Gunes
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Catherine Le Stunff
- MIRCen Institute, Laboratoire des Maladies Neurodégénératives, Commissariat à l'Energie Atomique, 92260 Fontenay-aux-Roses, France
- NEURATRIS at MIRCen, 92260 Fontenay-aux-Roses, France
- UMR1195 Inserm and University Paris Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Pierre Bougnères
- MIRCen Institute, Laboratoire des Maladies Neurodégénératives, Commissariat à l'Energie Atomique, 92260 Fontenay-aux-Roses, France
- NEURATRIS at MIRCen, 92260 Fontenay-aux-Roses, France
- Therapy Design Consulting, 94300 Vincennes, France
| |
Collapse
|
4
|
Kim J, Chang MY. Gene Therapy for Parkinson's Disease Using Midbrain Developmental Genes to Regulate Dopaminergic Neuronal Maintenance. Int J Mol Sci 2024; 25:12369. [PMID: 39596436 PMCID: PMC11594980 DOI: 10.3390/ijms252212369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder. It is characterized by the progressive loss of dopaminergic (DAnergic) neurons in the substantia nigra and decreased dopamine (DA) levels, which lead to both motor and non-motor symptoms. Conventional PD treatments aim to alleviate symptoms, but do not delay disease progression. PD gene therapy offers a promising approach to improving current treatments, with the potential to alleviate significant PD symptoms and cause fewer adverse effects than conventional therapies. DA replacement approaches and DA enzyme expression do not slow disease progression. However, DA replacement gene therapies, such as adeno-associated virus (AAV)-glutamic acid decarboxylase (GAD) and L-amino acid decarboxylase (AADC) gene therapies, which increase DA transmitter levels, have been demonstrated to be safe and efficient in early-phase clinical trials. Disease-modifying strategies, which aim to slow disease progression, appear to be potent. These include therapies targeting downstream pathways, neurotrophic factors, and midbrain DAnergic neuronal factors, all of which have shown potential in preclinical and clinical trials. These approaches focus on maintaining the integrity of DAnergic neurons, not just targeting the DA transmitter level itself. In particular, critical midbrain developmental and maintenance factors, such as Nurr1 and Foxa2, can interact synergistically with neighboring glia, in a paracrine mode of action, to protect DAnergic neurons against various toxic factors. Similar outcomes could be achieved by targeting both DAnergic neurons and glial cells with other candidate gene therapies, but in-depth research is needed. Neurotrophic factors, such as neurturin, the glial-cell-line-derived neurotrophic factor (GDNF), the brain-derived neurotrophic factor (BDNF), and the vascular endothelial growth factor (VEGF), are also being investigated for their potential to support DAnergic neuron survival. Additionally, gene therapies targeting key downstream pathways, such as the autophagy-lysosome pathway, mitochondrial function, and endoplasmic reticulum (ER) stress, offer promising avenues. Gene editing and delivery techniques continue to evolve, presenting new opportunities to develop effective gene therapies for PD.
Collapse
Affiliation(s)
- Jintae Kim
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Goyang 10326, Republic of Korea;
| | - Mi-Yoon Chang
- Department of Premedicine, College of Medicine, Hanyang University, FTC12, 222 Wangsimni-ro, Seoul 04763, Republic of Korea
- Biomedical Research Institute, Hanyang University, Seoul 04763, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
5
|
Currie AD, Wong JK, Okun MS. A review of temporal interference, nanoparticles, ultrasound, gene therapy, and designer receptors for Parkinson disease. NPJ Parkinsons Dis 2024; 10:195. [PMID: 39443513 PMCID: PMC11500395 DOI: 10.1038/s41531-024-00804-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
In this review, we summarize preclinical and clinical trials investigating innovative neuromodulatory approaches for Parkinson disease (PD) motor symptom management. We highlight the following technologies: temporal interference, nanoparticles for drug delivery, blood-brain barrier opening, gene therapy, optogenetics, upconversion nanoparticles, magnetothermal nanoparticles, magnetoelectric nanoparticles, ultrasound-responsive nanoparticles, and designer receptors exclusively activated by designer drugs. These studies establish the basis for novel and promising neuromodulatory treatments for PD motor symptoms.
Collapse
Affiliation(s)
- A D Currie
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.
| | - J K Wong
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - M S Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| |
Collapse
|
6
|
Kumagai S, Nakajima T, Muramatsu SI. Intraparenchymal delivery of adeno-associated virus vectors for the gene therapy of neurological diseases. Expert Opin Biol Ther 2024; 24:773-785. [PMID: 39066718 DOI: 10.1080/14712598.2024.2386339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/07/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION In gene therapy with adeno-associated virus (AAV) vectors for diseases of the central nervous system, the vectors can be administered into blood vessels, cerebrospinal fluid space, or the brain parenchyma. When gene transfer to a large area of the brain is required, the first two methods are used, but for diseases in which local gene transfer is expected to be effective, vectors are administered directly into the brain parenchyma. AREAS COVERED Strategies for intraparenchymal vector delivery in gene therapy for Parkinson's disease, aromatic l-amino acid decarboxylase (AADC) deficiency, and epilepsy are reviewed. EXPERT OPINION Stereotactic intraparenchymal injection of AAV vectors allows precise gene delivery to the target site. Although more surgically invasive than intravascular or intrathecal administration, intraparenchymal vector delivery has the advantage of a lower vector dose, and preexisting neutralizing antibodies have little effect on the transduction efficacy. This approach improves motor function in AADC deficiency and led to regulatory approval of an AAV vector for the disease in the EU. Although further validation through clinical studies is needed, direct infusion of viral vectors into the brain parenchyma is expected to be a novel treatment for Parkinson's disease and drug-resistant epilepsy.
Collapse
Affiliation(s)
- Shinichi Kumagai
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Takeshi Nakajima
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Shin-Ichi Muramatsu
- Division of Neurological Gene Therapy, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
7
|
Gao J, Gunasekar S, Xia ZJ, Shalin K, Jiang C, Chen H, Lee D, Lee S, Pisal ND, Luo JN, Griciuc A, Karp JM, Tanzi R, Joshi N. Gene therapy for CNS disorders: modalities, delivery and translational challenges. Nat Rev Neurosci 2024; 25:553-572. [PMID: 38898231 DOI: 10.1038/s41583-024-00829-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Gene therapy is emerging as a powerful tool to modulate abnormal gene expression, a hallmark of most CNS disorders. The transformative potentials of recently approved gene therapies for the treatment of spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS) and active cerebral adrenoleukodystrophy are encouraging further development of this approach. However, most attempts to translate gene therapy to the clinic have failed to make it to market. There is an urgent need not only to tailor the genes that are targeted to the pathology of interest but to also address delivery challenges and thereby maximize the utility of genetic tools. In this Review, we provide an overview of gene therapy modalities for CNS diseases, emphasizing the interconnectedness of different delivery strategies and routes of administration. Important gaps in understanding that could accelerate the clinical translatability of CNS genetic interventions are addressed, and we present lessons learned from failed clinical trials that may guide the future development of gene therapies for the treatment and management of CNS disorders.
Collapse
Affiliation(s)
- Jingjing Gao
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA.
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA.
| | - Swetharajan Gunasekar
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Ziting Judy Xia
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Kiruba Shalin
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Christopher Jiang
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Hao Chen
- Marine College, Shandong University, Weihai, China
| | - Dongtak Lee
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sohyung Lee
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Nishkal D Pisal
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
| | - James N Luo
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Ana Griciuc
- Harvard Medical School, Boston, MA, USA.
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| | - Jeffrey M Karp
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Rudolph Tanzi
- Harvard Medical School, Boston, MA, USA.
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| | - Nitin Joshi
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Patel RV, Nanda P, Richardson RM. Neurosurgical gene therapy for central nervous system diseases. Neurotherapeutics 2024; 21:e00434. [PMID: 39191071 PMCID: PMC11445594 DOI: 10.1016/j.neurot.2024.e00434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/16/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Viral vector mediated gene therapies for neurodegenerative and neurodevelopmental conditions that require neurosurgical administration continue to expand. We systematically reviewed the National Institutes of Health (NIH) ClinicalTrials.gov database to identify all clinical trials studying in-vivo viral vector mediated gene therapies targeted to the CNS for neurodegenerative and neurodevelopmental diseases. We isolated studies which delivered therapies using neurosurgical approaches: intracisternal, intraventricular, and/or intraparenchymal. Clinical trials primarily registered in international countries were included if they were referenced by an NIH registered clinical trial. We performed a scoping review to identify the preclinical studies that supported each human clinical trial. Key preclinical and clinical data were aggregated to characterize vector capsid design, delivery methods, gene expression profile, and clinical benefit. A total of 64 clinical trials were identified in active, completed, terminated, and long-term follow-up stages. A range of CNS conditions across pediatric and adult populations are being studied with CNS targeted viral vector gene therapy, including Alzheimer's disease, Parkinson's disease, AADC deficiency, sphingolipidoses, mucopolysaccharidoses, neuronal ceroid lipofuscinoses, spinal muscular atrophy, adrenoleukodystrophy, Canavan disease, frontotemporal dementia, Huntington's disease, Rett syndrome, Dravet syndrome, mesial temporal lobe epilepsy, and glutaric acidemia. Adeno-associated viral vectors (AAVs) were utilized by the majority of tested therapies, with vector serotypes, regulatory elements, delivery methods, and vector monitoring varying based on the disease being studied. Intraparenchymal delivery has evolved significantly, with MRI-guided convection-enhanced delivery established as a gold standard method for pioneering novel gene targets.
Collapse
Affiliation(s)
- Ruchit V Patel
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Pranav Nanda
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Saravanan CR, Eisa RFH, Gaviria E, Algubari A, Chandrasekar KK, Inban P, Prajjwal P, Bamba H, Singh G, Marsool MDM, Gadam S. The efficacy and safety of gene therapy approaches in Parkinson's disease: A systematic review. Dis Mon 2024; 70:101754. [PMID: 38849290 DOI: 10.1016/j.disamonth.2024.101754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the brain. Despite existing treatments, there remains an unmet need for therapies that can halt or reverse disease progression. Gene therapy has been tried and tested for a variety of illnesses, including PD. The goal of this systematic review is to assess gene therapy techniques' safety and effectiveness in PD clinical trials. METHODS Online databases PubMed/Medline, and Cochrane were used to screen the studies for this systematic review. The risk of bias of the included studies was assessed using standard tools. RESULTS Gene therapy can repair damaged dopaminergic neurons from the illness or deal with circuit anomalies in the basal ganglia connected to Parkinson's disease symptoms. Rather than only treating symptoms, this neuroprotective approach alters the illness itself. Medication for gene therapy is currently administered at the patient's bedside. It can hyperactivate specific brain circuits associated with motor dysfunction. PD therapies are developing quickly, and there aren't enough head-to-head trials evaluating the safety and effectiveness of available treatments. When choosing an advanced therapy, patient-specific factors should be considered in addition to the effectiveness and safety of each treatment option. CONCLUSION In comparison to conventional therapies, gene therapy may be advantageous for PD. It may minimize side effects, relieve symptoms, and offer dependable dopamine replacement.
