1
|
Omidfar K, Riahi F, Kashanian S. Lateral Flow Assay: A Summary of Recent Progress for Improving Assay Performance. BIOSENSORS 2023; 13:837. [PMID: 37754072 PMCID: PMC10526804 DOI: 10.3390/bios13090837] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023]
Abstract
Lateral flow tests are one of the most important types of paper-based point-of-care (POCT) diagnostic tools. It shows great potential as an implement for improving the rapid screening and management of infections in global pandemics or other potential health disorders by using minimally expert staff in locations where no sophisticated laboratory services are accessible. They can detect different types of biomarkers in various biological samples and provide the results in a little time at a low price. An important challenge regarding conventional LFAs is increasing their sensitivity and specificity. There are two main approaches to increase sensitivity and specificity, including assay improvement and target enrichment. Assay improvement comprises the assay optimization and signal amplification techniques. In this study, a summarize of various sensitivity and specificity enhancement strategies with an objective evaluation are presented, such as detection element immobilization, capillary flow rate adjusting, label evolution, sample extraction and enrichment, etc. and also the key findings in improving the LFA performance and solving their limitations are discussed along with numerous examples.
Collapse
Affiliation(s)
- Kobra Omidfar
- Biosensor Research Center, Endocrinology and Metabolism Molecular—Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran 1458889694, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran 1458889694, Iran
| | - Fatemeh Riahi
- Biosensor Research Center, Endocrinology and Metabolism Molecular—Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran 1458889694, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran 1458889694, Iran
| | - Soheila Kashanian
- Faculty of Chemistry, Razi University, Kermanshah 6714414971, Iran
- Nanobiotechnology Department, Faculty of Innovative Science and Technology, Razi University, Kermanshah 6714414971, Iran
| |
Collapse
|
2
|
Affiliation(s)
- Pankaj Kumar
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi - 110007, India
- Department of Chemistry, University of Delhi, Delhi - 110007, India
| | - Niloy Sarkar
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi - 110007, India
- Department of Environmental Studies, University of Delhi, Delhi - 110007, India
| | - Amit Singh
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi - 110007, India
- Department of Chemistry, University of Delhi, Delhi - 110007, India
| | - Mahima Kaushik
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi - 110007, India
| |
Collapse
|
3
|
Doménech-Carbó MT, Doménech-Carbó A. Spot tests: past and present. CHEMTEXTS 2022; 8:4. [PMID: 34976574 PMCID: PMC8710564 DOI: 10.1007/s40828-021-00152-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/11/2021] [Indexed: 11/21/2022]
Abstract
Microchemistry, i.e., the chemistry performed at the scale of a microgram or less, has its roots in the late eighteenth and early nineteenth centuries. In the first half of the twentieth century a wide range of spot tests have been developed. For didactic reasons, they are still part of the curriculum of chemistry students. However, they are even highly important for applied analyses in conservation of cultural heritage, food science, forensic science, clinical and pharmacological sciences, geochemistry, and environmental sciences. Modern pregnancy tests, virus tests, etc. are the most recent examples of sophisticated spot tests. The present ChemTexts contribution aims to provide an overview of the past and present of this analytical methodology.
Collapse
Affiliation(s)
- María Teresa Doménech-Carbó
- Institut de Restauració del Patrimoni, Universitat Politècnica de València, Camí de Vera 14, 46022 Valencia, Spain
| | - Antonio Doménech-Carbó
- Departament de Química Analítica, Universitat de València. Dr. Moliner, 50, Burjassot, 46100 Valencia, Spain
| |
Collapse
|
4
|
Syedmoradi L, Norton ML, Omidfar K. Point-of-care cancer diagnostic devices: From academic research to clinical translation. Talanta 2020; 225:122002. [PMID: 33592810 DOI: 10.1016/j.talanta.2020.122002] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022]
Abstract
Early and timely diagnosis of cancer plays a decisive role in appropriate treatment and improves clinical outcomes, improving public health. Significant advances in biosensor technologies are leading to the development of point-of-care (POC) diagnostics, making the testing process faster, easier, cost-effective, and suitable for on-site measurements. Moreover, the incorporation of various nanomaterials into the sensing platforms has yielded POC testing (POCT) platforms with enhanced sensitivity, cost-effectiveness and simplified detection schemes. POC cancer diagnostic devices provide promising platforms for cancer biomarker detection as compared to conventional in vitro diagnostics, which are time-consuming and require sophisticated instrumentation, centralized laboratories, and experienced operators. Current innovative approaches in POC technologies, including biosensors, smartphone interfaces, and lab-on-a-chip (LOC) devices are expected to quickly transform the healthcare landscape. However, only a few cancer POC devices (e.g. lateral flow platforms) have been translated from research laboratories to clinical care, likely due to challenges include sampling procedures, low levels of sensitivity and specificity in clinical samples, system integration and signal readout requirements. In this review, we emphasize recent advances in POC diagnostic devices for cancer biomarker detection and discuss the critical challenges which must be surmounted to facilitate their translation into clinical settings.
