1
|
Bauer N, Boettger M, Papadaki S, Leitner T, Klostermann S, Kettenberger H, Georges G, Larraillet V, Gluhacevic von Kruechten D, Hillringhaus L, Vogt A, Ausländer S, Popp O. Procollagen-lysine 2-oxoglutarate 5-dioxygenases are responsible for 5R-hydroxylysine modification of therapeutic T-cell bispecific monoclonal antibodies produced by Chinese hamster ovary cells. Front Bioeng Biotechnol 2024; 12:1414408. [PMID: 39530057 PMCID: PMC11551027 DOI: 10.3389/fbioe.2024.1414408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
We present a detailed mass spectrometric analysis of three 2 + 1 T-cell bispecific monoclonal antibodies (TCB mAbs), where an unexpected +15.9950 Da mass shift in tryptic peptides was observed. This modification was attributed to the occurrence of 5R-hydroxylysine (Hyl) using a hybrid LC-MS/MS molecular characterization and CRISPR/Cas9 gene deletion approach. The modification was found at various sites within TCB mAbs, with a conspicuous hot spot motif mirroring a prior observation where Hyl was mapped to the CH1-VH Fab domain interface of IgGs. In contrast to the preceding report, our structural modeling analysis on TCB mAbs unveiled substantial differences in the orientation and flexibility of motifs in immediate proximity and across the artificial CH1-VL cross Fab interface and upstream elbow segment. Utilizing a hybrid database search, RNAseq, and a CRISPR/Cas9 knockout methodology in Chinese hamster ovary (CHO) production cell lines, procollagen-lysine, 2-oxoglutarate 5-dioxygenases (PLODs) were conclusively identified as the catalyzing enzymes accountable for the 5R-Hyl modification in TCB mAbs. To quantitatively inhibit Hyl formation in TCB mAbs, the activity of all three Chinese hamster PLOD isoenzymes needs to be depleted via CRISPR/Cas9 gene knockout. Moreover, our investigation identified cell culture iron availability, process duration, and clonal variability in CHO cells as elements influencing the levels of Hyl formation in TCB mAbs. This research offers a solution for circumventing Hyl formation in therapeutic complex mAb formats, such as TCB mAbs, produced in CHO cell culture processes, thereby addressing potential technical and biological challenges associated with unintended Hyl modification.
Collapse
Affiliation(s)
- Niels Bauer
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marco Boettger
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Styliani Papadaki
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Tanja Leitner
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Stefan Klostermann
- Data and Analytics, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Hubert Kettenberger
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Guy Georges
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Vincent Larraillet
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | | | - Lars Hillringhaus
- Special Chemistry, Roche Diagnostics, Roche Innovation Center Munich, Penzberg, Germany
| | - Annette Vogt
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Simon Ausländer
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Oliver Popp
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
2
|
Aebischer-Gumy C, Moretti P, Brunstein Laplace T, Frank J, Grand Y, Mosbaoui F, Hily E, Galea A, Peltret M, Estoppey C, Ayoub D, Giovannini R, Bertschinger M. Alternative splicing for tuneable expression of protein subunits at desired ratios. MAbs 2024; 16:2342243. [PMID: 38650451 PMCID: PMC11042056 DOI: 10.1080/19420862.2024.2342243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
The controlled expression of two or more proteins at a defined and stable ratio remains a substantial challenge, particularly in the bi- and multispecific antibody field. Achieving an optimal ratio of protein subunits can facilitate the assembly of multimeric proteins with high efficiency and minimize the production of by-products. In this study, we propose a solution based on alternative splicing, enabling the expression of a tunable and predefined ratio of two distinct polypeptide chains from the same pre-mRNA under the control of a single promoter. The pre-mRNA used in this study contains two open reading frames situated on separate exons. The first exon is flanked by two copies of the chicken troponin intron 4 (cTNT-I4) and is susceptible to excision from the pre-mRNA by means of alternative splicing. This specific design enables the modulation of the splice ratio by adjusting the strength of the splice acceptor. To illustrate this approach, we developed constructs expressing varying ratios of GFP and dsRED and extended their application to multimeric proteins such as monoclonal antibodies, achieving industrially relevant expression levels (>1 g/L) in a 14-day fed-batch process. The stability of the splice ratio was confirmed by droplet digital PCR in a stable pool cultivated over a 28-day period, while product quality was assessed via intact mass analysis, demonstrating absence of product-related impurities resulting from undesired splice events. Furthermore, we showcased the versatility of the construct by expressing two subunits of a bispecific antibody of the BEAT® type, which contains three distinct subunits in total.