Collapse
Affiliation(s)
| | | | | | | | | | - Pugazhendi Inban
- Internal Medicine, St. Mary's General Hospital and Saint Clare's Health, NY, USA
| | | | - Hyma Bamba
- MBBS, Internal Medicine, Government Medical College and Hospital, Chandigarh, India
| | - Gurmehar Singh
- MBBS, Internal Medicine, Government Medical College and Hospital, Chandigarh, India
| | | | | |
Collapse
|
10
|
Chen KS, Koubek EJ, Sakowski SA, Feldman EL. Stem cell therapeutics and gene therapy for neurologic disorders. Neurotherapeutics 2024; 21:e00427. [PMID: 39096590 PMCID: PMC11345629 DOI: 10.1016/j.neurot.2024.e00427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/05/2024] Open
Abstract
Rapid advances in biological knowledge and technological innovation have greatly advanced the fields of stem cell and gene therapies to combat a broad spectrum of neurologic disorders. Researchers are currently exploring a variety of stem cell types (e.g., embryonic, progenitor, induced pluripotent) and various transplantation strategies, each with its own advantages and drawbacks. Similarly, various gene modification techniques (zinc finger, TALENs, CRISPR-Cas9) are employed with various delivery vectors to modify underlying genetic contributors to neurologic disorders. While these two individual fields continue to blaze new trails, it is the combination of these technologies which enables genetically engineered stem cells and vastly increases investigational and therapeutic opportunities. The capability to culture and expand stem cells outside the body, along with their potential to correct genetic abnormalities in patient-derived cells or enhance cells with extra gene products, unleashes the full biological potential for innovative, multifaceted approaches to treat complex neurological disorders. In this review, we provide an overview of stem cell and gene therapies in the context of neurologic disorders, highlighting recent advances and current shortcomings, and discuss prospects for future therapies in clinical settings.
Collapse
Affiliation(s)
- Kevin S Chen
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA; Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emily J Koubek
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stacey A Sakowski
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
11
|
Di Francesco V, Chua AJ, Huang D, D'Souza A, Yang A, Bleier BS, Amiji MM. RNA therapies for CNS diseases. Adv Drug Deliv Rev 2024; 208:115283. [PMID: 38494152 DOI: 10.1016/j.addr.2024.115283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 03/19/2024]
Abstract
Neurological disorders are a diverse group of conditions that pose an increasing health burden worldwide. There is a general lack of effective therapies due to multiple reasons, of which a key obstacle is the presence of the blood-brain barrier, which limits drug delivery to the central nervous system, and generally restricts the pool of candidate drugs to small, lipophilic molecules. However, in many cases, these are unable to target key pathways in the pathogenesis of neurological disorders. As a group, RNA therapies have shown tremendous promise in treating various conditions because they offer unique opportunities for specific targeting by leveraging Watson-Crick base pairing systems, opening up possibilities to modulate pathological mechanisms that previously could not be addressed by small molecules or antibody-protein interactions. This potential paradigm shift in disease management has been enabled by recent advances in synthesizing, purifying, and delivering RNA. This review explores the use of RNA-based therapies specifically for central nervous system disorders, where we highlight the inherent limitations of RNA therapy and present strategies to augment the effectiveness of RNA therapeutics, including physical, chemical, and biological methods. We then describe translational challenges to the widespread use of RNA therapies and close with a consideration of future prospects in this field.
Collapse
Affiliation(s)
- Valentina Di Francesco
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, 140 The Fenway Building, Boston, MA 02115, USA; Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | - Andy J Chua
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, 140 The Fenway Building, Boston, MA 02115, USA; Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA; Department of Otorhinolaryngology - Head and Neck Surgery, Sengkang General Hospital, 110 Sengkang E Way, 544886, Singapore
| | - Di Huang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, 140 The Fenway Building, Boston, MA 02115, USA; Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | - Anisha D'Souza
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, 140 The Fenway Building, Boston, MA 02115, USA; Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | - Alicia Yang
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Benjamin S Bleier
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, 140 The Fenway Building, Boston, MA 02115, USA; Department of Chemical Engineering, College of Engineering, Northeastern University, 360 Huntington Avenue, 140 The Fenway Building, Boston, MA 02115, USA.
| |
Collapse
|
12
|
Lee HHC, Latzer IT, Bertoldi M, Gao G, Pearl PL, Sahin M, Rotenberg A. Gene replacement therapies for inherited disorders of neurotransmission: Current progress in succinic semialdehyde dehydrogenase deficiency. J Inherit Metab Dis 2024; 47:476-493. [PMID: 38581234 PMCID: PMC11096052 DOI: 10.1002/jimd.12735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 03/06/2024] [Accepted: 03/20/2024] [Indexed: 04/08/2024]
Abstract
Neurodevelopment is a highly organized and complex process involving lasting and often irreversible changes in the central nervous system. Inherited disorders of neurotransmission (IDNT) are a group of genetic disorders where neurotransmission is primarily affected, resulting in abnormal brain development from early life, manifest as neurodevelopmental disorders and other chronic conditions. In principle, IDNT (particularly those of monogenic causes) are amenable to gene replacement therapy via precise genetic correction. However, practical challenges for gene replacement therapy remain major hurdles for its translation from bench to bedside. We discuss key considerations for the development of gene replacement therapies for IDNT. As an example, we describe our ongoing work on gene replacement therapy for succinic semialdehyde dehydrogenase deficiency, a GABA catabolic disorder.
Collapse
Affiliation(s)
- Henry HC Lee
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Itay Tokatly Latzer
- Division of Epilepsy & Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Tel-Aviv University Faculty of Medicine, Tel-Aviv, Israel
| | - Mariarita Bertoldi
- Dept. of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Guangping Gao
- The Horae Gene Therapy Center, UMass Medical School, MA 01605, USA
| | - Phillip L Pearl
- Division of Epilepsy & Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Mustafa Sahin
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Alexander Rotenberg
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Epilepsy & Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
13
|
Facal CL, Fernández Bessone I, Muñiz JA, Pereyra AE, Pedroncini O, Páez-Paz I, Clerici-Delville R, Arnaiz C, Urrutia L, Falasco G, Argañaraz CV, Saez T, Marin-Burgin A, Soiza-Reilly M, Falzone T, Avale ME. Tau reduction with artificial microRNAs modulates neuronal physiology and improves tauopathy phenotypes in mice. Mol Ther 2024; 32:1080-1095. [PMID: 38310353 PMCID: PMC11163272 DOI: 10.1016/j.ymthe.2024.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/19/2023] [Accepted: 01/30/2024] [Indexed: 02/05/2024] Open
Abstract
Abnormal tau accumulation is the hallmark of several neurodegenerative diseases, named tauopathies. Strategies aimed at reducing tau in the brain are promising therapeutic interventions, yet more precise therapies would require targeting specific nuclei and neuronal subpopulations affected by disease while avoiding global reduction of physiological tau. Here, we developed artificial microRNAs directed against the human MAPT mRNA to dwindle tau protein by engaging the endogenous RNA interference pathway. In human differentiated neurons in culture, microRNA-mediated tau reduction diminished neuronal firing without affecting neuronal morphology or impairing axonal transport. In the htau mouse model of tauopathy, we locally expressed artificial microRNAs in the prefrontal cortex (PFC), an area particularly vulnerable to initiating tau pathology in this model. Tau knockdown prevented the accumulation of insoluble and hyperphosphorylated tau, modulated firing activity of putative pyramidal neurons, and improved glucose uptake in the PFC. Moreover, such tau reduction prevented cognitive decline in aged htau mice. Our results suggest target engagement of designed tau-microRNAs to effectively reduce tau pathology, providing a proof of concept for a potential therapeutic approach based on local tau knockdown to rescue tauopathy-related phenotypes.
Collapse
Affiliation(s)
- Carolina Lucía Facal
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), CONICET, Buenos Aires, Argentina
| | - Iván Fernández Bessone
- Instituto de Biología Celular y Neurociencias (IBCN), Universidad de Buenos Aires, CONICET-UBA, Buenos Aires, Argentina
| | - Javier Andrés Muñiz
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), CONICET, Buenos Aires, Argentina
| | - A Ezequiel Pereyra
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), CONICET, Buenos Aires, Argentina
| | - Olivia Pedroncini
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), Partner Institute of the Max Planck Society, CONICET-MPSP, Buenos Aires, Argentina
| | - Indiana Páez-Paz
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), CONICET, Buenos Aires, Argentina
| | - Ramiro Clerici-Delville
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), CONICET, Buenos Aires, Argentina
| | - Cayetana Arnaiz
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), Partner Institute of the Max Planck Society, CONICET-MPSP, Buenos Aires, Argentina
| | - Leandro Urrutia
- Centro de imágenes Moleculares, FLENI, Buenos Aires, Argentina
| | - Germán Falasco
- Centro de imágenes Moleculares, FLENI, Buenos Aires, Argentina
| | - Carla Verónica Argañaraz
- Instituto de Fisiología Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires, CONICET-UBA, Buenos Aires, Argentina
| | - Trinidad Saez
- Instituto de Biología Celular y Neurociencias (IBCN), Universidad de Buenos Aires, CONICET-UBA, Buenos Aires, Argentina
| | - Antonia Marin-Burgin
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), Partner Institute of the Max Planck Society, CONICET-MPSP, Buenos Aires, Argentina
| | - Mariano Soiza-Reilly
- Instituto de Fisiología Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires, CONICET-UBA, Buenos Aires, Argentina
| | - Tomás Falzone
- Instituto de Biología Celular y Neurociencias (IBCN), Universidad de Buenos Aires, CONICET-UBA, Buenos Aires, Argentina; Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), Partner Institute of the Max Planck Society, CONICET-MPSP, Buenos Aires, Argentina
| | - María Elena Avale
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), CONICET, Buenos Aires, Argentina.
| |
Collapse
|
14
|
Gualerzi A, Picciolini S, Bedoni M, Guerini FR, Clerici M, Agliardi C. Extracellular Vesicles as Biomarkers for Parkinson's Disease: How Far from Clinical Translation? Int J Mol Sci 2024; 25:1136. [PMID: 38256215 PMCID: PMC10816807 DOI: 10.3390/ijms25021136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder affecting about 10 million people worldwide with a prevalence of about 2% in the over-80 population. The disease brings in also a huge annual economic burden, recently estimated by the Michael J Fox Foundation for Parkinson's Research to be USD 52 billion in the United States alone. Currently, no effective cure exists, but available PD medical treatments are based on symptomatic prescriptions that include drugs, surgical approaches and rehabilitation treatment. Due to the complex biology of a PD brain, the design of clinical trials and the personalization of treatment strategies require the identification of accessible and measurable biomarkers to monitor the events induced by treatment and disease progression and to predict patients' responsiveness. In the present review, we strive to briefly summarize current knowledge about PD biomarkers, focusing on the role of extracellular vesicles as active or involuntary carriers of disease-associated proteins, with particular attention to those research works that envision possible clinical applications.