Collapse
Affiliation(s)
- Leila Syedmoradi
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael L Norton
- Department of Chemistry, Marshall University, One John Marshall Drive, Huntington, WV, 25755, USA
| | - Kobra Omidfar
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Omidfar K, Ahmadi A, Syedmoradi L, Khoshfetrat SM, Larijani B. Point-of-care biosensors in medicine: a brief overview of our achievements in this field based on the conducted research in EMRI (endocrinology and metabolism research Institute of Tehran University of medical sciences) over the past fourteen years. J Diabetes Metab Disord 2020:1-5. [PMID: 33140004 PMCID: PMC7592446 DOI: 10.1007/s40200-020-00668-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/19/2020] [Indexed: 12/21/2022]
Abstract
The growing demand of diagnostic tools with enhanced analytical characteristics in term of sensitivity, selectivity, and low response time has encouraged researches to conduct their research towards development of point-of-care (POC) biosensors. POC diagnostic devices are powerful tools for detection, diagnosis, and monitoring of diseases at its initial stage. The above characteristics encouraged us to conduct active multidisciplinary and collaborative research oriented towards the design and development of POC sensing systems. Here, we present a brief overview of our recent achievement in the field of biomedical POC devices implemented in paper based microfluidic and screen printing electrodes and discuss the critical limitations that need to be surmounted to facilitate their translation into clinical practice in the future.
Collapse
Affiliation(s)
- Kobra Omidfar
- Biosensor Research Center, Endocrinology and Metabolism Molecular–Cellular Sciences Institute, Tehran University of Medical Sciences, 14395/1179, Tehran, I.R. Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Anita Ahmadi
- Biosensor Research Center, Endocrinology and Metabolism Molecular–Cellular Sciences Institute, Tehran University of Medical Sciences, 14395/1179, Tehran, I.R. Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Syedmoradi
- Biosensor Research Center, Endocrinology and Metabolism Molecular–Cellular Sciences Institute, Tehran University of Medical Sciences, 14395/1179, Tehran, I.R. Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyyed Mehdi Khoshfetrat
- Biosensor Research Center, Endocrinology and Metabolism Molecular–Cellular Sciences Institute, Tehran University of Medical Sciences, 14395/1179, Tehran, I.R. Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Perspectives of characterization and bioconjugation of gold nanoparticles and their application in lateral flow immunosensing. Drug Deliv Transl Res 2020; 10:878-902. [DOI: 10.1007/s13346-020-00771-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Combined Mini-Parasep SF and Nanogold Immunoassay Show Potential in Stool Antigen Immunodetection for Giardiasis Diagnosis. Sci Rep 2020; 10:2. [PMID: 32225166 PMCID: PMC7103579 DOI: 10.1038/s41598-019-55492-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/27/2019] [Indexed: 12/02/2022] Open
Abstract
Covalent loading or directional binding of biomolecules on gold nanoparticles (AuNPs) could lead to better results than simple direct adsorption for an enhanced ELISA application. The use of Mini-Parasep solvent-free (SF) without ether or ethyl acetate for the clean and efficient concentration of protozoa cysts, it is a single-use device for in vitro diagnostic use only. In this work, we used Mini-Parasep SF for the detection of giardia cysts in comparison to direct smear and Merthiolate-Iodine Formaldehyde Concentration (MIFC) technique in addition to its use in antigen detection by AuNPs biomolecule loading using rabbit polyclonal antibodies (pAb) against purified Giardia antigen (PGA). As a result, Mini-Parasep SF was the most effective method for Giardia cyst detection and regarding optimization of Mini-Parasep antigen detection, our data showed increased sensitivity and specificity of nano-sandwich ELISA to 92% and 94% respectively and increased positive predictive value (PPV) and negative predictive value (NPV) to 88.64% and 95.91% respectively. In conclusion, this research provides that Mini-Parasep SF concentrator enhanced Giardia cyst detection and improved antigen preparation for AuNPs sandwich ELISA in giardiasis diagnosis. The advantages of this method are the short assay time and the raised accuracy of antigen detection providing concentrated samples without the risk of solvent use and being a disposable Mini-Parasep it helps in giardia antigen purification as well as raising the sensitivity and specificity of ELISA through binding AuNPs.