Collapse
Affiliation(s)
- Christel Aebischer-Gumy
- Drug Substance Development, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| | - Pierre Moretti
- Drug Substance Development, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| | - Timothee Brunstein Laplace
- Drug Substance Development, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| | - Jana Frank
- Drug Substance Development, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| | - Ysaline Grand
- Drug Substance Development, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| | - Farid Mosbaoui
- Drug Substance Development, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| | - Emilie Hily
- Drug Substance Development, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| | - Anna Galea
- Drug Substance Development, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| | - Megane Peltret
- Drug Substance Development, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| | - Carole Estoppey
- Antibody Engineering, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| | - Daniel Ayoub
- Analytical Development, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| | - Roberto Giovannini
- Process Sciences, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| | - Martin Bertschinger
- Drug Substance Development, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| |
Collapse
|
3
|
Lao-Gonzalez T, Bueno-Soler A, Duran-Hernandez A, Sosa-Aguiar K, Hinojosa-Puerta LE, Hernandez-Garcia T, de la Luz-Hernandez KR, Palacios-Oliva J, Boggiano-Ayo T. Screening and selection strategy for the establishment of biosimilar to trastuzumab-expressing CHO-K1 cell lines. AMB Express 2021; 11:1. [PMID: 33389203 PMCID: PMC7778674 DOI: 10.1186/s13568-020-01157-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 12/04/2020] [Indexed: 12/24/2022] Open
Abstract
The high prices of biopharmaceuticals or biologics used in the treatment of many diseases limit the access of patients to these novel therapies. One example is the monoclonal antibody trastuzumab, successfully used for breast cancer treatment. An economic alternative is the generation of biosimilars to these expensive biopharmaceuticals. Since antibody therapies may require large doses over a long period of time, robust platforms and strategies for cell line development are essential for the generation of recombinant cell lines with higher levels of expression. Here, we obtained trastuzumab-expressing CHO-K1 cells through a screening and selection strategy that combined the use of host cells pre-adapted to protein-free media and suspension culture and lentiviral vectors. The results demonstrated that the early screening strategy obtained recombinant CHO-K1 cell populations with higher enrichment of IgG-expressing cells. Moreover, the measurement of intracellular heavy chain polypeptide by flow cytometry was a useful metric to characterize the homogeneity of cell population, and our results suggest this could be used to predict the expression levels of monoclonal antibodies in early stages of cell line development. Additionally, we propose an approach using 25 cm2 T-flasks in suspension and shaking culture conditions as a screening tool to identify high producing cell lines. Finally, trastuzumab-expressing CHO-K1 clones were generated and characterized by batch culture, and preliminary results related to HER2-recognition capacity were successful. Further optimization of elements such as gene optimization, vector selection, type of amplification/selection system, cell culture media composition, in combination with this strategy will allow obtaining high producing clones.
Collapse
Affiliation(s)
- Thailin Lao-Gonzalez
- Process Development Direction, Center of Molecular Immunology, Playa, Havana, 11600 Cuba
- Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, Playa, Havana, 10600 Cuba
| | - Alexi Bueno-Soler
- Process Development Direction, Center of Molecular Immunology, Playa, Havana, 11600 Cuba
| | | | - Katya Sosa-Aguiar
- Immunotherapy Direction, Center of Molecular Immunology, Playa, 11600 Havana, Cuba
| | - Luis Eduardo Hinojosa-Puerta
- Process Development Direction, Center of Molecular Immunology, Playa, Havana, 11600 Cuba
- CIMAB S. A, Playa, 11600 Havana, Cuba
| | - Tays Hernandez-Garcia
- Process Development Direction, Center of Molecular Immunology, Playa, Havana, 11600 Cuba
| | | | - Julio Palacios-Oliva
- Process Development Direction, Center of Molecular Immunology, Playa, Havana, 11600 Cuba
| | - Tammy Boggiano-Ayo
- Process Development Direction, Center of Molecular Immunology, Playa, Havana, 11600 Cuba
| |
Collapse
|
4
|
Tian J, He Q, Oliveira C, Qian Y, Egan S, Xu J, Qian N, Langsdorf E, Warrack B, Aranibar N, Reily M, Borys M, Li ZJ. Increased MSX level improves biological productivity and production stability in multiple recombinant GS CHO cell lines. Eng Life Sci 2020; 20:112-125. [PMID: 32874175 PMCID: PMC7447880 DOI: 10.1002/elsc.201900124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/27/2019] [Accepted: 11/13/2019] [Indexed: 01/17/2023] Open
Abstract
Increasing cell culture productivity of recombinant proteins via process improvements is the primary focus for research groups within biologics manufacturing. Any recommendations to improve a manufacturing process obviously must be effective, but also be robust, scalable, and with product quality comparable to the original process. In this study, we report that three different GS-/- CHO cell lines developed in media containing a standard concentration of the selection agent methionine sulfoximine (MSX), but then exposed to increased MSX concentrations during seed train expansion, achieved titer increases of 10-19%. This result was observed in processes already considerably optimized. Expanding the cells with a higher MSX concentration improved cell line production stability with increased culture age. Production cultures in 500-L and 1000-L bioreactors replicated laboratory results using 5-L bioreactors, demonstrating process robustness and scalability. Furthermore, product quality attributes of the final drug substance using the higher MSX process were comparable with those from cells expanded in media with the standard selection MSX concentration. Subsequent mechanistic investigations confirmed that the cells were not altered at the genetic level in terms of integration profiles or gene copy number, nor transcriptional levels of glutamine synthetase, heavy chain, or light chain genes. This study provides an effective and applicable strategy to improve the productivity of therapeutic proteins for biologics manufacturing.