Collapse
Affiliation(s)
- Alice Gualerzi
- IRCCS Fondazione Don Gnocchi Onlus, 20148 Milan, Italy; (A.G.); (S.P.); (M.C.); (C.A.)
| | - Silvia Picciolini
- IRCCS Fondazione Don Gnocchi Onlus, 20148 Milan, Italy; (A.G.); (S.P.); (M.C.); (C.A.)
| | - Marzia Bedoni
- IRCCS Fondazione Don Gnocchi Onlus, 20148 Milan, Italy; (A.G.); (S.P.); (M.C.); (C.A.)
| | - Franca Rosa Guerini
- IRCCS Fondazione Don Gnocchi Onlus, 20148 Milan, Italy; (A.G.); (S.P.); (M.C.); (C.A.)
| | - Mario Clerici
- IRCCS Fondazione Don Gnocchi Onlus, 20148 Milan, Italy; (A.G.); (S.P.); (M.C.); (C.A.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Cristina Agliardi
- IRCCS Fondazione Don Gnocchi Onlus, 20148 Milan, Italy; (A.G.); (S.P.); (M.C.); (C.A.)
| |
Collapse
|
15
|
Ingusci S, Hall BL, Goins WF, Cohen JB, Glorioso JC. Viral vectors for gene delivery to the central nervous system. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:59-81. [PMID: 39341663 DOI: 10.1016/b978-0-323-90120-8.00001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Brain diseases with a known or suspected genetic basis represent an important frontier for advanced therapeutics. The central nervous system (CNS) is an intricate network in which diverse cell types with multiple functions communicate via complex signaling pathways, making therapeutic intervention in brain-related diseases challenging. Nevertheless, as more information on the molecular genetics of brain-related diseases becomes available, genetic intervention using gene therapeutic strategies should become more feasible. There remain, however, several significant hurdles to overcome that relate to (i) the development of appropriate gene vectors and (ii) methods to achieve local or broad vector delivery. Clearly, gene delivery tools must be engineered for distribution to the correct cell type in a specific brain region and to accomplish therapeutic transgene expression at an appropriate level and duration. They also must avoid all toxicity, including the induction of inflammatory responses. Over the last 40 years, various types of viral vectors have been developed as tools to introduce therapeutic genes into the brain, primarily targeting neurons. This review describes the most prominent vector systems currently approaching clinical application for CNS disorders and highlights both remaining challenges as well as improvements in vector designs that achieve greater safety, defined tropism, and therapeutic gene expression.
Collapse
Affiliation(s)
- Selene Ingusci
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bonnie L Hall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - William F Goins
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Justus B Cohen
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joseph C Glorioso
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
16
|
Widner H. Immunology of cell and gene therapy approaches for neurologic diseases. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:135-144. [PMID: 39341650 DOI: 10.1016/b978-0-323-90120-8.00018-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Repair and replacement strategies using cell replacement or viral gene transfer for neurologic diseases are becoming increasingly efficacious with clinically meaningful benefits in several conditions. An increased understanding of disease processes opens up opportunities for genetic therapies and precision medicine methods aiming at disease modification or repair of lesioned neurologic structures. However, such therapeutic effects may be limited or rendered ineffective by immune responses against gene products or cells used for the intended treatments. When introducing therapeutic agents into the nervous system, a set of biologic responses are inevitably triggered, which may lead to host responses that limit the intended therapeutic goals. Factors of importance include the type of vector used and origin of cells, the mode of introduction, the degree of host immunization, and any prior exposure to the agents used. It is possible to apply specific treatments that interfere with many of these steps and factors in order to limit host immunization and to reduce or eliminate host effector reactions against the therapeutic agents. This includes immune-evading design measures of the advanced therapeutic medicinal products and various immunosuppressive processes. Limited duration of specific immune modulations may be possible under carefully monitored programs.
Collapse
Affiliation(s)
- Håkan Widner
- Department of Neurology, Skåne University Hospital, Lund, Sweden; Section for Neurology, Department of Clinical Sciences, Lund University, Lund, Sweden.
| |
Collapse
|
17
|
Bettegazzi B, Cattaneo S, Simonato M, Zucchini S, Soukupova M. Viral Vector-Based Gene Therapy for Epilepsy: What Does the Future Hold? Mol Diagn Ther 2024; 28:5-13. [PMID: 38103141 PMCID: PMC10786988 DOI: 10.1007/s40291-023-00687-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2023] [Indexed: 12/17/2023]
Abstract
In recent years, many pre-clinical studies have tested gene therapy approaches as possible treatments for epilepsy, following the idea that they may provide an alternative to conventional pharmacological and surgical options. Multiple gene therapy approaches have been developed, including those based on anti-sense oligonucleotides, RNA interference, and viral vectors. In this opinion article, we focus on translational issues related to viral vector-mediated gene therapy for epilepsy. Research has advanced dramatically in addressing issues like viral vector optimization, target identification, strategies of gene expression, editing or regulation, and safety. Some of these pre-clinically validated potential gene therapies are now being tested in clinical trials, in patients with genetic or focal forms of drug-resistant epilepsy. Here, we discuss the ongoing translational research and the advancements that are needed and expected in the near future. We then describe the clinical trials in the pipeline and the further challenges that will need to be addressed at the clinical and economic levels. Our optimistic view is that all these issues and challenges can be overcome, and that gene therapy approaches for epilepsy will soon become a clinical reality.
Collapse
Affiliation(s)
| | - Stefano Cattaneo
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Neuroscience and Rehabilitation, University of Ferrara, via Fossato di Mortara 70, 44121, Ferrara, Italy
| | - Michele Simonato
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Neuroscience and Rehabilitation, University of Ferrara, via Fossato di Mortara 70, 44121, Ferrara, Italy
| | - Silvia Zucchini
- Department of Neuroscience and Rehabilitation, University of Ferrara, via Fossato di Mortara 70, 44121, Ferrara, Italy.
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, Ferrara, Italy.
| | - Marie Soukupova
- Department of Neuroscience and Rehabilitation, University of Ferrara, via Fossato di Mortara 70, 44121, Ferrara, Italy
| |
Collapse
|
18
|
Chu WS, Ng J, Waddington SN, Kurian MA. Gene therapy for neurotransmitter-related disorders. J Inherit Metab Dis 2024; 47:176-191. [PMID: 38221762 PMCID: PMC11108624 DOI: 10.1002/jimd.12697] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 11/14/2023] [Accepted: 11/28/2023] [Indexed: 01/16/2024]
Abstract
Inborn errors of neurotransmitter (NT) metabolism are a group of rare, heterogenous diseases with predominant neurological features, such as movement disorders, autonomic dysfunction, and developmental delay. Clinical overlap with other disorders has led to delayed diagnosis and treatment, and some conditions are refractory to oral pharmacotherapies. Gene therapies have been developed and translated to clinics for paediatric inborn errors of metabolism, with 38 interventional clinical trials ongoing to date. Furthermore, efforts in restoring dopamine synthesis and neurotransmission through viral gene therapy have been developed for Parkinson's disease. Along with the recent European Medicines Agency (EMA) and Medicines and Healthcare Products Regulatory Agency (MHRA) approval of an AAV2 gene supplementation therapy for AADC deficiency, promising efficacy and safety profiles can be achieved in this group of diseases. In this review, we present preclinical and clinical advances to address NT-related diseases, and summarise potential challenges that require careful considerations for NT gene therapy studies.
Collapse
Affiliation(s)
- Wing Sum Chu
- Gene Transfer Technology Group, EGA Institute for Women's HealthUniversity College LondonLondonUK
- Genetic Therapy Accelerator Centre, Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Joanne Ng
- Gene Transfer Technology Group, EGA Institute for Women's HealthUniversity College LondonLondonUK
- Genetic Therapy Accelerator Centre, Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Simon N. Waddington
- Gene Transfer Technology Group, EGA Institute for Women's HealthUniversity College LondonLondonUK
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Manju A. Kurian
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
- Department of NeurologyGreat Ormond Street Hospital for ChildrenLondonUK
| |
Collapse
|
19
|
Barker RA, Buttery PC. Disease-specific interventions: The use of cell and gene therapies for Parkinson disease. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:171-191. [PMID: 39341654 DOI: 10.1016/b978-0-323-90120-8.00003-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Approaches to repair the brain around the loss of the nigrostriatal dopaminergic pathways in Parkinson disease (PD) are not new and have been attempted over many years. However, of late, the situation has moved forward in two main ways. In the case of cell therapies, the ability to make large numbers of authentic midbrain dopaminergic neuroblasts from human pluripotent stem cell sources has turned what was an interesting avenue of research into a major area of investment and trialing, by academics in conjunction with Pharma. In the case of gene therapies, their use around dopamine replacement has waned, as the interest in using them for disease modification targeting PD-specific pathways has grown. In this chapter, we discuss all these developments and the current status of cell and gene therapies for PD.
Collapse
Affiliation(s)
- Roger A Barker
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.
| | - Philip C Buttery
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
20
|
Lundstrom K. Viral vectors engineered for gene therapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 379:1-41. [PMID: 37541721 DOI: 10.1016/bs.ircmb.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Gene therapy has seen major progress in recent years. Viral vectors have made a significant contribution through efficient engineering for improved delivery and safety. A large variety of indications such as cancer, cardiovascular, metabolic, hematological, neurological, muscular, ophthalmological, infectious diseases, and immunodeficiency have been targeted. Viral vectors based on adenoviruses, adeno-associated viruses, herpes simplex viruses, retroviruses including lentiviruses, alphaviruses, flaviviruses, measles viruses, rhabdoviruses, Newcastle disease virus, poxviruses, picornaviruses, reoviruses, and polyomaviruses have been used. Proof-of-concept has been demonstrated for different indications in animal models. Therapeutic efficacy has also been achieved in clinical trials. Several viral vector-based drugs have been approved for the treatment of cancer, and hematological, metabolic, and neurological diseases. Moreover, viral vector-based vaccines have been approved against COVID-19 and Ebola virus disease.