Collapse
|
8
|
A review on nanomaterial-based field effect transistor technology for biomarker detection. Mikrochim Acta 2019; 186:739. [DOI: 10.1007/s00604-019-3850-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/17/2019] [Indexed: 12/27/2022]
|
9
|
Hakamivala A, Moghassemi S, Omidfar K. Modeling and optimization of the niosome nanovesicles using response surface methodology for delivery of insulin. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab1c3d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
10
|
Zhang X, Liu L, Cui G, Song S, Kuang H, Xu C. Preparation of an anti-isoprocarb monoclonal antibody and its application in developing an immunochromatographic strip assay. Biomed Chromatogr 2019; 33:e4660. [PMID: 31325166 DOI: 10.1002/bmc.4660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/04/2019] [Accepted: 07/15/2019] [Indexed: 01/07/2023]
Abstract
In this study, a carboxyl group was introduced into the isoprocarb molecule to obtain an isoprocarb hapten, which was then coupled with a protein to obtain an artificial antigen. Three monoclonal antibody cell lines, 1D11, 6E6 and 1B5, were finally obtained by mouse immunization, cell fusion and subcloning, and the antibody produced by cell line 1B5 had the best affinity and sensitivity. The monoclonal antibody was highly sensitive and specific for isoprocarb, with an IC50 of 2.09 ng/ml and a cross-reactivity rate of <0.21%. By optimizing the indirect competitive (ic)-ELISA, the optimal conditions were determined to be pH 7.4, 0% methanol and 0.8% NaCl, the limit of detection value was 0.23 ng/ml, and the linear range of the ic-ELISA was 0.46-9.62 ng/ml. The recovery rate of the isoprocarb cucumber sample was 97-99% for the ic-ELISA method. In addition, we successfully developed an immunochromatographic test strip for the detection of isoprocarb residues. The cutoff values in phosphate-buffered saline and cucumber extract were 10 and 25 ng/ml, respectively. Both methods met the requirements for isoprocarb residue detection in agricultural products, and can be used for semiquantitative and qualitative analysis of isoprocarb in vegetables.
Collapse
Affiliation(s)
- Xiaoping Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Liqiang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Gang Cui
- Yancheng Teachers University, Yancheng, People's Republic of China
| | - Shanshan Song
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
11
|
Qin P, Qiao D, Xu J, Song Q, Yao L, Lu J, Chen W. Rapid visual sensing and quantitative identification of duck meat in adulterated beef with a lateral flow strip platform. Food Chem 2019; 294:224-230. [PMID: 31126457 DOI: 10.1016/j.foodchem.2019.05.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/09/2019] [Accepted: 05/06/2019] [Indexed: 12/28/2022]
Abstract
A novel high-sensitivity authentication method has been demonstrated for the rapid visual detection of adulterated meat based on both the lateral flow strip (LFS) platform and on polymerase chain reaction (PCR). After the rapid extraction of genomic components from meat, the on-site amplification of the target DNA of adulterated duck meat is carried out with the rationally designed functional FITC- and biotin-modified primer set, thereby producing numerous double-stranded DNA (dsDNA) products dually labelled with FITC and biotin. The FITC-labelled terminal end of the products binds to the pre-immobilized FITC antibody on the test line of the strip, and the biotin-labelled terminal end binds to the streptavidin-conjugated gold nanoparticles, resulting in a visible test line on the LFS for the rapid identification of duck meat in adulterated beef. After optimization, an adulteration ratio as low as 0.05% can be easily measured, which is more sensitive than other common adulteration authentication methods and is even comparable to instrumental methods. Moreover, 22 commercial processed meat samples were tested with this new strategy, and 4 adulterated samples were successfully identified by both the classic method and our method. In essence, the present authentication method is simple in design, convenient in operation, and can be easily extended to the identification of other adulteration components just by replacing the modified primers.
