1
|
Ďúranová H, Kšiňan S, Kuželová L, Šimora V, Ďurišová Ľ, Olexíková L, Ernst D, Kolenčík M. Nanoparticle-plant interactions: Physico-chemical characteristics, application strategies, and transmission electron microscopy-based ultrastructural insights, with a focus on stereological research. CHEMOSPHERE 2024; 363:142772. [PMID: 38971445 DOI: 10.1016/j.chemosphere.2024.142772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Ensuring global food security is pressing among challenges like population growth, climate change, soil degradation, and diminishing resources. Meeting the rising food demand while reducing agriculture's environmental impact requires innovative solutions. Nanotechnology, with its potential to revolutionize agriculture, offers novel approaches to these challenges. However, potential risks and regulatory aspects of nanoparticle (NP) utilization in agriculture must be considered to maximize their benefits for human health and the environment. Understanding NP-plant cell interactions is crucial for assessing risks of NP exposure and developing strategies to control NP uptake by treated plants. Insights into NP uptake mechanisms, distribution patterns, subcellular accumulation, and induced alterations in cellular architecture can be effectively drawn using transmission electron microscopy (TEM). TEM allows direct visualization of NPs within plant tissues/cells and their influence on organelles and subcellular structures at high resolution. Moreover, integrating TEM with stereological principles, which has not been previously utilized in NP-plant cell interaction assessments, provides a novel and quantitative framework to assess these interactions. Design-based stereology enhances TEM capability by enabling precise and unbiased quantification of three-dimensional structures from two-dimensional images. This combined approach offers comprehensive data on NP distribution, accumulation, and effects on cellular morphology, providing deeper insights into NP impact on plant physiology and health. This report highlights the efficient use of TEM, enhanced by stereology, in investigating diverse NP-plant tissue/cell interactions. This methodology facilitates detailed visualization of NPs and offers robust quantitative analysis, advancing our understanding of NP behavior in plant systems and their potential implications for agricultural sustainability.
Collapse
Affiliation(s)
- Hana Ďúranová
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Samuel Kšiňan
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976, Nitra, Slovakia.
| | - Lenka Kuželová
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia; Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Veronika Šimora
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Ľuba Ďurišová
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976, Nitra, Slovakia
| | - Lucia Olexíková
- Institute of Farm Animal Genetics and Reproduction, NPPC, Research Institute for Animal Production in Nitra, Hlohovecká 2, 95141, Lužianky, Slovakia
| | - Dávid Ernst
- Institute of Agronomic Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Marek Kolenčík
- Institute of Agronomic Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| |
Collapse
|
2
|
Ashraf S, Hassan Said A, Hartmann R, Assmann M, Feliu N, Lenz P, Parak WJ. Quantitative Particle Uptake by Cells as Analyzed by Different Methods. Angew Chem Int Ed Engl 2020; 59:5438-5453. [PMID: 31657113 PMCID: PMC7155048 DOI: 10.1002/anie.201906303] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/21/2019] [Indexed: 12/21/2022]
Abstract
There is a large number of two-dimensional static in vitro studies about the uptake of colloidal nano- and microparticles, which has been published in the last decade. In this Minireview, different methods used for such studies are summarized and critically discussed. Supplementary experimental data allow for a direct comparison of the different techniques. Emphasis is given on how quantitative parameters can be extracted from studies in which different experimental techniques have been used, with the goal of allowing better comparison.