Collapse
|
21
|
Ng J, Barral S, Waddington SN, Kurian MA. Gene Therapy for Dopamine Dyshomeostasis: From Parkinson's to Primary Neurotransmitter Diseases. Mov Disord 2023; 38:924-936. [PMID: 37147851 PMCID: PMC10946997 DOI: 10.1002/mds.29416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/23/2023] [Accepted: 04/05/2023] [Indexed: 05/07/2023] Open
Abstract
Neurological disorders encompass a broad range of neurodegenerative and neurodevelopmental diseases that are complex and almost universally without disease modifying treatments. There is, therefore, significant unmet clinical need to develop novel therapeutic strategies for these patients. Viral gene therapies are a promising approach, where gene delivery is achieved through viral vectors such as adeno-associated virus and lentivirus. The clinical efficacy of such gene therapies has already been observed in two neurological disorders of pediatric onset; for spinal muscular atrophy and aromatic L-amino acid decarboxylase (AADC) deficiency, gene therapy has significantly modified the natural history of disease in these life-limiting neurological disorders. Here, we review recent advances in gene therapy, focused on the targeted delivery of dopaminergic genes for Parkinson's disease and the primary neurotransmitter disorders, AADC deficiency and dopamine transporter deficiency syndrome (DTDS). Although recent European Medicines Agency and Medicines and Healthcare products Regulatory Agency approval of Upstaza (eladocagene exuparvovec) signifies an important landmark, numerous challenges remain. Future research will need to focus on defining the optimal therapeutic window for clinical intervention, better understanding of the duration of therapeutic efficacy, and improved brain targeting. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Joanne Ng
- Gene Transfer Technology Group, EGA‐Institute for Women's HealthUniversity College LondonLondonUnited Kingdom
- Genetic Therapy Accelerator Centre, Department of Neurodegenerative Disease, Queen Square Institute of NeurologyUniversity College LondonLondonUnited Kingdom
| | - Serena Barral
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, GOS‐Institute of Child HealthUniversity College LondonLondonUnited Kingdom
| | - Simon N. Waddington
- Gene Transfer Technology Group, EGA‐Institute for Women's HealthUniversity College LondonLondonUnited Kingdom
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Manju A. Kurian
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, GOS‐Institute of Child HealthUniversity College LondonLondonUnited Kingdom
- Department of NeurologyGreat Ormond Street Hospital for ChildrenLondonUnited Kingdom
| |
Collapse
|
22
|
Cronin SJF, Yu W, Hale A, Licht-Mayer S, Crabtree MJ, Korecka JA, Tretiakov EO, Sealey-Cardona M, Somlyay M, Onji M, An M, Fox JD, Turnes BL, Gomez-Diaz C, da Luz Scheffer D, Cikes D, Nagy V, Weidinger A, Wolf A, Reither H, Chabloz A, Kavirayani A, Rao S, Andrews N, Latremoliere A, Costigan M, Douglas G, Freitas FC, Pifl C, Walz R, Konrat R, Mahad DJ, Koslov AV, Latini A, Isacson O, Harkany T, Hallett PJ, Bagby S, Woolf CJ, Channon KM, Je HS, Penninger JM. Crucial neuroprotective roles of the metabolite BH4 in dopaminergic neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539795. [PMID: 37214873 PMCID: PMC10197517 DOI: 10.1101/2023.05.08.539795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Dopa-responsive dystonia (DRD) and Parkinson's disease (PD) are movement disorders caused by the dysfunction of nigrostriatal dopaminergic neurons. Identifying druggable pathways and biomarkers for guiding therapies is crucial due to the debilitating nature of these disorders. Recent genetic studies have identified variants of GTP cyclohydrolase-1 (GCH1), the rate-limiting enzyme in tetrahydrobiopterin (BH4) synthesis, as causative for these movement disorders. Here, we show that genetic and pharmacological inhibition of BH4 synthesis in mice and human midbrain-like organoids accurately recapitulates motor, behavioral and biochemical characteristics of these human diseases, with severity of the phenotype correlating with extent of BH4 deficiency. We also show that BH4 deficiency increases sensitivities to several PD-related stressors in mice and PD human cells, resulting in worse behavioral and physiological outcomes. Conversely, genetic and pharmacological augmentation of BH4 protects mice from genetically- and chemically induced PD-related stressors. Importantly, increasing BH4 levels also protects primary cells from PD-affected individuals and human midbrain-like organoids (hMLOs) from these stressors. Mechanistically, BH4 not only serves as an essential cofactor for dopamine synthesis, but also independently regulates tyrosine hydroxylase levels, protects against ferroptosis, scavenges mitochondrial ROS, maintains neuronal excitability and promotes mitochondrial ATP production, thereby enhancing mitochondrial fitness and cellular respiration in multiple preclinical PD animal models, human dopaminergic midbrain-like organoids and primary cells from PD-affected individuals. Our findings pinpoint the BH4 pathway as a key metabolic program at the intersection of multiple protective mechanisms for the health and function of midbrain dopaminergic neurons, identifying it as a potential therapeutic target for PD.
Collapse
Affiliation(s)
- Shane J F Cronin
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Weonjin Yu
- Signature Program in Neuroscience and Behavioural Disorders, Duke-National University of Singapore (NUS) Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Ashley Hale
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Simon Licht-Mayer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Mark J Crabtree
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Joanna A Korecka
- Neurodegeneration Research Institute, Harvard Medical School/McLean Hospital, Belmont, MA, 02478, USA
| | - Evgenii O Tretiakov
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Marco Sealey-Cardona
- Department of Structural and Computational Biology, Max Perutz Labs, Vienna Biocenter Campus 5, 1030, Vienna, Austria
| | - Mate Somlyay
- Department of Structural and Computational Biology, Max Perutz Labs, Vienna Biocenter Campus 5, 1030, Vienna, Austria
| | - Masahiro Onji
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Meilin An
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Jesse D Fox
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Bruna Lenfers Turnes
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Carlos Gomez-Diaz
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Débora da Luz Scheffer
- LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC 88037-100, Brazil
| | - Domagoj Cikes
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Vanja Nagy
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD); Department of Neurology, Medical University of Vienna (MUW), 1090 Vienna, Austria
| | - Adelheid Weidinger
- Ludwig Boltzmann Institute for Traumatology. The Research Center in Cooperation with AUVA, Donaueschingen Str. 13, 1200 Vienna, Austria
| | - Alexandra Wolf
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Harald Reither
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Antoine Chabloz
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Anoop Kavirayani
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Shuan Rao
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Nick Andrews
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Alban Latremoliere
- Neurosurgery Department, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Michael Costigan
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Gillian Douglas
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | | | - Christian Pifl
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Roger Walz
- Center for Applied Neurocience, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil; Neurology Division, Internal Medicine Department, University Hospital of UFSC, Florianópolis, Brazil
| | - Robert Konrat
- Department of Structural and Computational Biology, Max Perutz Labs, Vienna Biocenter Campus 5, 1030, Vienna, Austria
| | - Don J Mahad
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Andrey V Koslov
- Ludwig Boltzmann Institute for Traumatology. The Research Center in Cooperation with AUVA, Donaueschingen Str. 13, 1200 Vienna, Austria
| | - Alexandra Latini
- LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC 88037-100, Brazil
| | - Ole Isacson
- Neurodegeneration Research Institute, Harvard Medical School/McLean Hospital, Belmont, MA, 02478, USA
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
- Department of Neuroscience, Biomedicum 7D, Karolinska Institute, Solna, Sweden
| | - Penelope J Hallett
- Neurodegeneration Research Institute, Harvard Medical School/McLean Hospital, Belmont, MA, 02478, USA
| | - Stefan Bagby
- Department of Biology and Biochemistry and the Milner Centre for Evolution, University of Bath, Bath, UK
| | - Clifford J Woolf
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Keith M Channon
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Hyunsoo Shawn Je
- Signature Program in Neuroscience and Behavioural Disorders, Duke-National University of Singapore (NUS) Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| |
Collapse
|
23
|
Skidmore S, Barker RA. Challenges in the clinical advancement of cell therapies for Parkinson's disease. Nat Biomed Eng 2023; 7:370-386. [PMID: 36635420 PMCID: PMC7615223 DOI: 10.1038/s41551-022-00987-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 11/04/2022] [Indexed: 01/14/2023]
Abstract
Cell therapies as potential treatments for Parkinson's disease first gained traction in the 1980s, owing to the clinical success of trials that used transplants of foetal midbrain dopaminergic tissue. However, the poor standardization of the tissue for grafting, and constraints on its availability and ethical use, have hindered this treatment strategy. Recent advances in stem-cell technologies and in the understanding of the development of dopaminergic neurons have enabled preclinical advancements of promising stem-cell therapies. To move these therapies to the clinic, appropriate levels of safety screening, as well as optimization of the cell products and the scalability of their manufacturing, will be required. In this Review, we discuss how challenges pertaining to cell sources, functional and safety testing, manufacturing and storage, and clinical-trial design are being addressed to advance the translational and clinical development of cell therapies for Parkinson's disease.
Collapse
Affiliation(s)
- Sophie Skidmore
- Wellcome and MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre Cambridge Biomedical Campus, Cambridge, UK
| | - Roger A Barker
- Wellcome and MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre Cambridge Biomedical Campus, Cambridge, UK.
- John van Geest Centre for Brain Repair, Department of Clinical Neuroscience, For vie Site, Cambridge, UK.
| |
Collapse
|
24
|
Viral Vectors in Gene Therapy: Where Do We Stand in 2023? Viruses 2023; 15:v15030698. [PMID: 36992407 PMCID: PMC10059137 DOI: 10.3390/v15030698] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
Viral vectors have been used for a broad spectrum of gene therapy for both acute and chronic diseases. In the context of cancer gene therapy, viral vectors expressing anti-tumor, toxic, suicide and immunostimulatory genes, such as cytokines and chemokines, have been applied. Oncolytic viruses, which specifically replicate in and kill tumor cells, have provided tumor eradication, and even cure of cancers in animal models. In a broader meaning, vaccine development against infectious diseases and various cancers has been considered as a type of gene therapy. Especially in the case of COVID-19 vaccines, adenovirus-based vaccines such as ChAdOx1 nCoV-19 and Ad26.COV2.S have demonstrated excellent safety and vaccine efficacy in clinical trials, leading to Emergency Use Authorization in many countries. Viral vectors have shown great promise in the treatment of chronic diseases such as severe combined immunodeficiency (SCID), muscular dystrophy, hemophilia, β-thalassemia, and sickle cell disease (SCD). Proof-of-concept has been established in preclinical studies in various animal models. Clinical gene therapy trials have confirmed good safety, tolerability, and therapeutic efficacy. Viral-based drugs have been approved for cancer, hematological, metabolic, neurological, and ophthalmological diseases as well as for vaccines. For example, the adenovirus-based drug Gendicine® for non-small-cell lung cancer, the reovirus-based drug Reolysin® for ovarian cancer, the oncolytic HSV T-VEC for melanoma, lentivirus-based treatment of ADA-SCID disease, and the rhabdovirus-based vaccine Ervebo against Ebola virus disease have been approved for human use.
Collapse
|
25
|
Barker RA, Björklund A. Restorative cell and gene therapies for Parkinson's disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:211-226. [PMID: 36803812 DOI: 10.1016/b978-0-323-85555-6.00012-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
One of the core pathological features of Parkinson's disease (PD) is the loss of the dopaminergic nigrostriatal pathway which lies at the heart of many of the motor features of this condition as well as some of the cognitive problems. The importance of this pathological event is evident through the clinical benefits that are seen when patients with PD are treated with dopaminergic agents, at least in early-stage disease. However, these agents create problems of their own through stimulation of more intact dopaminergic networks within the central nervous system causing major neuropsychiatric problems including dopamine dysregulation. In addition, over time the nonphysiological stimulation of striatal dopamine receptors by l-dopa containing drugs leads to the genesis of l-dopa-induced dyskinesias that can become very disabling in many cases. As such, there has been much interest in trying to better reconstitute the dopaminergic nigrostriatal pathway using either factors to regrow it, cells to replace it, or gene therapies to restore dopamine transmission in the striatum. In this chapter, we lay out the rationale, history and current status of these different therapies as well as highlighting where the field is heading and what new interventions might come to clinic in the coming years.