Collapse
Affiliation(s)
- Jun Tian
- Biologics Process DevelopmentGlobal Product Development and Supply, Bristol‐Myers Squibb CompanyDevensMAUSA
| | - Qin He
- Biologics Process DevelopmentGlobal Product Development and Supply, Bristol‐Myers Squibb CompanyDevensMAUSA
| | - Christopher Oliveira
- Biologics Process DevelopmentGlobal Product Development and Supply, Bristol‐Myers Squibb CompanyDevensMAUSA
| | - Yueming Qian
- Biologics Process DevelopmentGlobal Product Development and Supply, Bristol‐Myers Squibb CompanyDevensMAUSA
| | - Susan Egan
- Biologics Process DevelopmentGlobal Product Development and Supply, Bristol‐Myers Squibb CompanyDevensMAUSA
| | - Jianlin Xu
- Biologics Process DevelopmentGlobal Product Development and Supply, Bristol‐Myers Squibb CompanyDevensMAUSA
| | - Nan‐Xin Qian
- Biologics Process DevelopmentGlobal Product Development and Supply, Bristol‐Myers Squibb CompanyDevensMAUSA
| | - Erik Langsdorf
- Molecular & Cellular ScienceBristol‐Myers Squibb CompanyPrincetonNJUSA
| | - Bethanne Warrack
- Drug Development and Preclinical StudiesBristol‐Myers Squibb CompanyPrincetonNJUSA
| | - Nelly Aranibar
- Drug Development and Preclinical StudiesBristol‐Myers Squibb CompanyPrincetonNJUSA
| | - Michael Reily
- Drug Development and Preclinical StudiesBristol‐Myers Squibb CompanyPrincetonNJUSA
| | - Michael Borys
- Biologics Process DevelopmentGlobal Product Development and Supply, Bristol‐Myers Squibb CompanyDevensMAUSA
| | - Zheng Jian Li
- Biologics Process DevelopmentGlobal Product Development and Supply, Bristol‐Myers Squibb CompanyDevensMAUSA
| |
Collapse
|
5
|
Pekle E, Smith A, Rosignoli G, Sellick C, Smales CM, Pearce C. Application of Imaging Flow Cytometry for the Characterization of Intracellular Attributes in Chinese Hamster Ovary Cell Lines at the Single-Cell Level. Biotechnol J 2019; 14:e1800675. [PMID: 30925020 DOI: 10.1002/biot.201800675] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/21/2019] [Indexed: 11/07/2022]
Abstract
Biopharmaceutical manufacturing using Chinese hamster ovary (CHO) cells requires the generation of high-producing clonal cell lines. During cell line development, cell cloning using fluorescence-activated cell sorting (FACS) has the potential to combine isolation of single cells with sorting based on specific cellular attributes that correlate with productivity and/or growth, identifying cell lines with desirable phenotypes for manufacturing. This study describes the application of imaging flow cytometry (IFC) to characterize recombinant cell lines at the single-cell level to identify cell attributes predictive of productivity. IFC assays are developed to quantify the organelle content and recombinant heavy-chain (HC) and light-chain (LC) polypeptide as well as messenger RNA (mRNA) amounts in single cells. The assays are then validated against orthogonal standard flow cytometry, western blot, and quantitative reverse transcription polymerase chain reaction (qRT-PCR) methods. The authors describe how these IFC assays may be used in cell line development and show how cellular properties can be correlated with productivity at the single-cell level, allowing the isolation of such cells during the cloning process. From the analysis, HC polypeptide and mRNA are found to be predictive of productivity early in the culture; however, specific organelle content did not show any correlation with productivity.
Collapse
Affiliation(s)
- Eva Pekle
- MedImmune, Granta Park, Cambridge, CB21 6GH, UK.,Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | | | | | | | - C M Smales
- Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | | |
Collapse
|
6
|
Yang B, Zhou J, Zhao H, Wang A, Lei Y, Xie Q, Xiong S. Study of the mechanism for increased protein expression via transcription potency reduction of the selection marker. Bioprocess Biosyst Eng 2019; 42:799-806. [PMID: 30730009 DOI: 10.1007/s00449-019-02083-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/24/2019] [Indexed: 01/02/2023]
Abstract
Stable transfection of mammalian cells using various expression cassettes for exogenous gene expression has been well established. The impact of critical factors in these cassettes, such as promoter and enhancer elements, on recombinant protein production in mammalian cells has been studied extensively to optimize the expression efficiency. However, few studies on the correlation between the strength of selection marker and the expression of gene of interest (GOI) have been reported. Here we investigated the correlation between the strength of a widely used selection marker, glutamine synthetase (GS) gene, and gene of interest in which the expression of GOI is driven by mouse cytomegalovirus (mCMV) major immediate early (MIE) promoter whereas the expression of GS is controlled by SV40E (Simian vacuolating virus 40E) promoter. We used a green fluorescent protein and the adalimumab antibody (heavy and light chain) as two distinct examples for the gene of interest. We then decreased the expression of GS gene by engineering a specific region of its SV40E promoter in these expression cassettes. By comparing the expression of GS and GOI at transcription and translation level before and after the SV40E promoter was weakened, we found that lower GS expression due to weaker SV40E transcription correlated well with the higher expression of recombinant proteins, mainly by increasing the copy number of GS and GOI integration into host cell genome.