Collapse
Affiliation(s)
- Sumaira Ashraf
- Fachbereich PhysikPhilipps Universität Marburg35037MarburgGermany
- Institute of Industrial BiotechnologyGovernment College University LahorePunjab54000Pakistan
| | - Alaa Hassan Said
- Fachbereich PhysikPhilipps Universität Marburg35037MarburgGermany
- Electronics and Nano Devices lab (END)Department of PhysicsFaculty of SciencesSouth Valley University83523QenaEgypt
| | - Raimo Hartmann
- Fachbereich PhysikPhilipps Universität Marburg35037MarburgGermany
| | - Marcus‐Alexander Assmann
- Fachbereich PhysikPhilipps Universität Marburg35037MarburgGermany
- Fraunhofer Institute for High-Speed DynamicsErnst Mach Institute79104FreiburgGermany
| | - Neus Feliu
- Fachbereich Physik und Chemie, CHyNUniversität Hamburg20146HamburgGermany
| | - Peter Lenz
- Fachbereich PhysikPhilipps Universität Marburg35037MarburgGermany
| | - Wolfgang J. Parak
- Fachbereich Physik und Chemie, CHyNUniversität Hamburg20146HamburgGermany
- Institute of Nano Biomedicine and EngineeringKey Laboratory for Thin Film and Microfabrication Technology of the Ministry of EducationDepartment of Instrument Science and EngineeringSchool of Electronic Information and Electrical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
3
|
Analyse quantitativer Partikelaufnahme von Zellen über verschiedene Messmethoden. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201906303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
Nedosekin DA, Fahmi T, Nima ZA, Nolan J, Cai C, Sarimollaoglu M, Dervishi E, Basnakian A, Biris AS, Zharov VP. Photoacoustic in vitro flow cytometry for nanomaterial research. PHOTOACOUSTICS 2017; 6:16-25. [PMID: 28417068 PMCID: PMC5387917 DOI: 10.1016/j.pacs.2017.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/31/2017] [Accepted: 03/14/2017] [Indexed: 05/12/2023]
Abstract
Conventional flow cytometry is a versatile tool for drug research and cell characterization. However, it is poorly suited for quantification of non-fluorescent proteins and artificial nanomaterials without the use of additional labeling. The rapid growth of biomedical applications for small non-fluorescent nanoparticles (NPs) for drug delivery and contrast and therapy enhancement, as well as research focused on natural cell pigments and chromophores, demands high-throughput quantification methods for the non-fluorescent components. In this work, we present a novel photoacoustic (PA) fluorescence flow cytometry (PAFFC) platform that combines NP quantification though PA detection with conventional in vitro flow cytometry sample characterization using fluorescence labeling. PAFFC simplifies high-throughput analysis of cell-NP interactions, optimization of targeted nanodrugs, and NP toxicity assessment, providing a direct correlation between NP uptake and characterization of toxicity markers for every cell.
Collapse
Affiliation(s)
- Dmitry A. Nedosekin
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Tariq Fahmi
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
- National Toxicology Research Center, U.S. Foods and Drug Administration, Jefferson, AR 72132, United States
| | - Zeid A. Nima
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR 72204, United States
| | - Jacqueline Nolan
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Chengzhong Cai
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
- National Toxicology Research Center, U.S. Foods and Drug Administration, Jefferson, AR 72132, United States
| | - Mustafa Sarimollaoglu
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Enkeleda Dervishi
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM 87544, United States
| | - Alexei Basnakian
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
- Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, United States
| | - Alexandru S. Biris
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR 72204, United States
| | - Vladimir P. Zharov
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| |
Collapse
|
5
|
Di Y, Aminot Y, Schroeder DC, Readman JW, Jha AN. Integrated biological responses and tissue-specific expression of p53 and ras genes in marine mussels following exposure to benzo(α)pyrene and C60 fullerenes, either alone or in combination. Mutagenesis 2016; 32:77-90. [PMID: 28011749 DOI: 10.1093/mutage/gew049] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We used the marine bivalve (Mytilus galloprovincialis) to assess a range of biological or biomarker responses following exposure to a model-engineered nanoparticle, C60 fullerene, either alone or in combination with a model polycyclic aromatic hydrocarbon, benzo(α)pyrene [B(α)P]. An integrated biomarker approach was used that included: (i) determination of 'clearance rates' (a physiological indicator at individual level), (ii) histopathological alterations (at tissue level), (iii) DNA strand breaks using the comet assay (at cellular level) and (iv) transcriptional alterations of p53 (anti-oncogene) and ras (oncogene) determined by real-time quantitative polymerase chain reaction (at the molecular/genetic level). In addition, total glutathione in the digestive gland was measured as a proxy for oxidative stress. Here, we report that mussels showed no significant changes in 'clearance rates' after 1 day exposure, however significant increases in 'clearance rates' were found following exposure for 3 days. Histopathology on selected organs (i.e. gills, digestive glands, adductor muscles and mantles) showed increased occurrence of abnormalities in all tissues types, although not all the exposed organisms showed these abnormalities. Significantly, increased levels of DNA strand breaks were found after exposure for 3-days in most individuals tested. In addition, a significant induction for p53 and ras expression was observed in a tissue and chemical-specific pattern, although large amounts of inter-individual variability, compared with other biomarkers, were clearly apparent. Overall, biological responses at different levels showed variable sensitivity, with DNA strand breaks and gene expression alterations exhibiting higher sensitivities. Furthermore, the observed genotoxic responses were reversible after a recovery period, suggesting the ability of mussels to cope with the toxicants C60 and/or B(α)P under our experimental conditions. Overall, in this comprehensive study, we have demonstrated mussels as a suitable model marine invertebrate species to study the potential detrimental effects induced by possible genotoxicants and toxicants, either alone or in combinations at different levels of biological organisation (i.e. molecular to individual levels).