Collapse
Affiliation(s)
- Roger A Barker
- Department of Clinical Neuroscience, Cambridge Centre for Brain Repair, Cambridge, United Kingdom.
| | - Anders Björklund
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| |
Collapse
|
26
|
Li J, Li N, Wei J, Feng C, Chen Y, Chen T, Ai Z, Zhu X, Ji W, Li T. Genetically engineered mesenchymal stem cells with dopamine synthesis for Parkinson's disease in animal models. NPJ Parkinsons Dis 2022; 8:175. [PMID: 36550118 PMCID: PMC9780305 DOI: 10.1038/s41531-022-00440-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Although striatal delivery of three critical genes for dopamine synthesis by viruses is a potential clinical approach for treating Parkinson's disease (PD), the approach makes it difficult to finely control dopamine secretion amounts and brings safety concerns. Here, we generate genetically engineered mesenchymal stem cells encoding three critical genes for dopamine synthesis (DOPA-MSCs). DOPA-MSCs retain their MSC identity and stable ability to secrete dopamine during passaging. Following transplantation, DOPA-MSCs reinstate striatal dopamine levels and correct motor function in PD rats. Importantly, after grafting into the caudate and putamen, DOPA-MSCs provide homotopic reconstruction of midbrain dopamine pathways by restoring striatal dopamine levels, and safely and long-term (up to 51 months) correct motor disorders and nonmotor deficits in acute and chronic PD rhesus monkey models of PD even with advanced PD symptoms. The long-term benefits and safety results support the idea that the development of dopamine-synthesized engineered cell transplantation is an important strategy for treating PD.
Collapse
Affiliation(s)
- Jun Li
- grid.218292.20000 0000 8571 108XState Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, 650500 Kunming, Yunnan China ,grid.218292.20000 0000 8571 108XYunnan Key Laboratory of Primate Biomedical Research, 650500 Kunming, Yunnan China
| | - Nan Li
- grid.218292.20000 0000 8571 108XState Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, 650500 Kunming, Yunnan China ,grid.218292.20000 0000 8571 108XYunnan Key Laboratory of Primate Biomedical Research, 650500 Kunming, Yunnan China
| | - Jingkuan Wei
- grid.218292.20000 0000 8571 108XState Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, 650500 Kunming, Yunnan China ,grid.218292.20000 0000 8571 108XYunnan Key Laboratory of Primate Biomedical Research, 650500 Kunming, Yunnan China
| | - Chun Feng
- grid.218292.20000 0000 8571 108XState Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, 650500 Kunming, Yunnan China ,grid.218292.20000 0000 8571 108XYunnan Key Laboratory of Primate Biomedical Research, 650500 Kunming, Yunnan China
| | - Yanying Chen
- grid.218292.20000 0000 8571 108XState Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, 650500 Kunming, Yunnan China ,grid.218292.20000 0000 8571 108XYunnan Key Laboratory of Primate Biomedical Research, 650500 Kunming, Yunnan China
| | - Tingwei Chen
- grid.218292.20000 0000 8571 108XState Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, 650500 Kunming, Yunnan China ,grid.218292.20000 0000 8571 108XYunnan Key Laboratory of Primate Biomedical Research, 650500 Kunming, Yunnan China
| | - Zongyong Ai
- grid.218292.20000 0000 8571 108XState Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, 650500 Kunming, Yunnan China ,grid.218292.20000 0000 8571 108XYunnan Key Laboratory of Primate Biomedical Research, 650500 Kunming, Yunnan China
| | - Xiaoqing Zhu
- grid.218292.20000 0000 8571 108XState Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, 650500 Kunming, Yunnan China ,grid.218292.20000 0000 8571 108XYunnan Key Laboratory of Primate Biomedical Research, 650500 Kunming, Yunnan China
| | - Weizhi Ji
- grid.218292.20000 0000 8571 108XState Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, 650500 Kunming, Yunnan China ,grid.218292.20000 0000 8571 108XYunnan Key Laboratory of Primate Biomedical Research, 650500 Kunming, Yunnan China
| | - Tianqing Li
- grid.218292.20000 0000 8571 108XState Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, 650500 Kunming, Yunnan China ,grid.218292.20000 0000 8571 108XYunnan Key Laboratory of Primate Biomedical Research, 650500 Kunming, Yunnan China
| |
Collapse
|
27
|
Salahi S, Mousavi MA, Azizi G, Hossein-Khannazer N, Vosough M. Stem Cell-based and Advanced Therapeutic Modalities for Parkinson's Disease: A Risk-effectiveness Patient-centered Analysis. Curr Neuropharmacol 2022; 20:2320-2345. [PMID: 35105291 PMCID: PMC9890289 DOI: 10.2174/1570159x20666220201100238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/14/2022] [Accepted: 01/26/2022] [Indexed: 12/29/2022] Open
Abstract
Treatment of Parkinson's disease (PD), the second most prevalent neurodegenerative disorder, is currently considered a challenging issue since it causes substantial disability, poor quality of life, and mortality. Despite remarkable progress in advanced conventional therapeutic interventions, the global burden of the disease has nearly doubled, prompting us to assess the riskeffectiveness of different treatment modalities. Each protocol could be considered as the best alternative treatment depending on the patient's situation. Prescription of levodopa, the most effective available medicine for this disorder, has been associated with many complications, i.e., multiple episodes of "off-time" and treatment resistance. Other medications, which are typically used in combination with levodopa, may have several adverse effects as well. As a result, the therapies that are more in line with human physiology and make the least interference with other pathways are worth investigating. On the other hand, remaining and persistent symptoms after therapy and the lack of effective response to the conventional approaches have raised expectations towards innovative alternative approaches, such as stem cell-based therapy. It is critical to not overlook the unexplored side effects of innovative approaches due to the limited number of research. In this review, we aimed to compare the efficacy and risk of advanced therapies with innovative cell-based and stemcell- based modalities in PD patients. This paper recapitulated the underlying factors/conditions, which could lead us to more practical and established therapeutic outcomes with more advantages and few complications. It could be an initial step to reconsider the therapeutic blueprint for patients with Parkinson's disease.
Collapse
Affiliation(s)
- Sarvenaz Salahi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maryam Alsadat Mousavi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Nikoo Hossein-Khannazer
- Gastroenterology and Liver Diseases Research Center, Research, Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
28
|
Del Campo-Montoya R, Luquin MR, Puerta E, Garbayo E, Blanco-Prieto M. Hydrogels for Brain Repair: Application to Parkinson's Disease. Expert Opin Drug Deliv 2022; 19:1521-1537. [PMID: 36240170 DOI: 10.1080/17425247.2022.2136161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Parkinson's disease is the second most common neurodegenerative disease. Currently, there are no curative therapies, with only symptomatic treatment available. One of the principal reasons for the lack of treatments is the problem of delivering drugs to the brain, mainly due to the blood-brain barrier. Hydrogels are presented as ideal platforms for delivering treatments to the brain ranging from small molecules to cell replacement therapies. AREAS COVERED The potential application of hydrogel-based therapies for Parkinson's disease is addressed. The desirable composition and mechanical properties of these therapies for brain application are discussed, alongside the preclinical research available with hydrogels in Parkinson's disease. Lastly, translational and manufacturing challenges are presented. EXPERT OPINION Parkinson's disease urgently needs novel therapies to delay its progression and for advanced stages, at which conventional therapies fail to control motor symptoms. Neurotrophic factor-loaded hydrogels with stem cells offer one of the most promising therapies. This approach may increase the striatal dopamine content while protecting and promoting the differentiation of stem cells although the generation of synapses between engrafted and host cells remains an issue to overcome. Other challenges to consider are related to the route of administration of hydrogels and their large-scale production, required to accelerate their translation toward the clinic.
Collapse
Affiliation(s)
| | | | | | - E Garbayo
- University of navarra, pamplona, 31008 spain
| | | |
Collapse
|
29
|
Serva SN, Bernstein J, Thompson JA, Kern DS, Ojemann SG. An update on advanced therapies for Parkinson's disease: From gene therapy to neuromodulation. Front Surg 2022; 9:863921. [PMID: 36211256 PMCID: PMC9537763 DOI: 10.3389/fsurg.2022.863921] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Advanced Parkinson's disease (PD) is characterized by increasingly debilitating impaired movements that include motor fluctuations and dyskinesias. At this stage of the disease, pharmacological management can result in unsatisfactory clinical benefits and increase the occurrence of adverse effects, leading to the consideration of advanced therapies. The scope of this review is to provide an overview of currently available therapies for advanced PD, specifically levodopa–carbidopa intestinal gel, continuous subcutaneous apomorphine infusion, radiofrequency ablation, stereotactic radiosurgery, MRI-guided focused ultrasound, and deep brain stimulation. Therapies in clinical trials are also discussed, including novel formulations of subcutaneous carbidopa/levodopa, gene-implantation therapies, and cell-based therapies. This review focuses on the clinical outcomes and adverse effects of the various therapies and also considers patient-specific characteristics that may influence treatment choice. This review can equip providers with updated information on advanced therapies in PD to better counsel patients on the available options.
Collapse
Affiliation(s)
- Stephanie N. Serva
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jacob Bernstein
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - John A. Thompson
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Drew S. Kern
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Correspondence: Steven G. Ojemann Drew S. Kern
| | - Steven G. Ojemann
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Correspondence: Steven G. Ojemann Drew S. Kern
| |
Collapse
|
30
|
Rybarikova M, Almacellas Barbanoj A, Schorge S, Déglon N. CNS gene therapy: present developments and emerging trends accelerating industry-academia pathways. Hum Gene Ther 2022; 33:913-922. [PMID: 36070435 DOI: 10.1089/hum.2022.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The recent success of first central nervous system gene therapies has reinvigorated the growing community of gene therapy researchers and strengthened the field's market position. We are witnessing an increase of clinical trials with long-term efficiency mainly for neurometabolic, neurodegenerative and neurodevelopmental diseases caused by loss-of-function mutations. The ever-expanding knowledge and accessibility to the most advanced tools allow enrichment of applications to more complex diseases. This gradually contributes towards sealing the gap between top diseases impacting current global health and those towards which gene therapy development is currently aimed. Here, we highlight innovative therapeutic approaches that have reached the clinics and outline the latest improvements of vector design and targeting. Finally, we address the pressing challenges faced by clinical trials and the direction they are heading.