Collapse
Affiliation(s)
- Bin Yang
- Department of Cell Biol, Institute of Biomedicine & National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, 730 Building of Biology, 601 W Huangpu Ave, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Jiatao Zhou
- Sunshine Lake Pharma Co., Ltd., Zhen An Road, Dongguan, 523867, People's Republic of China
| | - Hui Zhao
- Department of Cell Biol, Institute of Biomedicine & National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, 730 Building of Biology, 601 W Huangpu Ave, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Anling Wang
- Department of Cell Biol, Institute of Biomedicine & National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, 730 Building of Biology, 601 W Huangpu Ave, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Yuanjun Lei
- Department of Cell Biol, Institute of Biomedicine & National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, 730 Building of Biology, 601 W Huangpu Ave, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Qiuling Xie
- Department of Cell Biol, Institute of Biomedicine & National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, 730 Building of Biology, 601 W Huangpu Ave, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Sheng Xiong
- Department of Cell Biol, Institute of Biomedicine & National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, 730 Building of Biology, 601 W Huangpu Ave, Guangzhou, 510630, Guangdong, People's Republic of China.
| |
Collapse
|
7
|
Sha S, Bhatia H, Yoon S. An RNA-seq based transcriptomic investigation into the productivity and growth variants with Chinese hamster ovary cells. J Biotechnol 2018; 271:37-46. [DOI: 10.1016/j.jbiotec.2018.02.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 01/26/2018] [Accepted: 02/19/2018] [Indexed: 02/06/2023]
|
8
|
Park SY, Reimonn TM, Agarabi CD, Brorson KA, Yoon S. Metabolic responses and pathway changes of mammalian cells under different culture conditions with media supplementations. Biotechnol Prog 2018; 34:793-805. [DOI: 10.1002/btpr.2623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/08/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Seo-Young Park
- Dept. of Chemical Engineering; University of Massachusetts; Lowell MA, United States
| | - Thomas M. Reimonn
- Program in Bioinformatics and Integrative Biology; University of Massachusetts Medical School; Worcester MA, United States
| | - Cyrus D. Agarabi
- Division II; Office of Biotechnology Products, Office of Pharmaceutical Quality, CDER, FDA; Silver Spring MD, United States
| | - Kurt A. Brorson
- Division II; Office of Biotechnology Products, Office of Pharmaceutical Quality, CDER, FDA; Silver Spring MD, United States
| | - Seongkyu Yoon
- Dept. of Chemical Engineering; University of Massachusetts; Lowell MA, United States
| |
Collapse
|
9
|
Handlogten MW, Lee-O'Brien A, Roy G, Levitskaya SV, Venkat R, Singh S, Ahuja S. Intracellular response to process optimization and impact on productivity and product aggregates for a high-titer CHO cell process. Biotechnol Bioeng 2017; 115:126-138. [DOI: 10.1002/bit.26460] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 08/19/2017] [Accepted: 09/19/2017] [Indexed: 12/24/2022]
Affiliation(s)
| | - Allison Lee-O'Brien
- Cell Culture and Fermentation Sciences; MedImmune LLC; Gaithersburg Maryland
| | - Gargi Roy
- Antibody Discovery and Protein Engineering; MedImmune LLC; Gaithersburg Maryland
| | | | - Raghavan Venkat
- Cell Culture and Fermentation Sciences; MedImmune LLC; Gaithersburg Maryland
| | - Shailendra Singh
- Biologics Development and Commercialization; West Point Pennsylvania
| | - Sanjeev Ahuja
- Cell Culture and Fermentation Sciences; MedImmune LLC; Gaithersburg Maryland
| |
Collapse
|
10
|
Klimtchuk ES, Prokaeva TB, Spencer BH, Gursky O, Connors LH. In vitro co-expression of human amyloidogenic immunoglobulin light and heavy chain proteins: a relevant cell-based model of AL amyloidosis. Amyloid 2017; 24. [PMID: 28632419 PMCID: PMC5580339 DOI: 10.1080/13506129.2017.1336996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Immunoglobulin (Ig) light chain (LC) amyloidosis (AL) is characterized by the overproduction and tissue deposition of monoclonal LC in various organs and tissues. The plasma circulating monoclonal LC is believed to be the precursor of the deposited protein and in vitro studies aimed at understanding AL pathobiology have mainly focused on LC and its variable domain. While 33% of patients have free circulating monoclonal LC, ∼40% feature LC complexed to heavy chain (HC) forming a monoclonal intact Ig; the significance of free vs. bound LC in the amyloid forming pathway is unknown. To address this issue, we developed a cell-based model using stable mouse plasmacytoma Sp2/0 cells that co-express patient-derived amyloidogenic LC and HC proteins. The system was designed using amyloidogenic kappa and lambda LC, and gamma HC sequences; stable production and secretion of either free LC and/or intact Ig were accomplished by varying the LC to HC ratios. This novel cell-based system provides a relevant tool to systematically investigate LC and HC interactions, and the molecular events leading to the development of AL amyloidosis.
