Todo T, Kondo T, Kirino T, Asai A, Adams EF, Nakamura S, Ikeda K, Kurokawa T. Expression and growth stimulatory effect of fibroblast growth factor 9 in human brain tumors.
Neurosurgery 1998;
43:337-46. [PMID:
9696088 DOI:
10.1097/00006123-199808000-00098]
[Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE
Fibroblast growth factor 9 (FGF-9) is a relatively new member of the FGF family isolated from the conditioned medium of a human glioblastoma cell line as a secreting type factor that exhibits a growth-stimulating effect on primary glial cells. To elucidate the roles of FGF-9 in human brain tumors, the expression and biological activities of FGF-9 were studied using culture cells and surgically obtained tumor specimens.
METHODS
Measurement of FGF-9 and basic FGF in conditioned media of cell cultures was performed by using a sandwich enzyme immunoassay. The mitogenic effect of FGF-9 was evaluated by cell growth studies. FGF-9 expression in vivo was demonstrated by immunohistochemistry.
RESULTS
One of 4 glioma cell lines and 4 of 16 human meningiomas examined actually secreted detectable amounts of FGF-9 proteins. In comparison, basic FGF production was detected from 3 of 4 glioma cell lines and 11 of 16 human meningiomas. Similarly to basic FGF, recombinant human FGF-9 significantly stimulated the in vitro cell proliferation in three of four glioma cell lines investigated in a dose-dependent manner. A time course growth study using U87 MG cells revealed an accelerated growth stimulation by FGF-9 after Day 4. The growth stimulatory activity was also shown in three of four human meningiomas studied. Moderate to strong immunoreactivity for FGF-9 was observed in 40 (82%) of 49 human brain tumors examined irrespective of origin, tumor type, grade of malignancy, or whether initial or recurrent. In contrast, strong immunostaining was localized in neurons in the normal human cerebral cortex.
CONCLUSION
The present findings suggest that FGF-9 may be involved in the biology of human brain tumors with a possible importance in tumor cell growth. Whether the growth factor is more generally involved in oncogenesis of human tumors awaits further investigation.
Collapse