Collapse
Affiliation(s)
- Panzhu Qin
- Engineering Research Centre of Bio-Process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Dongqing Qiao
- Engineering Research Centre of Bio-Process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Jianguo Xu
- Engineering Research Centre of Bio-Process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Qing Song
- Engineering Research Centre of Bio-Process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Li Yao
- Engineering Research Centre of Bio-Process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Jianfeng Lu
- Engineering Research Centre of Bio-Process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Wei Chen
- Engineering Research Centre of Bio-Process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China.
| |
Collapse
|
12
|
Tai L, Li J, Yin J, Zhang N, Yang J, Li H, Yang Z, Gong P, Zhang X. A novel detection method of Cryptosporidium parvum infection in cattle based on Cryptosporidium parvum virus 1. Acta Biochim Biophys Sin (Shanghai) 2019; 51:104-111. [PMID: 30544221 DOI: 10.1093/abbs/gmy143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/31/2018] [Indexed: 11/15/2022] Open
Abstract
Cryptosporidium parvum is an important zoonotic parasite that causes significant economic loss in the animal husbandry industry, especially the cattle industry. As there is no specific vaccine or drug against Cryptosporidium, a rapid and accurate method for the detection of C. parvum is of great significance. In this study, colloidal gold strips were developed based on Cryptosporidium parvum virus 1 (CSpV1) for the detection of C. parvum infection in cattle fecal samples. The colloidal gold solution was prepared by reducing trisodium citrate and the CSpV1 #5 monoclonal antibody was labeled with colloidal gold. A polyclonal antibody against the CSpV1 capsid protein and an anti-mouse IgG antibody were coated on the colloidal gold strips for use in the test and control lines, respectively. Our results showed that the detection sensitivity in fecal samples was up to a 1:64 dilution. There was no cross-reaction with Cryptosporidium andersoni or Giardia in the fecal samples. The different preservation conditions (room temperature, 4°C, and 37°C) and preservation time (7, 30, 60, and 90 days) were analyzed. The data showed that the strips could be preserved for 90 days at 4°C and for 60 days at room temperature or 37°C. The colloidal gold strips were used to detect the samples of 120 clinical fecal in Changchun, China. The results indicated that the rate of a positive test was 5% (6/120). This study provides a rapid and accurate method for detecting C. parvum infection in cattle and humans.
Collapse
Affiliation(s)
- Lixin Tai
- Key Laboratory of Zoonosis by Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jianhua Li
- Key Laboratory of Zoonosis by Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jigang Yin
- Key Laboratory of Zoonosis by Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Nan Zhang
- Key Laboratory of Zoonosis by Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ju Yang
- Key Laboratory of Zoonosis by Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - He Li
- Key Laboratory of Zoonosis by Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhengtao Yang
- Key Laboratory of Zoonosis by Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Pengtao Gong
- Key Laboratory of Zoonosis by Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xichen Zhang
- Key Laboratory of Zoonosis by Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
13
|
Jamal M, Bukhari SMAUS, Andleeb S, Ali M, Raza S, Nawaz MA, Hussain T, Rahman SU, Shah SSA. Bacteriophages: an overview of the control strategies against multiple bacterial infections in different fields. J Basic Microbiol 2018; 59:123-133. [PMID: 30485461 DOI: 10.1002/jobm.201800412] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 10/24/2018] [Accepted: 10/31/2018] [Indexed: 12/20/2022]
Abstract
Bacteriophages (phages/viruses) need host bacteria to replicate and propagate. Primarily, a bacteriophage contains a head/capsid to encapsidate the genetic material. Some phages contain tails. Phages encode endolysins to hydrolyze bacterial cell wall. The two main classes of phages are lytic or virulent and lysogenic or temperate. In comparison with antibiotics, to deal with bacterial infections, phage therapy is thought to be more effective. In 1921, the use of phages against bacterial infections was first demonstrated. Later on, in humans, phage therapy was used to treat skin infections caused by Pseudomonas species. Furthermore, phages were successfully employed against infections in animals - calves, lambs, and pigs infected with Escherichia coli. In agriculture, for instance, phages have successfully been used e.g., Apple blossom infection, caused by Erwinia amylovora, was effectively catered with the use of bacteriophages. Bacteriophages were also used to control E. coli, Salmonella, Listeria, and Campylobacter contamination in food. Comparatively, phage display is a recently discovered technology, whereby, bacteriophages play a significant role. This review is an effort to collect almost recent and relevant information regarding applications and complications associated with the use of bacteriophages.