Collapse
Affiliation(s)
- Elena S Klimtchuk
- a Gerry Amyloidosis Research Laboratory, Amyloidosis Center , Boston University School of Medicine , Boston , MA , USA
| | - Tatiana B Prokaeva
- a Gerry Amyloidosis Research Laboratory, Amyloidosis Center , Boston University School of Medicine , Boston , MA , USA
| | - Brian H Spencer
- a Gerry Amyloidosis Research Laboratory, Amyloidosis Center , Boston University School of Medicine , Boston , MA , USA
| | - Olga Gursky
- a Gerry Amyloidosis Research Laboratory, Amyloidosis Center , Boston University School of Medicine , Boston , MA , USA.,b Department of Physiology and Biophysics , Boston University School of Medicine , Boston , MA , USA
| | - Lawreen H Connors
- a Gerry Amyloidosis Research Laboratory, Amyloidosis Center , Boston University School of Medicine , Boston , MA , USA.,c Department of Pathology and Laboratory Medicine , Boston University School of Medicine , Boston , MA , USA
| |
Collapse
|
11
|
Rocha-Pizaña MDR, Ascencio-Favela G, Soto-García BM, Martinez-Fierro MDLL, Alvarez MM. Evaluation of changes in promoters, use of UCOES and chain order to improve the antibody production in CHO cells. Protein Expr Purif 2017; 132:108-115. [DOI: 10.1016/j.pep.2017.01.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 11/26/2022]
|
12
|
Nematpour F, Mahboudi F, Vaziri B, Khalaj V, Ahmadi S, Ahmadi M, Ebadat S, Davami F. Evaluating the expression profile and stability of different UCOE containing vector combinations in mAb-producing CHO cells. BMC Biotechnol 2017; 17:18. [PMID: 28228095 PMCID: PMC5322649 DOI: 10.1186/s12896-017-0330-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 02/03/2017] [Indexed: 12/03/2022] Open
Abstract
Background As the demand for monoclonal antibodies (mAb) increases, more efficient expression methods are required for their manufacturing process. Transcriptional gene silencing is a common phenomenon in recombinant cell lines which leads to expression reduction and instability. There are reports on improved antibody expression in ubiquitous chromatin opening element (UCOE) containing both heavy and light chain gene constructs. Here we investigate the impact of having these elements as part of the light chain, heavy chain or both genes during cell line development. In this regard, non-UCOE and UCOE vectors were constructed and stable Chinese hamster ovary (CHO) cell pools were generated by different vector combinations. Results Expression analysis revealed that all UCOE cell pools had higher antibody yields compared to non-UCOE cells, Moreover the most optimal expression was obtained by cells containing just the UCOE on heavy chain. In terms of stability, it was shown that the high level of expression was kept consistence for more than four months in these cells whereas the expression titers were reduced in the other UCOE pools. Conclusions In conclusion, UCOE significantly enhanced the level and stability of antibody expression and the use of this element with heavy chain provided more stable cell lines with higher production level.
Collapse
Affiliation(s)
- Fatemeh Nematpour
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Fereidoun Mahboudi
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Behrouz Vaziri
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Vahid Khalaj
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Samira Ahmadi
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Maryam Ahmadi
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran.,Departments of Medical Biotechnology, Semnan University of Medical Sciences, Semnan, 3519899951, Iran
| | - Saedeh Ebadat
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Fatemeh Davami
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran.
| |
Collapse
|
13
|
Tsuruta LR, Lopes dos Santos M, Yeda FP, Okamoto OK, Moro AM. Genetic analyses of Per.C6 cell clones producing a therapeutic monoclonal antibody regarding productivity and long-term stability. Appl Microbiol Biotechnol 2016; 100:10031-10041. [DOI: 10.1007/s00253-016-7841-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/21/2016] [Accepted: 09/07/2016] [Indexed: 11/27/2022]
|
14
|
Ritter A, Rauschert T, Oertli M, Piehlmaier D, Mantas P, Kuntzelmann G, Lageyre N, Brannetti B, Voedisch B, Geisse S, Jostock T, Laux H. Disruption of the gene C12orf35
leads to increased productivities in recombinant CHO cell lines. Biotechnol Bioeng 2016; 113:2433-42. [DOI: 10.1002/bit.26009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/08/2016] [Accepted: 05/09/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Anett Ritter
- Novartis Institutes for BioMedical Research; Basel Switzerland
- Novartis Pharma AG; Integrated Biologics Profiling Unit, Werk Klybeck Postfach CH-4002; Basel Switzerland
| | | | - Mevion Oertli
- Novartis Institutes for BioMedical Research; Basel Switzerland
- Novartis Pharma AG; Integrated Biologics Profiling Unit, Werk Klybeck Postfach CH-4002; Basel Switzerland
| | - Daniel Piehlmaier
- Novartis Pharma AG; Integrated Biologics Profiling Unit, Werk Klybeck Postfach CH-4002; Basel Switzerland
| | - Panagiotis Mantas
- Novartis Pharma AG; Integrated Biologics Profiling Unit, Werk Klybeck Postfach CH-4002; Basel Switzerland
| | | | - Nadine Lageyre
- Novartis Institutes for BioMedical Research; Basel Switzerland
| | | | - Bernd Voedisch
- Novartis Institutes for BioMedical Research; Basel Switzerland
| | - Sabine Geisse
- Novartis Institutes for BioMedical Research; Basel Switzerland
| | - Thomas Jostock
- Novartis Pharma AG; Integrated Biologics Profiling Unit, Werk Klybeck Postfach CH-4002; Basel Switzerland
| | - Holger Laux
- Novartis Pharma AG; Integrated Biologics Profiling Unit, Werk Klybeck Postfach CH-4002; Basel Switzerland
| |
Collapse
|
15
|
Liu Y, Yi X, Zhuang Y, Zhang S. Limitations in the process of transcription and translation inhibit recombinant human chorionic gonadotropin expression in CHO cells. J Biotechnol 2014; 204:63-9. [PMID: 25529346 DOI: 10.1016/j.jbiotec.2014.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/09/2014] [Indexed: 10/24/2022]
Abstract
Human chorionic gonadotropin (hCG) is a glycoprotein hormone that exists as a heterodimer with a α subunit and β subunit assembled together with disulfide bridges. This hormone plays an important role in the detection of ovulation induction and in the treatment of certain diseases that cause female infertility. The effects of transcription, subunit expression, assembling and secretion on recombinant hCG expression in CHO cells were studied using stable high-producing and low-producing cell lines generated by the FLP-In™ system. The results indicated that the mRNA and polypeptide levels of the β subunit were always higher than those of the α subunit. Further study confirmed that the differences were caused by the transcription rate rather than by mRNA stability. In the high-producing cell lines, there was obvious transcription level limitation of the α subunit in contrast to the β subunit. In addition, there was obvious limitation of the synthetic steps from mRNA to polypeptide for both the α subunit and the β subunit, especially the β subunit. Significant limitations of the assembly and secretion levels were not observed in this research. This study presents a research methodology for double subunit protein expression and provides valuable evidence for the enhancement of recombinant hCG productivity.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China(1)
| | - Xiaoping Yi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China(1).