Collapse
Affiliation(s)
- Margareta Rybarikova
- Lausanne University Hospital, Department of Clinical Neurosciences, Lausanne, Vaud, Switzerland.,Lausanne University Hospital, Neuroscience Research Center , Lausanne, Vaud, Switzerland;
| | - Amanda Almacellas Barbanoj
- University College London, Institute of Neurology (IoN), Department of Clinical and Experimental Epilepsy (DCEE), London, London, United Kingdom of Great Britain and Northern Ireland;
| | - Stephanie Schorge
- University College London, Institute of Neurology (IoN), Department of Clinical and Experimental Epilepsy (DCEE), London, London, United Kingdom of Great Britain and Northern Ireland;
| | - Nicole Déglon
- Lausanne University Hospital, Department of Clinical Neurosciences, Lausanne, Vaud, Switzerland.,Lausanne University Hospital, Neuroscience Research Center, Lausanne, Vaud, Switzerland;
| |
Collapse
|
31
|
Procyk E, Meunier M. BioSimia, France CNRS network for nonhuman primate biomedical research in infectiology, immunology, and neuroscience. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100051. [PMID: 36685763 PMCID: PMC9846450 DOI: 10.1016/j.crneur.2022.100051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/08/2022] [Accepted: 08/08/2022] [Indexed: 01/25/2023] Open
Abstract
Research and developments based on nonhuman primate models have a specific place in biomedical sciences, and nonhuman primate species also have a specific place in the public opinion on the use of animal in research. While nonhuman primates are used in very limited number compared to other animal models, they are rightly the focus of deep ethical concerns. The importance of nonhuman primates in neuroscientific fundamental and preclinical discoveries together with the targeting of such research by activist groups well illustrate this fact. Nonhuman primates also highly contribute to other biomedical fields including immunology, virology, or metabolic and respiratory physiology. In all these fields, researchers, engineers and technicians face similar matters and share the same needs for optimal animal welfare, handling, and veterinary care, the same quest for first-rate research infrastructure and funding, and the same yearning for more public understanding and support. In this article, we give an overview of the evolution of human-animal relationships and public attitudes to animal research in France, and we recount the creation of BioSimia, France network for nonhuman primate biomedical research which now links all academic laboratories nationwide in all the domains for which nonhuman primates remain essential. We explain the principles as well as the outcomes of networking across disciplines. As a perspective, we outline the potential benefits of extending such network to a European scale.
Collapse
Affiliation(s)
- Emmanuel Procyk
- University of Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France,Corresponding author.
| | - Martine Meunier
- University of Lyon 1, Integrative Multisensory Perception Action and Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France
| |
Collapse
|
32
|
Internal Ribosome Entry Site (IRES)-Mediated Translation and Its Potential for Novel mRNA-Based Therapy Development. Biomedicines 2022; 10:biomedicines10081865. [PMID: 36009412 PMCID: PMC9405587 DOI: 10.3390/biomedicines10081865] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022] Open
Abstract
Many conditions can benefit from RNA-based therapies, namely, those targeting internal ribosome entry sites (IRESs) and their regulatory proteins, the IRES trans-acting factors (ITAFs). IRES-mediated translation is an alternative mechanism of translation initiation, known for maintaining protein synthesis when canonical translation is impaired. During a stress response, it contributes to cell reprogramming and adaptation to the new environment. The relationship between IRESs and ITAFs with tumorigenesis and resistance to therapy has been studied in recent years, proposing new therapeutic targets and treatments. In addition, IRES-dependent translation initiation dysregulation is also related to neurological and cardiovascular diseases, muscular atrophies, or other syndromes. The participation of these structures in the development of such pathologies has been studied, yet to a far lesser extent than in cancer. Strategies involving the disruption of IRES–ITAF interactions or the modification of ITAF expression levels may be used with great impact in the development of new therapeutics. In this review, we aim to comprehend the current data on groups of human pathologies associated with IRES and/or ITAF dysregulation and their application in the designing of new therapeutic approaches using them as targets or tools. Thus, we wish to summarise the evidence in the field hoping to open new promising lines of investigation toward personalised treatments.
Collapse
|
33
|
Freitas MVD, Frâncio L, Haleva L, Matte UDS. Protection is not always a good thing: The immune system's impact on gene therapy. Genet Mol Biol 2022; 45:e20220046. [PMID: 35852088 PMCID: PMC9295005 DOI: 10.1590/1678-4685-gmb-2022-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/18/2022] [Indexed: 11/22/2022] Open
Abstract
There are many clinical trials underway for the development of gene therapies, and some have resulted in gene therapy products being commercially approved already. Significant progress was made to develop safer and more effective strategies to deliver and regulate genetic products. An unsolved aspect is the immune system, which can affect the efficiency of gene therapy in different ways. Here we present an overview of approved gene therapy products and the immune response elicited by gene delivery systems. These include responses against the vector or its content after delivery and against the product of the corrected gene. Strategies to overcome the hurdles include hiding the vector or/and the transgene product from the immune system and hiding the immune system from the vector/transgene product. Combining different strategies, such as patient screening and intelligent vector design, gene therapy is set to make a difference in the life of patients with severe genetic diseases.
Collapse
Affiliation(s)
- Martiela Vaz de Freitas
- Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Experimental, Laboratório Células Tecidos e Genes, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil.,Hospital de Clínicas de Porto Alegre, Núcleo de Bioinformática Centro de Pesquisa Experimental, Porto Alegre, RS, Brazil
| | - Lariane Frâncio
- Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Experimental, Laboratório Células Tecidos e Genes, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| | - Laura Haleva
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Porto Alegre, RS, Brazil
| | - Ursula da Silveira Matte
- Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Experimental, Laboratório Células Tecidos e Genes, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil.,Hospital de Clínicas de Porto Alegre, Núcleo de Bioinformática Centro de Pesquisa Experimental, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul, Departamento de Genética, Porto Alegre, RS, Brazil
| |
Collapse
|
34
|
Paul A, Collins MG, Lee HY. Gene Therapy: The Next-Generation Therapeutics and Their Delivery Approaches for Neurological Disorders. Front Genome Ed 2022; 4:899209. [PMID: 35832929 PMCID: PMC9272754 DOI: 10.3389/fgeed.2022.899209] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/05/2022] [Indexed: 12/14/2022] Open
Abstract
Neurological conditions like neurodevelopmental disorders and neurodegenerative diseases are quite complex and often exceedingly difficult for patients. Most of these conditions are due to a mutation in a critical gene. There is no cure for the majority of these neurological conditions and the availability of disease-modifying therapeutics is quite rare. The lion's share of the treatments that are available only provide symptomatic relief, as such, we are in desperate need of an effective therapeutic strategy for these conditions. Considering the current drug development landscape, gene therapy is giving us hope as one such effective therapeutic strategy. Consistent efforts have been made to develop gene therapy strategies using viral and non-viral vectors of gene delivery. Here, we have discussed both of these delivery methods and their properties. We have summarized the relative advantages and drawbacks of viral and non-viral vectors from the perspectives of safety, efficiency, and productivity. Recent developments such as clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated gene editing and its use in vivo have been described here as well. Given recent advancements, gene therapy shows great promise to emerge as a next-generation therapeutic for many of the neurodevelopmental and neurodegenerative conditions.
Collapse
|
35
|
Sala D, Ornaghi F, Morena F, Argentati C, Valsecchi M, Alberizzi V, Di Guardo R, Bolino A, Aureli M, Martino S, Gritti A. Therapeutic advantages of combined gene/cell therapy strategies in a murine model of GM2 gangliosidosis. Mol Ther Methods Clin Dev 2022; 25:170-189. [PMID: 35434178 PMCID: PMC8983315 DOI: 10.1016/j.omtm.2022.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/13/2022] [Indexed: 11/28/2022]
Abstract
Genetic deficiency of β-N-acetylhexosaminidase (Hex) functionality leads to accumulation of GM2 ganglioside in Tay-Sachs disease and Sandhoff disease (SD), which presently lack approved therapies. Current experimental gene therapy (GT) approaches with adeno-associated viral vectors (AAVs) still pose safety and efficacy issues, supporting the search for alternative therapeutic strategies. Here we leveraged the lentiviral vector (LV)-mediated intracerebral (IC) GT platform to deliver Hex genes to the CNS and combined this strategy with bone marrow transplantation (BMT) to provide a timely, pervasive, and long-lasting source of the Hex enzyme in the CNS and periphery of SD mice. Combined therapy outperformed individual treatments in terms of lifespan extension and normalization of the neuroinflammatory/neurodegenerative phenotypes of SD mice. These benefits correlated with a time-dependent increase in Hex activity and a remarkable reduction in GM2 storage in brain tissues that single treatments failed to achieve. Our results highlight the synergic mode of action of LV-mediated IC GT and BMT, clarify the contribution of treatments to the therapeutic outcome, and inform on the realistic threshold of corrective enzymatic activity. These results have important implications for interpretation of ongoing experimental therapies and for design of more effective treatment strategies for GM2 gangliosidosis.
Collapse
Affiliation(s)
- Davide Sala
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Francesca Ornaghi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Francesco Morena
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Chiara Argentati
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Manuela Valsecchi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090 Segrate, MI, Italy
| | - Valeria Alberizzi
- Division of Neuroscience, San Raffaele Scientific Institute, INSPE, Via Olgettina 58, 20132 Milan, Italy
| | - Roberta Di Guardo
- Division of Neuroscience, San Raffaele Scientific Institute, INSPE, Via Olgettina 58, 20132 Milan, Italy
| | - Alessandra Bolino
- Division of Neuroscience, San Raffaele Scientific Institute, INSPE, Via Olgettina 58, 20132 Milan, Italy
| | - Massimo Aureli
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090 Segrate, MI, Italy
| | - Sabata Martino
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Angela Gritti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| |
Collapse
|
36
|
Morris G, Schorge S. Gene Therapy for Neurological Disease: State of the Art and Opportunities for Next-generation Approaches. Neuroscience 2022; 490:309-314. [PMID: 35304290 DOI: 10.1016/j.neuroscience.2022.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/22/2022] [Accepted: 03/09/2022] [Indexed: 12/11/2022]
Abstract
Gene therapy for rare monogenetic neurological disorders is reaching clinics and offering hope to families affected by these diseases. There is also potential for gene therapy to offer new and effective treatments for common, non-genetic disorders. Treatments for Parkinson's Disease are in clinical trials, and treatments for refractory epilepsies are due to enter first-in-human clinical trials in 2022. Gene therapies for these disorders are based on delivering genes that address the mechanism of the disease, not repairing a mutated gene. Similar 'mechanistic' gene therapies could offer treatments to a wide range of neurological and neuropsychiatric diseases where there is a known mechanism that could be restored using gene therapy. However, the permanent nature of most gene therapies is a serious drawback for translation of gene therapies to a wide-range of diseases because it could present risk of irreversible adverse effects. Several lines of research are aimed at developing gene therapy approaches that allow for the treatment to be turned on and off, including: using proteins activated by exogenous ligands, and promoters turned on by activators. We review these approaches and propose an overall de-risking strategy for gene therapy for common neurological and psychiatric diseases. This approach is based on using a temporary mRNA-based treatment to initially assess efficacy and safety of the planned manipulation, and only following with permanent, virally-delivered treatment if the approach appears safe and effective.