Collapse
Affiliation(s)
- Muhsin Jamal
- Department of Microbiology, Abdul Wali Khan University, Garden Campus, Mardan, Pakistan
| | - Sayed M A U S Bukhari
- Department of Microbiology, Abdul Wali Khan University, Garden Campus, Mardan, Pakistan
| | - Saadia Andleeb
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Muhammad Ali
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, Pakistan
| | - Sana Raza
- Institute of Health Sciences, Mardan, Pakistan
| | - Muhammad A Nawaz
- Department of Biotechnology, Shaheed Benazir Bhutto University, Sheringal, Dir (Upper), Pakistan
| | - Tahir Hussain
- Department of Microbiology, Abdul Wali Khan University, Garden Campus, Mardan, Pakistan
| | - Sadeeq U Rahman
- College of Veterinary Sciences and Animal Husbandry, Abdul Wali Khan University, Garden Campus, Mardan, Pakistan
| | - Syed S A Shah
- Department of Zoology, Abdul Wali Khan University, Garden Campus, Mardan, Pakistan
| |
Collapse
|
14
|
Daneshpour M, Karimi B, Omidfar K. Simultaneous detection of gastric cancer-involved miR-106a and let-7a through a dual-signal-marked electrochemical nanobiosensor. Biosens Bioelectron 2018; 109:197-205. [DOI: 10.1016/j.bios.2018.03.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 12/28/2022]
|
15
|
Zhou Y, Xiao J, Ma X, Wang Q, Zhang Y. An effective established biosensor of bifunctional probes-labeled AuNPs combined with LAMP for detection of fish pathogen Streptococcus iniae. Appl Microbiol Biotechnol 2018; 102:5299-5308. [DOI: 10.1007/s00253-018-9016-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/07/2018] [Accepted: 04/10/2018] [Indexed: 12/20/2022]
|
16
|
Syedmoradi L, Daneshpour M, Alvandipour M, Gomez FA, Hajghassem H, Omidfar K. Point of care testing: The impact of nanotechnology. Biosens Bioelectron 2017; 87:373-387. [DOI: 10.1016/j.bios.2016.08.084] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 08/15/2016] [Accepted: 08/25/2016] [Indexed: 11/29/2022]
|
17
|
Daneshpour M, Omidfar K, Ghanbarian H. A novel electrochemical nanobiosensor for the ultrasensitive and specific detection of femtomolar-level gastric cancer biomarker miRNA-106a. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:2023-2036. [PMID: 28144550 PMCID: PMC5238648 DOI: 10.3762/bjnano.7.193] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/23/2016] [Indexed: 06/06/2023]
Abstract
Gastric cancer (GC) is the second leading cause of cancer-related deaths all over the world. miR-106a is a circulatory oncogenic microRNA (miRNA), which overexpresses in various malignancies, especially in GC. In this study, an ultrasensitive electrochemical nanobiosensor was developed for the detection of miR-106a using a double-specific probe methodology and a gold-magnetic nanocomposite as tracing tag. The successful modification of the electrode and hybridization with the target miRNA were confirmed by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) methods. Differential pulse voltammetry (DPV) was used for quantitative evaluation of miR-106a via recording the reduction peak current of gold nanoparticles. The electrochemical signal had a linear relationship with the concentration of the target miRNA ranging from 1 × 10-3 pM to 1 × 103 pM, and the detection limit was 3 × 10-4 pM. The proposed miRNA-nanobiosensor showed remarkable selectivity, high specificity, agreeable storage stability, and great performance in real sample investigation with no pretreatment or amplification. Consequently, our biosensing strategy offers such a promising application to be used for clinical early detection of GC and additionally the screen of any miRNA sequence.
Collapse
Affiliation(s)
- Maryam Daneshpour
- Biotechnology Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kobra Omidfar
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Ghanbarian
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Daneshpour M, moradi LS, Izadi P, Omidfar K. Femtomolar level detection of RASSF1A tumor suppressor gene methylation by electrochemical nano-genosensor based on Fe 3 O 4 /TMC/Au nanocomposite and PT-modified electrode. Biosens Bioelectron 2016; 77:1095-103. [DOI: 10.1016/j.bios.2015.11.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/20/2015] [Accepted: 11/02/2015] [Indexed: 10/22/2022]
|
19
|
Choi JR, Hu J, Wang S, Yang H, Wan Abas WAB, Pingguan-Murphy B, Xu F. Paper-based point-of-care testing for diagnosis of dengue infections. Crit Rev Biotechnol 2016; 37:100-111. [PMID: 26912259 DOI: 10.3109/07388551.2016.1139541] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Dengue endemic is a serious healthcare concern in tropical and subtropical countries. Although well-established laboratory tests can provide early diagnosis of acute dengue infections, access to these tests is limited in developing countries, presenting an urgent need to develop simple, rapid, and robust diagnostic tools. Point-of-care (POC) devices, particularly paper-based POC devices, are typically rapid, cost-effective and user-friendly, and they can be used as diagnostic tools for the prompt diagnosis of dengue at POC settings. Here, we review the importance of rapid dengue diagnosis, current dengue diagnostic methods, and the development of paper-based POC devices for diagnosis of dengue infections at the POC.