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China(1)
| | - Siliang Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China(1)
| |
Collapse
|
16
|
Dynamics of unfolded protein response in recombinant CHO cells. Cytotechnology 2014; 67:237-54. [PMID: 24504562 DOI: 10.1007/s10616-013-9678-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 12/14/2013] [Indexed: 10/25/2022] Open
Abstract
Genes in the protein secretion pathway have been targeted to increase productivity of monoclonal antibodies in Chinese hamster ovary cells. The results have been highly variable depending on the cell type and the relative amount of recombinant and target proteins. This paper presents a comprehensive study encompassing major components of the protein processing pathway in the endoplasmic reticulum (ER) to elucidate its role in recombinant cells. mRNA profiles of all major ER chaperones and unfolded protein response (UPR) pathway genes are measured at a series of time points in a high-producing cell line under the dynamic environment of a batch culture. An initial increase in IgG heavy chain mRNA levels correlates with an increase in productivity. We observe a parallel increase in the expression levels of majority of chaperones. The chaperone levels continue to increase until the end of the batch culture. In contrast, calreticulin and ERO1-L alpha, two of the lowest expressed genes exhibit transient time profiles, with peak induction on day 3. In response to increased ER stress, both the GCN2/PKR-like ER kinase and inositol-requiring enzyme-1alpha (Ire1α) signalling branch of the UPR are upregulated. Interestingly, spliced X-Box binding protein 1 (XBP1s) transcription factor from Ire1α pathway is detected from the beginning of the batch culture. Comparison with the expression levels in a low producer, show much lower induction at the end of the exponential growth phase. Thus, the unfolded protein response strongly correlates with the magnitude and timing of stress in the course of the batch culture.
Collapse
|
17
|
Edros RZ, McDonnell S, Al-Rubeai M. Using molecular markers to characterize productivity in Chinese hamster ovary cell lines. PLoS One 2013; 8:e75935. [PMID: 24146795 PMCID: PMC3798306 DOI: 10.1371/journal.pone.0075935] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/22/2013] [Indexed: 11/22/2022] Open
Abstract
Selection of high producing cell lines to produce maximum product concentration is a challenging and time consuming task for the biopharmaceutical industry. The identification of early markers to predict high productivity will significantly reduce the time required for new cell line development. This study identifies candidate determinants of high productivity by profiling the molecular and morphological characteristics of a panel of six Chinese Hamster Ovary (CHO) stable cell lines with varying recombinant monoclonal antibody productivity levels ranging between 2 and 50 pg/cell/day. We examined the correlation between molecular parameters and specific productivity (qp) throughout the growth phase of batch cultures. Results were statistically analyzed using Pearson correlation coefficient. Our study revealed that, overall, heavy chain (HC) mRNA had the strongest association with qp followed by light chain (LC) mRNA, HC intracellular polypeptides, and intracellular antibodies. A significant correlation was also obtained between qp and the following molecular markers: growth rate, biomass, endoplasmic reticulum, and LC polypeptides. However, in these cases, the correlation was not observed at all-time points throughout the growth phase. The repeated sampling throughout culture duration had enabled more accurate predictions of productivity in comparison to performing a single-point measurement. Since the correlation varied from day to day during batch cultivation, single-point measurement was of limited use in making a reliable prediction.