Collapse
Affiliation(s)
- Gareth Morris
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Stephanie Schorge
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom.
| |
Collapse
|
37
|
El Ganainy SO, Cijsouw T, Ali MA, Schoch S, Hanafy AS. Stereotaxic-assisted gene therapy in Alzheimer's and Parkinson's diseases: therapeutic potentials and clinical frontiers. Expert Rev Neurother 2022; 22:319-335. [PMID: 35319338 DOI: 10.1080/14737175.2022.2056446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) and Parkinson's disease (PD) are neurodegenerative disorders causing cognitive deficits and motor difficulties in the elderly. Conventional treatments are mainly symptomatic with little ability to halt disease progression. Gene therapies to correct or silence genetic mutations predisposing to AD or PD are currently being developed in preclinical studies and clinical trials, relying mostly on systemic delivery, which reduces their effectiveness. Imaging-guided stereotaxic procedures are used to locally deliver therapeutic cargos to well-defined brain sites, hence raising the question whether stereotaxic-assisted gene therapy has therapeutic potentials. AREAS COVERED The authors summarize the studies that investigated the use of gene therapy in PD and AD in animal and clinical studies over the past five years, with a special emphasis on the combinatorial potential with stereotaxic delivery. The advantages, limitations and futuristic challenges of this technique are discussed. EXPERT OPINION Robotic stereotaxis combined with intraoperative imaging has revolutionized brain surgeries. While gene therapies are bringing huge innovations to the medical field and new hope to AD and PD patients and medical professionals, the efficient and targeted delivery of such therapies is a bottleneck. We propose that careful application of stereotaxic delivery of gene therapies can improve PD and AD management. [Figure: see text].
Collapse
Affiliation(s)
- Samar O El Ganainy
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Tony Cijsouw
- Institute of Neuropathology, Section for Translational Epilepsy Research, Medical Faculty, University of Bonn, Bonn, Germany
| | - Mennatallah A Ali
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Susanne Schoch
- Institute of Neuropathology, Section for Translational Epilepsy Research, Medical Faculty, University of Bonn, Bonn, Germany
| | | |
Collapse
|
38
|
Zhang YC, Wang JW, Wu Y, Tao Q, Wang FF, Wang N, Ji XR, Li YG, Yu S, Zhang JZ. Multimodal Magnetic Resonance and Fluorescence Imaging of the Induced Pluripotent Stem Cell Transplantation in the Brain. Mol Biol 2022. [DOI: 10.1134/s0026893322030153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abstract
The understanding of the engrafted cell behaviors such as the survival, growth and distribution is the prerequisite to optimize cell therapy, and a multimodal imaging at both anatomical and molecular levels is designed to achieve this goal. We constructed a lentiviral vector carrying genes of ferritin heavy chain 1 (FTH1), near-infrared fluorescent protein (iRFP) and enhanced green fluorescent protein (egfp), and established the induced pluripotent stem cells (iPSCs) culture stably expressing these three reporter genes. These iPSCs showed green and near-infrared fluorescence as well as the iron uptake capacity in vitro. After transplanted the labeled iPSCs into the rat brain, the engrafted cells could be in vivo imaged using magnetic resonance imaging (MRI) and near-infrared fluorescent imaging (NIF) up to 60 days at the anatomical level. Moreover, these cells could be detected using EGFP immunostaining and Prussian blue stain at the cellular level. The developed approach provides a novel tool to study behaviors of the transplanted cells in a multimodal way, which will be valuable for the effectiveness and safety evaluation of cell therapy.
Collapse
|
39
|
Corre G, Seye A, Frin S, Ferrand M, Winkler K, Luc C, Dorange F, Rocca CJ, Galy A. Lentiviral standards to determine the sensitivity of assays that quantify lentiviral vector copy numbers and genomic insertion sites in cells. Gene Ther 2022; 29:536-543. [PMID: 35194185 PMCID: PMC9482878 DOI: 10.1038/s41434-022-00315-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 12/30/2022]
Abstract
With an increasing number of gene therapy clinical trials and drugs reaching the market, it becomes important to standardize the methods that evaluate the efficacy and safety of gene therapy. We herein report the generation of lentiviral standards which are stable, cloned human cells prepared from the diploid HCT116 cell line and which carry a known number of lentiviral vector copies in their genome. These clones can be used as reference cellular materials for the calibration or qualification of analytical methods that quantify vector copy numbers in cells (VCN) or lentiviral vector genomic integration sites (IS). Cellular standards were used to show the superior precision of digital droplet PCR (ddPCR) over quantitative PCR (qPCR) for VCN determination. This enabled us to develop a new sensitive and specific VCN ddPCR method specific for the integrated provirus and not recognizing the transfer plasmid. The cellular standards, were also useful to assess the sensitivity and limits of a ligation-mediated PCR (LM-PCR) method to measure IS showing that at least 1% abundance of a single IS can be detected in a polyclonal population but that not all IS can be amplified with similar efficiency. Thus, lentiviral standards should be systematically used in all assays that assess lentiviral gene therapy efficacy and safety.
Collapse
Affiliation(s)
- Guillaume Corre
- Genethon, Evry, France.,Integrare Research Unit UMR_S951, Université Paris-Saclay, Univ Evry, Inserm, Genethon, Evry, France
| | - Ababacar Seye
- Genethon, Evry, France.,Integrare Research Unit UMR_S951, Université Paris-Saclay, Univ Evry, Inserm, Genethon, Evry, France
| | - Sophie Frin
- Genethon, Evry, France.,Integrare Research Unit UMR_S951, Université Paris-Saclay, Univ Evry, Inserm, Genethon, Evry, France
| | - Maxime Ferrand
- Genethon, Evry, France.,Integrare Research Unit UMR_S951, Université Paris-Saclay, Univ Evry, Inserm, Genethon, Evry, France
| | | | | | | | - Céline J Rocca
- Genethon, Evry, France.,Integrare Research Unit UMR_S951, Université Paris-Saclay, Univ Evry, Inserm, Genethon, Evry, France
| | - Anne Galy
- Genethon, Evry, France. .,Integrare Research Unit UMR_S951, Université Paris-Saclay, Univ Evry, Inserm, Genethon, Evry, France. .,ART-TG, Inserm US35, Inserm, Corbeil-Essonnes, France.
| |
Collapse
|
40
|
Urusov FA, Glazkova DV, Tsyganova GM, Pozdyshev DV, Bogoslovskaya EV, Shipulin GA. The Titer of the Lentiviral Vector Encoding Chimeric TRIM5α-HRH Gene is Reduced Due to Expression of TRIM5α-HRH in Producer Cells and the Negative Effect of Ef1α Promoter. Mol Biol 2022. [DOI: 10.1134/s0026893322010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Using Inhibitory DREADDs to Silence LC Neurons in Monkeys. Brain Sci 2022; 12:brainsci12020206. [PMID: 35203969 PMCID: PMC8869890 DOI: 10.3390/brainsci12020206] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/18/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
Understanding the role of the noradrenergic nucleus locus coeruleus (LC) in cognition and behavior is critical: It is involved in several key behavioral functions such as stress and vigilance, as well as in cognitive processes such as attention and decision making. In recent years, the development of viral tools has provided a clear insight into numerous aspects of brain functions in rodents. However, given the specificity of primate brains and the key benefit of monkey research for translational applications, developing viral tools to study the LC in monkeys is essential for understanding its function and exploring potential clinical strategies. Here, we describe a pharmacogenetics approach that allows to selectively and reversibly inactivate LC neurons using Designer Receptors Exclusively Activated by Designer Drugs (DREADD). We show that the expression of the hM4Di DREADD can be restricted to noradrenergic LC neurons and that the amount of LC inhibition can be adjusted by adapting the dose of the specific DREADD activator deschloroclozapine (DCZ). Indeed, even if high doses (>0.3 mg/kg) induce a massive inhibition of LC neurons and a clear decrease in vigilance, smaller doses (<0.3 mg/kg) induce a more moderate decrease in LC activity, but it does not affect vigilance, which is more compatible with an assessment of subtle cognitive functions such as decision making and attention.
Collapse
|
42
|
Cantore A, Fraldi A, Meneghini V, Gritti A. In vivo Gene Therapy to the Liver and Nervous System: Promises and Challenges. Front Med (Lausanne) 2022; 8:774618. [PMID: 35118085 PMCID: PMC8803894 DOI: 10.3389/fmed.2021.774618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 12/16/2021] [Indexed: 12/02/2022] Open
Abstract
In vivo genetic engineering has recently shown remarkable potential as a novel effective treatment for an ever-growing number of diseases, as also witnessed by the recent marketing authorization of several in vivo gene therapy products. In vivo genetic engineering comprises both viral vector-mediated gene transfer and the more recently developed genome/epigenome editing strategies, as long as they are directly administered to patients. Here we first review the most advanced in vivo gene therapies that are commercially available or in clinical development. We then highlight the major challenges to be overcome to fully and broadly exploit in vivo gene therapies as novel medicines, discussing some of the approaches that are being taken to address them, with a focus on the nervous system and liver taken as paradigmatic examples.
Collapse
Affiliation(s)
- Alessio Cantore
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- *Correspondence: Alessio Cantore
| | - Alessandro Fraldi
- CEINGE Biotecnologie Avanzate, Naples, Italy
- Department of Translational Medicine, University of Naples “Federico II”, Naples, Italy
| | - Vasco Meneghini
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Angela Gritti
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
43
|
Björklund T, Davidsson M. Next-Generation Gene Therapy for Parkinson's Disease Using Engineered Viral Vectors. JOURNAL OF PARKINSON'S DISEASE 2022; 11:S209-S217. [PMID: 34366370 PMCID: PMC8543274 DOI: 10.3233/jpd-212674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 07/14/2021] [Indexed: 11/23/2022]
Abstract
Recent technological and conceptual advances have resulted in a plethora of exciting novel engineered adeno associated viral (AAV) vector variants. They all have unique characteristics and abilities. This review summarizes the development and their potential in treating Parkinson's disease (PD). Clinical trials in PD have shown over the last decade that AAV is a safe and suitable vector for gene therapy but that it also is a vehicle that can benefit significantly from improvement in specificity and potency. This review provides a concise collection of the state-of-the-art for synthetic capsids and their utility in PD. We also summarize what therapeutical strategies may become feasible with novel engineered vectors, including genome editing and neuronal rejuvenation.