Collapse
Affiliation(s)
- Jane Ru Choi
- a The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , P.R. China.,b Department of Biomedical Engineering , Faculty of Engineering, University of Malaya , Kuala Lumpur , Malaysia.,c Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University , Xi'an , P.R. China
| | - Jie Hu
- a The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , P.R. China.,c Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University , Xi'an , P.R. China
| | - ShuQi Wang
- d State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University , Hangzhou , P.R. China.,e Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Hangzhou , P.R. China.,f Institute for Translational Medicine, Zhejiang University , Hangzhou , P.R. China
| | - Hui Yang
- g School of Life Sciences, Northwestern Polytechnical University , Xi'an , P.R. China , and.,h Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University , Xi'an , P.R. China
| | - Wan Abu Bakar Wan Abas
- b Department of Biomedical Engineering , Faculty of Engineering, University of Malaya , Kuala Lumpur , Malaysia
| | - Belinda Pingguan-Murphy
- b Department of Biomedical Engineering , Faculty of Engineering, University of Malaya , Kuala Lumpur , Malaysia
| | - Feng Xu
- a The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , P.R. China.,c Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University , Xi'an , P.R. China
| |
Collapse
|
20
|
Zhang X, Zhou J, Zhang C, Zhang D, Su X. Rapid detection of Enterobacter cloacae by immunomagnetic separation and a colloidal gold-based immunochromatographic assay. RSC Adv 2016. [DOI: 10.1039/c5ra23533b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This is the first study of detection of Enterobacter cloacae via combined immunomagnetic separation and a colloidal gold-based immunochromatographic assay.
Collapse
Affiliation(s)
- Xuan Zhang
- School of Marine Sciences
- Ningbo University
- Ningbo
- P. R. China
| | - Jun Zhou
- School of Marine Sciences
- Ningbo University
- Ningbo
- P. R. China
| | - Chundan Zhang
- School of Marine Sciences
- Ningbo University
- Ningbo
- P. R. China
| | - Dijun Zhang
- School of Marine Sciences
- Ningbo University
- Ningbo
- P. R. China
| | - Xiurong Su
- School of Marine Sciences
- Ningbo University
- Ningbo
- P. R. China
| |
Collapse
|
21
|
Shirazi H, Daneshpour M, Kashanian S, Omidfar K. Synthesis, characterization and in vitro biocompatibility study of Au/TMC/Fe3O4 nanocomposites as a promising, nontoxic system for biomedical applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2015; 6:1677-1689. [PMID: 26425418 PMCID: PMC4578445 DOI: 10.3762/bjnano.6.170] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 07/15/2015] [Indexed: 05/06/2023]
Abstract
The unique properties and applications of iron oxide and Au nanoparticles have motivated researchers to synthesize and optimize a combined nanocomposite containing both. By using various polymers such as chitosan, some of the problems of classic core-shell structures (such as reduced saturation magnetization and thick coating) have been overcome. In the present study, chitosan and one of its well-known derivatives, N-trimethylchitosan (TMC), were applied to construct three-layer nanocomposites in an Au/polymer/Fe3O4 system. It was demonstrated that replacement of chitosan with TMC reasonably improved the properties of the final nanocomposites including their size, magnetic behavior and thermal stability. Moreover, the results of the MTT assay showed no significant cytotoxicity effect when the Au/TMC/Fe3O4 nanocomposites were applied in vitro. These TMC-containing magnetic nanoparticles are well-coated by Au nanoparticles and have good biocompatibility and can thus play the role of a platform or a label in various fields of application, especially the biomedical sciences and biosensors.