Collapse
Affiliation(s)
- Raihana Z. Edros
- School of Chemical and Bioprocess Engineering and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Susan McDonnell
- School of Chemical and Bioprocess Engineering and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Mohamed Al-Rubeai
- School of Chemical and Bioprocess Engineering and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
18
|
Bhoskar P, Belongia B, Smith R, Yoon S, Carter T, Xu J. Free light chain content in culture media reflects recombinant monoclonal antibody productivity and quality. Biotechnol Prog 2013; 29:1131-9. [DOI: 10.1002/btpr.1767] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 04/29/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Prachi Bhoskar
- Dept. of Chemistry; University of Massachusetts Lowell; Lowell MA
| | - Brett Belongia
- Bioreactor Process Development; EMD Millipore; Bedford MA
| | - Robert Smith
- Process Analytical Technologies; EMD Millipore; Bedford MA
| | - Seongkyu Yoon
- Dept. of Chemical Engineering; University of Massachusetts Lowell; Lowell MA
| | - Tyler Carter
- Dept. of Chemistry; University of Massachusetts Lowell; Lowell MA
| | - Jin Xu
- Dept. of Chemistry; University of Massachusetts Lowell; Lowell MA
| |
Collapse
|
19
|
Understanding the mechanistic roles of 30Kc6 gene in apoptosis and specific productivity in antibody-producing Chinese hamster ovary cells. Appl Microbiol Biotechnol 2012; 94:1243-53. [DOI: 10.1007/s00253-012-3899-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Revised: 01/06/2012] [Accepted: 01/10/2012] [Indexed: 12/19/2022]
|
20
|
Dorai H, Corisdeo S, Ellis D, Kinney C, Chomo M, Hawley-Nelson P, Moore G, Betenbaugh MJ, Ganguly S. Early prediction of instability of chinese hamster ovary cell lines expressing recombinant antibodies and antibody-fusion proteins. Biotechnol Bioeng 2011; 109:1016-30. [DOI: 10.1002/bit.24367] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 09/30/2011] [Accepted: 10/24/2011] [Indexed: 02/03/2023]
|
21
|
Davies SL, O'Callaghan PM, McLeod J, Pybus LP, Sung YH, Rance J, Wilkinson SJ, Racher AJ, Young RJ, James DC. Impact of gene vector design on the control of recombinant monoclonal antibody production by Chinese hamster ovary cells. Biotechnol Prog 2011; 27:1689-99. [PMID: 21882365 DOI: 10.1002/btpr.692] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 05/17/2011] [Indexed: 01/17/2023]
Abstract
In this study, we systematically compare two vector design strategies for recombinant monoclonal antibody (Mab) synthesis by Chinese hamster ovary (CHO) cells; a dual open reading frame (ORF) expression vector utilizing separate cytomegalovirus (CMV) promoters to drive heavy chain (HC) and light chain (LC) expression independently, and a single ORF vector design employing a single CMV promoter to drive HC and LC polypeptide expression joined by a foot and mouth disease virus F2A polypeptide self-cleaving linker sequence. Initial analysis of stable transfectants showed that transfectants utilizing the single ORF vector designs exhibited significantly reduced Mab production. We employed an empirical modeling strategy to quantitatively describe the cellular constraints on recombinant Mab synthesis in all stable transfectants. In all transfectants, an intracellular molar excess of LC polypeptide over HC polypeptide was observed. For CHO cells transfected with the single ORF vectors, model-predicted, and empirical intracellular intermediate levels could only be reconciled by inclusion of nascent HC polypeptide degradation. Whilst a local sensitivity analysis showed that qMab of all transfectants was primarily constrained by recombinant mRNA translation rate, our data indicated that all single ORF transfectants exhibited a reduced level of recombinant gene transcription and that Mab folding and assembly reactions generically exerted greater control over qMab. We infer that the productivity of single ORF transfectants is limited by ER processing/degradation "capacity" which sets a limit on transcriptional input. We conclude that gene vector design for oligomeric recombinant proteins should be based on an understanding of protein-specific synthetic kinetics rather than polypeptide stoichiometry.
Collapse
Affiliation(s)
- Sarah L Davies
- Dept. of Chemical and Biological Engineering, University of Sheffield, Mappin St., Sheffield, U.K
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Harraghy N, Regamey A, Girod PA, Mermod N. Identification of a potent MAR element from the mouse genome and assessment of its activity in stable and transient transfections. J Biotechnol 2011; 154:11-20. [DOI: 10.1016/j.jbiotec.2011.04.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 04/04/2011] [Accepted: 04/13/2011] [Indexed: 01/26/2023]
|
23
|
Prieto Y, Rojas L, Hinojosa L, González I, Aguiar D, de la Luz K, Castillo A, Pérez R. Towards the molecular characterization of the stable producer phenotype of recombinant antibody-producing NS0 myeloma cells. Cytotechnology 2011; 63:351-62. [PMID: 21424581 DOI: 10.1007/s10616-011-9348-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 02/28/2011] [Indexed: 11/24/2022] Open
Abstract
The loss of heterologous protein expression is one of the major problems faced by industrial cell line developers and has been reported by several authors. Therefore, the understanding of the mechanisms involved in the generation of stable and high producer cell lines is a critical issue, especially for those processes based on long term continuous cultures. We characterized two recombinant NS0 myeloma cell lines expressing Nimotuzumab, a humanized anti-human epidermal growth factor receptor (EGFR) antibody. The hR3/H7 clone is a stable producer obtained from the unstable hR3/t16 clone. The unstable clone was characterized by a bimodal distribution of intracellular immunoglobulin staining using flow cytometry. Loss of antibody production was due to the emergence of a non-producer cell subpopulation that increased with cell generation number. Immunoglobulin heavy chain (HC) and light chain (LC) ratio (HC/LC) was lower for the unstable phenotype. Proteomic maps using two dimensional gel electrophoresis (2DE) were obtained for both clones, at initial cell culture time and after 40 generations. Fifteen proteins potentially associated with the phenomenon of production stability were identified. The hR3/H7 stable clone showed an up-regulated expression pattern for most of these proteins. The regulation of recombinant antibody production by the host NS0 myeloma cell line most likely involves simultaneously cellular processes such as DNA transcription, mRNA processing, protein synthesis and folding, vesicular transport, glycolysis and energy production, according to the proteins identified in the present proteomic study.