Collapse
Affiliation(s)
- Yanan Di
- School of Biological Sciences and.,Present address: Institute of Marine Biology, Ocean College, Zhejiang University, People's Republic of China
| | - Yann Aminot
- School of Geography, Earth and Environmental Sciences, Plymouth University, Plymouth, PL4 8AA, UK
| | - Declan C Schroeder
- Marine Biological Association of the United Kingdom (MBA), Citadel Hill, Plymouth, PL1 2PB, UK and
| | - James W Readman
- School of Biological Sciences and.,School of Geography, Earth and Environmental Sciences, Plymouth University, Plymouth, PL4 8AA, UK.,Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL1 3DH, UK
| | | |
Collapse
|
6
|
Brandenberger C, Ochs M, Mühlfeld C. Assessing particle and fiber toxicology in the respiratory system: the stereology toolbox. Part Fibre Toxicol 2015; 12:35. [PMID: 26521139 PMCID: PMC4628359 DOI: 10.1186/s12989-015-0110-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 10/14/2015] [Indexed: 11/16/2022] Open
Abstract
The inhalation of airborne particles can lead to pathological changes in the respiratory tract. For this reason, toxicology studies on effects of inhalable particles and fibers often include an assessment of histopathological alterations in the upper respiratory tract, the trachea and/or the lungs. Conventional pathological evaluations are usually performed by scoring histological lesions in order to obtain "quantitative" information and an estimation of the severity of the lesion. This approach not only comprises a potential subjective bias, depending on the examiner's judgment, but also conveys the risk that mild alterations escape the investigator's eye. The most accurate way of obtaining unbiased quantitative information about three-dimensional (3D) features of tissues, cells, or organelles from two-dimensional physical or optical sections is by means of stereology, the gold standard of image-based morphometry. Nevertheless, it can be challenging to express histopathological changes by morphometric parameters such as volume, surface, length or number only. In this review we therefore provide an overview on different histopathological lesions in the respiratory tract associated with particle and fiber toxicology and on how to apply stereological methods in order to correctly quantify and interpret histological lesions in the respiratory tract. The article further aims at pointing out common pitfalls in quantitative histopathology and at providing some suggestions on how respiratory toxicology can be improved by stereology. Thus, we hope that this article will stimulate scientists in particle and fiber toxicology research to implement stereological techniques in their studies, thereby promoting an unbiased 3D assessment of pathological lesions associated with particle exposure.
Collapse
Affiliation(s)
- Christina Brandenberger
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
- Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany.
| | - Matthias Ochs
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
- Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany.
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
- Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany.
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.
| |
Collapse
|
7
|
Xia DL, Chen YP, Chen C, Wang YF, Li XD, He H, Gu HY. Comparative Study of Biosafety, DNA, and Chromosome Damage of Different-Materials-Modified Fe3O4 in Rats. Appl Biochem Biotechnol 2015; 177:1069-82. [DOI: 10.1007/s12010-015-1797-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 08/02/2015] [Indexed: 12/22/2022]
|
8
|
Mayhew TM, Lucocq JM. From gross anatomy to the nanomorphome: stereological tools provide a paradigm for advancing research in quantitative morphomics. J Anat 2015; 226:309-21. [PMID: 25753334 DOI: 10.1111/joa.12287] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2015] [Indexed: 01/08/2023] Open
Abstract
The terms morphome and morphomics are not new but, recently, a group of morphologists and cell biologists has given them clear definitions and emphasised their integral importance in systems biology. By analogy to other '-omes', the morphome refers to the distribution of matter within 3-dimensional (3D) space. It equates to the totality of morphological features within a biological system (virus, single cell, multicellular organism or populations thereof) and morphomics is the systematic study of those structures. Morphomics research has the potential to generate 'big data' because it includes all imaging techniques at all levels of achievable resolution and all structural scales from gross anatomy and medical imaging, via optical and electron microscopy, to molecular characterisation. As with other '-omics', quantification is an important part of morphomics and, because biological systems exist and operate in 3D space, precise descriptions of form, content and spatial relationships require the quantification of structure in 3D. Revealing and quantifying structural detail inside the specimen is achieved currently in two main ways: (i) by some form of reconstruction from serial physical or tomographic slices or (ii) by using randomly-sampled sections and simple test probes (points, lines, areas, volumes) to derive stereological estimates of global and/or individual quantities. The latter include volumes, surfaces, lengths and numbers of interesting features and spatial relationships between them. This article emphasises the value of stereological design, sampling principles and estimation tools as a template for combining with alternative imaging techniques to tackle the 'big data' issue and advance knowledge and understanding of the morphome. The combination of stereology, TEM and immunogold cytochemistry provides a practical illustration of how this has been achieved in the sub-field of nanomorphomics. Applying these quantitative tools/techniques in a carefully managed study design offers us a deeper appreciation of the spatiotemporal relationships between the genome, metabolome and morphome which are integral to systems biology.