Collapse
Affiliation(s)
- Hanieh Shirazi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Daneshpour
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheila Kashanian
- Faculty of Chemistry, Nanoscience and Nanotechnology Research Center, Razi University, Kermanshah, Iran
| | - Kobra Omidfar
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Goudarzi S, Ahmadi A, Farhadi M, Kamran Kamrava S, Mobarrez F, Omidfar K. A new gold nanoparticle based rapid immunochromatographic assay for screening EBV-VCA specific IgA in nasopharyngeal carcinomas. J Appl Biomed 2015. [DOI: 10.1016/j.jab.2014.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
23
|
Abstract
INTRODUCTION Over the past decade, several library-based methods have been developed to discover ligands with strong binding affinities for their targets. These methods mimic the natural evolution for screening and identifying ligand-target interactions with specific functional properties. Phage display technology is a well-established method that has been applied to many technological challenges including novel drug discovery. AREAS COVERED This review describes the recent advances in the use of phage display technology for discovering novel bioactive compounds. Furthermore, it discusses the application of this technology to produce proteins and peptides as well as minimize the use of antibodies, such as antigen-binding fragment, single-chain fragment variable or single-domain antibody fragments like VHHs. EXPERT OPINION Advances in screening, manufacturing and humanization technologies demonstrate that phage display derived products can play a significant role in the diagnosis and treatment of disease. The effects of this technology are inevitable in the development pipeline for bringing therapeutics into the market, and this number is expected to rise significantly in the future as new advances continue to take place in display methods. Furthermore, a widespread application of this methodology is predicted in different medical technological areas, including biosensing, monitoring, molecular imaging, gene therapy, vaccine development and nanotechnology.
Collapse
Affiliation(s)
- Kobra Omidfar
- Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Biosensor Research Center , Tehran , Iran
| | | |
Collapse
|
24
|
Zhang L, Li D, Liu L, Fang J, Xu R, Zhang G. Development of a colloidal gold immunochromatographic strip for the rapid detection of soft-shelled turtle systemic septicemia spherical virus. J Virol Methods 2015; 221:39-45. [PMID: 25913728 DOI: 10.1016/j.jviromet.2015.04.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 04/14/2015] [Accepted: 04/14/2015] [Indexed: 10/23/2022]
Abstract
A colloidal gold immunochromatographic strip (ICS) test based on a competitive format was developed for the rapid detection of soft-shelled turtle systemic septicemia spherical virus (STSSSV) in turtle and fecal samples. Specific egg yolk antibodies (IgY) against STSSSV were labeled with colloidal gold and used as probes in the one-step test strip. Antigen (STSSSV) and goat anti-chicken IgY were drawn on the nitrocellulose membrane as the test line and control line, respectively. When STSSSV standard samples (0-100μg/mL) were detected by the strips, the visual limit of detection (LOD) was found to be 50.0μg/mL. The ICS test showed high stability; the strips were stable for at least 3 months at 4°C without significant loss of activity. There was no obvious cross-reactivity with other aquatic pathogens. The assay can be performed within 5-10min. Analysis of STSSSV in turtle samples revealed that data obtained from the ICS test were in a good agreement with those obtained by ELISA. The positive results of fecal samples suggested that this method could be used to detect STSSSV while protecting the animals' welfare. The ICS assay does not need specialized equipment or a technician and can be used as a reliable, rapid, cost-effective and convenient qualitative tool for on-site diagnosis.
Collapse
Affiliation(s)
- Liping Zhang
- School of Marine Sciences, Ningbo University, Fenghua Road, Ningbo, Zhejiang 315211, PR China.
| | - Dengfeng Li
- School of Marine Sciences, Ningbo University, Fenghua Road, Ningbo, Zhejiang 315211, PR China.