Collapse
Affiliation(s)
- Tomas Björklund
- Molecular Neuromodulation, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Marcus Davidsson
- Molecular Neuromodulation, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| |
Collapse
|
44
|
Krokidis MG, Exarchos T, Vlamos P. Bioinformatics Approaches for Parkinson's Disease in Clinical Practice: Data-Driven Biomarkers and Pharmacological Treatment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1338:193-198. [PMID: 34973025 DOI: 10.1007/978-3-030-78775-2_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Parkinson's disease is a gradually progressive neurodegenerative disorder characterized by a selective loss of dopaminergic neurons in the midbrain area called the substantia nigra pars compacta and cytoplasmic alpha-synuclein-rich inclusions termed Lewy bodies. The etiology and pathogenesis remain incompletely understood. The development of reliable biomarkers for the early and accurate diagnosis, including biochemical, genetic, clinical, and neuroimaging markers, is crucial for unraveling the pathogenic processes of the disease as well as patients' progress surveillance. High-throughput technologies and system biology methodologies can support the identification of potent molecular fingerprints together with the establishment of dynamic network biomarkers. Emphasis is given on multi-omics datasets and dysregulated pathways associated with differentially expressed transcripts, modified protein motifs, and altered metabolic profiles. Although there is no therapy that terminates the neurodegenerative process and dopamine replacement strategy with L-DOPA represents the most effective treatment, numerous therapeutic protocols such as dopamine receptor agonists, MAO-B inhibitors, and cholinesterase inhibitors represent candidate treatments providing at the same time valuable network-based approaches to drug repositioning. Computational methodologies and bioinformatics platforms for visualization, clustering, and validating of molecular and clinical datasets provide important insights into diagnostic processing and therapeutic pipeline.
Collapse
Affiliation(s)
- Marios G Krokidis
- Bioinformatics and Human Electrophysiology Laboratory, Department of Informatics, Ionian University, Corfu, Greece.
| | - Themis Exarchos
- Bioinformatics and Human Electrophysiology Laboratory, Department of Informatics, Ionian University, Corfu, Greece
| | - Panayiotis Vlamos
- Bioinformatics and Human Electrophysiology Laboratory, Department of Informatics, Ionian University, Corfu, Greece
| |
Collapse
|
45
|
Parambi DGT, Alharbi KS, Kumar R, Harilal S, Batiha GES, Cruz-Martins N, Magdy O, Musa A, Panda DS, Mathew B. Gene Therapy Approach with an Emphasis on Growth Factors: Theoretical and Clinical Outcomes in Neurodegenerative Diseases. Mol Neurobiol 2022; 59:191-233. [PMID: 34655056 PMCID: PMC8518903 DOI: 10.1007/s12035-021-02555-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 09/05/2021] [Indexed: 12/11/2022]
Abstract
The etiology of many neurological diseases affecting the central nervous system (CNS) is unknown and still needs more effective and specific therapeutic approaches. Gene therapy has a promising future in treating neurodegenerative disorders by correcting the genetic defects or by therapeutic protein delivery and is now an attraction for neurologists to treat brain disorders, like Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, spinal muscular atrophy, spinocerebellar ataxia, epilepsy, Huntington's disease, stroke, and spinal cord injury. Gene therapy allows the transgene induction, with a unique expression in cells' substrate. This article mainly focuses on the delivering modes of genetic materials in the CNS, which includes viral and non-viral vectors and their application in gene therapy. Despite the many clinical trials conducted so far, data have shown disappointing outcomes. The efforts done to improve outcomes, efficacy, and safety in the identification of targets in various neurological disorders are also discussed here. Adapting gene therapy as a new therapeutic approach for treating neurological disorders seems to be promising, with early detection and delivery of therapy before the neuron is lost, helping a lot the development of new therapeutic options to translate to the clinic.
Collapse
Affiliation(s)
- Della Grace Thomas Parambi
- College of Pharmacy, Department of Pharmaceutical Chemistry, Jouf University, Al Jouf-2014, Sakaka, Saudi Arabia
| | - Khalid Saad Alharbi
- College of Pharmacy, Department of Pharmaceutical Chemistry, Jouf University, Al Jouf-2014, Sakaka, Saudi Arabia
| | - Rajesh Kumar
- Kerala University of Health Sciences, Thrissur, Kerala 680596 India
| | - Seetha Harilal
- Kerala University of Health Sciences, Thrissur, Kerala 680596 India
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 Al Beheira Egypt
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
| | - Omnia Magdy
- Department of Clinical Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al Jouf-2014 Kingdom of Saudi Arabia
- Pharmacognosy Department, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341 Kingdom of Saudi Arabia
| | - Arafa Musa
- Pharmacognosy Department, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341 Kingdom of Saudi Arabia
- Pharmacognosy Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11371 Egypt
| | - Dibya Sundar Panda
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Al Jouf, Sakaka, 72341 Kingdom of Saudi Arabia
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041 India
| |
Collapse
|
46
|
Shaburova EV, Lanshakov DA. Effective Transduction of Brain Neurons with Lentiviral Vectors Purified via Ion-Exchange Chromatography. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821080044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Comisel RM, Kara B, Fiesser FH, Farid SS. Gene therapy process change evaluation framework: Transient transfection and stable producer cell line comparison. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Meneghini V, Peviani M, Luciani M, Zambonini G, Gritti A. Delivery Platforms for CRISPR/Cas9 Genome Editing of Glial Cells in the Central Nervous System. Front Genome Ed 2021; 3:644319. [PMID: 34713256 PMCID: PMC8525379 DOI: 10.3389/fgeed.2021.644319] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 01/21/2021] [Indexed: 12/14/2022] Open
Abstract
Glial cells (astrocytes, oligodendrocytes, and microglia) are emerging as key players in several physiological and pathological processes of the central nervous system (CNS). Astrocytes and oligodendrocytes are not only supportive cells that release trophic factors or regulate energy metabolism, but they also actively modulate critical neuronal processes and functions in the tripartite synapse. Microglia are defined as CNS-resident cells that provide immune surveillance; however, they also actively contribute to shaping the neuronal microenvironment by scavenging cell debris or regulating synaptogenesis and pruning. Given the many interconnected processes coordinated by glial cells, it is not surprising that both acute and chronic CNS insults not only cause neuronal damage but also trigger complex multifaceted responses, including neuroinflammation, which can critically contribute to the disease progression and worsening of symptoms in several neurodegenerative diseases. Overall, this makes glial cells excellent candidates for targeted therapies to treat CNS disorders. In recent years, the application of gene editing technologies has redefined therapeutic strategies to treat genetic and age-related neurological diseases. In this review, we discuss the advantages and limitations of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-based gene editing in the treatment of neurodegenerative disorders, focusing on the development of viral- and nanoparticle-based delivery methods for in vivo glial cell targeting.
Collapse
Affiliation(s)
- Vasco Meneghini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Peviani
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Marco Luciani
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giada Zambonini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angela Gritti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
49
|
Wang X, Ma C, Rodríguez Labrada R, Qin Z, Xu T, He Z, Wei Y. Recent advances in lentiviral vectors for gene therapy. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1842-1857. [PMID: 34708326 DOI: 10.1007/s11427-021-1952-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/19/2021] [Indexed: 02/05/2023]
Abstract
Lentiviral vectors (LVs), derived from human immunodeficiency virus, are powerful tools for modifying the genes of eukaryotic cells such as hematopoietic stem cells and neural cells. With the extensive and in-depth studies on this gene therapy vehicle over the past two decades, LVs have been widely used in both research and clinical trials. For instance, third-generation and self-inactive LVs have been used to introduce a gene with therapeutic potential into the host genome and achieve targeted delivery into specific tissue. When LVs are employed in leukemia, the transduced T cells recognize and kill the tumor B cells; in β-thalassemia, the transduced CD34+ cells express normal β-globin; in adenosine deaminase-deficient severe combined immunodeficiency, the autologous CD34+ cells express adenosine deaminase and realize immune reconstitution. Overall, LVs can perform significant roles in the treatment of primary immunodeficiency diseases, hemoglobinopathies, B cell leukemia, and neurodegenerative diseases. In this review, we discuss the recent developments and therapeutic applications of LVs. The safe and efficient LVs show great promise as a tool for human gene therapy.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Cuicui Ma
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Roberto Rodríguez Labrada
- Department Clinical Neurophysiology, Centre for the Research and Rehabilitation of Hereditary Ataxias, Holguín, 80100, Cuba
| | - Zhou Qin
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Xu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Zhiyao He
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Yuquan Wei
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
50
|
Christine CW, Richardson RM, Van Laar AD, Thompson ME, Fine EM, Khwaja OS, Li C, Liang GS, Meier A, Roberts EW, Pfau ML, Rodman JR, Bankiewicz KS, Larson PS. Safety of AADC Gene Therapy for Moderately Advanced Parkinson Disease: Three-Year Outcomes From the PD-1101 Trial. Neurology 2021; 98:e40-e50. [PMID: 34649873 PMCID: PMC8726573 DOI: 10.1212/wnl.0000000000012952] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 10/04/2021] [Indexed: 11/17/2022] Open
Abstract
Background and Objectives To report final, 36-month safety and clinical outcomes from the PD-1101 trial of NBIb-1817 (VY-AADC01) in participants with moderately advanced Parkinson disease (PD) and motor fluctuations. Methods PD-1101 was a phase 1b, open-label, dose escalation trial of VY-AADC01, an experimental AAV2 gene therapy encoding the human aromatic l-amino acid decarboxylase (AADC) enzyme. VY-AADC01 was delivered via bilateral, intraoperative MRI-guided putaminal infusions to 3 cohorts (n = 5 participants per cohort): cohort 1, ≤7.5 × 1011 vector genomes (vg); cohort 2, ≤1.5 × 1012 vg; cohort 3, ≤4.7 × 1012 vg. Results No serious adverse events (SAEs) attributed to VY-AADC01 were reported. All 4 non-vector–related SAEs (atrial fibrillation and pulmonary embolism in 1 participant and 2 events of small bowel obstruction in another participant) resolved. Requirements for PD medications were reduced by 21%–30% in the 2 highest dose cohorts at 36 months. Standard measures of motor function (PD diary, Unified Parkinson's Disease Rating Scale III “off”-medication and “on”-medication scores), global impressions of improvement (Clinical Global Impression of Improvement, Patient Global Impression of Improvement), and quality of life (39-item Parkinson's Disease Questionnaire) were stable or improved compared with baseline at 12, 24, and 36 months following VY-AADC01 administration across cohorts. Discussions VY-AADC01 and the surgical administration procedure were well-tolerated and resulted in stable or improved motor function and quality of life across cohorts, as well as reduced PD medication requirements in cohorts 2 and 3 over 3 years. Trial Registration Information NCT01973543. Classification of Evidence This study provides Class IV evidence that, in patients with moderately advanced PD and motor fluctuations, putaminal infusion of VY-AADC01 is well tolerated and may improve motor function.
Collapse
Affiliation(s)
- Chadwick W Christine
- Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA.,Harvard Medical School, Boston, MA
| | - Amber D Van Laar
- Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA.,Brain Neurotherapy Bio, Inc., Columbus, OH
| | - Marin E Thompson
- Department of Neurological Surgery, University of California, San Francisco, CA
| | | | | | | | | | | | | | | | | | - Krystof S Bankiewicz
- Department of Neurological Surgery, University of California, San Francisco, CA.,Department of Neurological Surgery, Ohio State University, Columbus, OH
| | - Paul S Larson
- Department of Neurological Surgery, University of California, San Francisco, CA
| |
Collapse
|