Collapse
Affiliation(s)
- Y Prieto
- Research and Development Direction, Center of Molecular Immunology, PO Box 16040, 216 St. & 15th Ave, Atabey, Playa Havana, 11600, Cuba,
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Yu M, Hu Z, Pacis E, Vijayasankaran N, Shen A, Li F. Understanding the intracellular effect of enhanced nutrient feeding toward high titer antibody production process. Biotechnol Bioeng 2011; 108:1078-88. [DOI: 10.1002/bit.23031] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 11/10/2010] [Accepted: 11/22/2010] [Indexed: 12/17/2022]
|
25
|
Jacob NM, Kantardjieff A, Yusufi FNK, Retzel EF, Mulukutla BC, Chuah SH, Yap M, Hu WS. Reaching the depth of the Chinese hamster ovary cell transcriptome. Biotechnol Bioeng 2010; 105:1002-9. [PMID: 19882695 DOI: 10.1002/bit.22588] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The high-throughput DNA sequencing Illumina Solexa GAII platform was employed to characterize the transcriptome of an antibody-producing Chinese hamster ovary (CHO) cell line. More than 55 million sequencing reads were generated and mapped to an existing set of CHO unigenes derived from expressed sequence tags (ESTs), as well as several public sequence databases. A very significant fraction of sequencing reads has not been previously seen. The frequency with which fragments of a unigene were sequenced was taken as an estimate of the abundance level of the corresponding transcripts. A wide dynamic range of transcript abundance levels was observed, spanning six orders of magnitude. However, the distribution of coverage across transcript lengths was found to vary, from relatively uniform to highly variable. This observation suggests that more challenges are yet to be resolved before direct sequencing can be used as a true quantitative measure of transcript level and for differential gene expression analysis. With the depth that high-throughput sequencing methods can reach, one can expect that the entire transcriptome of this industrially important organism will be decoded in the near future.
Collapse
Affiliation(s)
- Nitya M Jacob
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minneapolis 55414-01232, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
O'Callaghan PM, McLeod J, Pybus LP, Lovelady CS, Wilkinson SJ, Racher AJ, Porter A, James DC. Cell line-specific control of recombinant monoclonal antibody production by CHO cells. Biotechnol Bioeng 2010; 106:938-51. [DOI: 10.1002/bit.22769] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
27
|
Lee CJ, Seth G, Tsukuda J, Hamilton RW. A clone screening method using mRNA levels to determine specific productivity and product quality for monoclonal antibodies. Biotechnol Bioeng 2009; 102:1107-18. [PMID: 18985612 DOI: 10.1002/bit.22126] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
To meet increasing demands for efficient and streamlined production processes of therapeutic antibodies, improved methods of screening clones are required. In this article, we examined the potential of using antibody transcript levels as criteria for clone screening. We evaluated the QuantiGene Plex, a commercially available, high-throughput assay for simultaneously measuring multiple transcripts from cell lysate. Using the development of stable Chinese hamster ovary cell lines as examples, we investigated the relationship between transcript and antibody levels through several rounds of screening. First, we observed that measured heavy chain transcript levels are generally correlated with specific productivity, enabling the identification of high-producing clones from mRNA. Second, we observed that low ratios (< 1.5) of light to heavy chain transcript levels may be indicative of high antibody aggregation levels, allowing for the rapid identification and elimination of clones of questionable product quality. Therefore, an efficient process of identifying high-producing clones of desirable product quality is possible by using QuantiGene Plex assay to measure antibody transcript levels.
Collapse
Affiliation(s)
- Christina J Lee
- Early Stage Cell Culture, Genentech, Inc., One DNA Way, MS 32, South San Francisco, California 94080, USA
| | | | | | | |
Collapse
|
28
|
Khoo SHG, Al-Rubeai M. Detailed understanding of enhanced specific antibody productivity in NS0 myeloma cells. Biotechnol Bioeng 2009; 102:188-99. [DOI: 10.1002/bit.22041] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
29
|
Dorai H, Li K, Huang CC, Bittner A, Galindo J, Carmen A. Genome-Wide Analysis of Mouse Myeloma Cell Lines Expressing Therapeutic Antibodies. Biotechnol Prog 2007. [DOI: 10.1002/bp0700051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
Barnes LM, Dickson AJ. Mammalian cell factories for efficient and stable protein expression. Curr Opin Biotechnol 2006; 17:381-6. [PMID: 16806893 DOI: 10.1016/j.copbio.2006.06.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 06/01/2006] [Accepted: 06/14/2006] [Indexed: 01/07/2023]
Abstract
As the commercial market for therapeutic protein production from mammalian cells has expanded, so has the requirement for improved efficiency and stability of production. Rapid developments have been made in understanding the molecular environment of transgenes in chromatin, including elucidation of the contribution of epigenetic modifications to expression, and this understanding is being used to enhance expression from host cells. Technical advances surrounding the 'omics' revolution are enabling the rational identification of complex control factors that define the flow of information from transgene to desired protein. Using information from 'omics' interrogations, directed cell engineering has been employed to enhance the translational and secretory capacity of host cells. Taken together, these recent advances are likely to lead to improved routes for protein production in the future.
Collapse
Affiliation(s)
- Louise M Barnes
- Faculty of Life Sciences, The Michael Smith Building, The University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| | | |
Collapse
|