| | - Lianguo Liu
- School of Marine Sciences, Ningbo University, Fenghua Road, Ningbo, Zhejiang 315211, PR China
| | - Jing Fang
- School of Marine Sciences, Ningbo University, Fenghua Road, Ningbo, Zhejiang 315211, PR China
| | - Ran Xu
- School of Marine Sciences, Ningbo University, Fenghua Road, Ningbo, Zhejiang 315211, PR China
| | - Ge Zhang
- College of Biological Science and Technology, Hunan Agriculture University, Nongda Road, Changsha, Hunan 410128, PR China
| |
Collapse
|
25
|
Uptake and transport of insulin across intestinal membrane model using trimethyl chitosan coated insulin niosomes. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 46:333-40. [DOI: 10.1016/j.msec.2014.10.070] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 08/23/2014] [Accepted: 10/23/2014] [Indexed: 02/03/2023]
|
26
|
Shrivastav TG, Kariya KP, Prasad PKV, Chaube SK, Kumar D. Development of enzyme-linked immunosorbent assay for estimation of urinary albumin. J Immunoassay Immunochem 2014; 35:300-13. [PMID: 24654825 DOI: 10.1080/15321819.2013.849729] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Yearly estimation of urinary albumin is a prerequisite for predicting renal status in Diabetes Type II patients with negative dipstick results for overt proteinuria. A simple, sensitive, and cost-effective enzyme linked immunosorbent assay (ELISA) for urinary albumin has been developed using human serum albumin antiserum (HSA-antiserum), HSA-biotin, and streptavidin-horseradish peroxidase (SA-HRP) conjugates. To the antibody-coated wells, 100 μL of HSA standards followed by 1:100 diluted urine samples in duplicate were added and then 50 μL of HSA-biotin conjugates was added in all the wells. 100 μL of SA-HRP was added after washing. Bound enzyme activity was measured by adding 100 μL TMB/H2O2. The analytical sensitivity and ED50 of the developed method was found to be 0.01 μg/mL and 0.35 μg/mL, respectively. The percent recovery of the HSA from exogenously spiked urine pools were in the range of 98.13-100.29%. The intra- and inter-assay coefficient of variation (CVs) ranged from 3.38-10.32 % and 4.22-11.01%, respectively. The antibody showed 4.4% and 3.2% cross reactivity with monkey and horse serum albumin, respectively. There was no cross reaction with human β2-microglobulin, γ-globulin, and haemoglobulin.
Collapse
Affiliation(s)
- Tulsidas G Shrivastav
- a Department of Reproductive Biomedicine , National Institute of Health and Family Welfare , Munirka , New Delhi , India
| | | | | | | | | |
Collapse
|
27
|
Ultrasensitive detection of mercury with a novel one-step signal amplified lateral flow strip based on gold nanoparticle-labeled ssDNA recognition and enhancement probes. Biosens Bioelectron 2014; 61:14-20. [DOI: 10.1016/j.bios.2014.04.049] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/17/2014] [Accepted: 04/23/2014] [Indexed: 11/20/2022]
|
28
|
Karakus C. Development of A Lateral Flow Immunoassay Strip for Rapid Detection of CagA Antigen ofHelicobacter pylori. J Immunoassay Immunochem 2014; 36:324-33. [DOI: 10.1080/15321819.2014.952440] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
29
|
Synthesis and Characterization of Core-shell Au Fe Oxide Nanocomposites and Their Application for Detecting Immunological Interaction. Monoclon Antib Immunodiagn Immunother 2014; 33:74-9. [DOI: 10.1089/mab.2014.0006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
30
|
New analytical applications of gold nanoparticles as label in antibody based sensors. Biosens Bioelectron 2013; 43:336-47. [PMID: 23356999 DOI: 10.1016/j.bios.2012.12.045] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 12/20/2012] [Accepted: 12/20/2012] [Indexed: 11/23/2022]
Abstract
Gold nanoparticles (AuNPs) with optical and electrochemical distinctiveness as well as biocompatibility characteristics have proven to be powerful tools in nanomedicinal application. This review article discusses recent advances in the application of AuNPs as label in bioanalytical devices, especially electrochemical immunosensors, rapid and point-of-care (PoC) tests. A crucial assessment regarding implementation of different formats of antibodies allowing rapid and sensitive analysis of a range of analytes is also provided in this study. In addition to this, different approaches to minimize antibodies into Fab, scFv or even single-domain antibody fragments like VHHs will be reviewed. Given the high level of target specificity and affinity, such biomolecules are considered to be excellent elements for on-site or PoC analysis.
Collapse
|
31
|
Omidfar K, Shirvani Z. Single Domain Antibodies: A New Concept for Epidermal Growth Factor Receptor and EGFRvIII Targeting. DNA Cell Biol 2012; 31:1015-26. [DOI: 10.1089/dna.2011.1529] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Kobra Omidfar
- Endocrine and Metabolism Research Center, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Zaynab Shirvani
- Endocrine and Metabolism Research Center, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| |
Collapse
|
32
|
|
33
|
Omidfar K, Khorsand B, Larijani B. Development of a new sensitive immunostrip assay based on mesoporous silica and colloidal Au nanoparticles. Mol Biol Rep 2011; 39:1253-9. [DOI: 10.1007/s11033-011-0856-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Accepted: 05/12/2011] [Indexed: 10/18/2022]
|