Collapse
Affiliation(s)
- Terry M Mayhew
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK; School of Medicine, University of St Andrews, St Andrews, UK
| | | |
Collapse
|
9
|
Mayhew TM. Quantitative immunocytochemistry at the ultrastructural level: a stereology-based approach to molecular nanomorphomics. Cell Tissue Res 2014; 360:43-59. [PMID: 25403623 DOI: 10.1007/s00441-014-2038-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 10/15/2014] [Indexed: 12/16/2022]
Abstract
Biological systems span multiple levels of structural organisation from the macroscopic, via the microscopic, to the nanoscale. Therefore, comprehensive investigation of systems biology requires application of imaging modalities that reveal structure at multiple resolution scales. Nanomorphomics is the part of morphomics devoted to the systematic study of functional morphology at the nanoscale and an important element of its achievement is the combination of immunolabelling and transmission electron microscopy (TEM). The ultimate goal of quantitative immunocytochemistry is to estimate numbers of target molecules (usually peptides, proteins or protein complexes) in biological systems and to map their spatial distributions within them. Immunogold cytochemistry utilises target-specific affinity markers (primary antibodies) and visualisation aids (e.g., colloidal gold particles or silver-enhanced nanogold particles) to detect and localise target molecules at high resolution in intact cells and tissues. In the case of post-embedding labelling of ultrathin sections for TEM, targets are localised as a countable digital readout by using colloidal gold particles. The readout comprises a spatial distribution of gold particles across the section and within the context of biological ultrastructure. The observed distribution across structural compartments (whether volume- or surface-occupying) represents both specific and non-specific labelling; an assessment by eye alone as to whether the distribution is random or non-random is not always possible. This review presents a coherent set of quantitative methods for testing whether target molecules exhibit preferential and specific labelling of compartments and for mapping the same targets in two or more groups of cells as their TEM immunogold-labelling patterns alter after experimental manipulation. The set also includes methods for quantifying colocalisation in multiple-labelling experiments and mapping absolute numbers of colloidal gold particles across compartments at specific positions within cells having a point-like inclusion (e.g., centrosome, nucleolus) and a definable vertical axis. Although developed for quantifying colloidal gold particles, the same methods can in principle be used to quantify other electron-dense punctate nanoparticles, including quantum dots.
Collapse
Affiliation(s)
- Terry M Mayhew
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, E Floor, Nottingham, NG7 2UH, UK,
| |
Collapse
|
10
|
Guo JW, Lee YH, Huang HW, Tzou MC, Wang YJ, Tsai JC. Development of Taiwan's strategies for regulating nanotechnology-based pharmaceuticals harmonized with international considerations. Int J Nanomedicine 2014; 9:4773-83. [PMID: 25342901 PMCID: PMC4206375 DOI: 10.2147/ijn.s68134] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nanotechnology offers potential in pharmaceuticals and biomedical developments for improving drug delivery systems, medical imaging, diagnosis, cancer therapy, and regenerative medicine. Although there is no international regulation or legislation specifically for nanomedicine, it is agreed worldwide that considerably more attention should be paid to the quality, safety, and efficacy of nanotechnology-based drugs. The US Food and Drug Administration and the European Medicines Agency have provided several draft regulatory guidance and reflection papers to assist the development of nanomedicines. To cope with the impact of nanotechnology and to foster its pharmaceutical applications and development in Taiwan, this article reviews the trends of regulating nanotechnology-based pharmaceuticals in the international community and proposes strategies for Taiwan’s regulation harmonized with international considerations. The draft regulatory measures include a chemistry, manufacturing, and controls (CMC) review checklist and guidance for CMC review of liposomal products. These have been submitted for discussion among an expert committee, with membership comprised of multidisciplinary academia, research institutions, the pharmaceutical industry, and regulators, and are currently approaching final consensus. Once a consensus is reached, these mechanisms will be recommended to the Taiwan Food and Drug Administration for jurisdiction and may be initiated as the starting point for regulating nanotechnology-based pharmaceuticals in Taiwan.
Collapse
Affiliation(s)
- Jiun-Wen Guo
- Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Chung Kung University, Tainan, Taiwan
| | - Yu-Hsuan Lee
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsiau-Wen Huang
- Food and Drug Administration, Ministry of Health and Welfare, Taiwan
| | - Mei-Chyun Tzou
- Food and Drug Administration, Ministry of Health and Welfare, Taiwan
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jui-Chen Tsai
- Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Chung Kung University, Tainan, Taiwan ; Center for Pharmaceutical Regulatory Science, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
11
|
Torrano AA, Bräuchle C. Precise quantification of silica and ceria nanoparticle uptake revealed by 3D fluorescence microscopy. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2014; 5:1616-24. [PMID: 25383274 PMCID: PMC4222454 DOI: 10.3762/bjnano.5.173] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 09/05/2014] [Indexed: 05/24/2023]
Abstract
Particle_in_Cell-3D is a powerful method to quantify the cellular uptake of nanoparticles. It combines the advantages of confocal fluorescence microscopy with fast and precise semi-automatic image analysis. In this work we present how this method was applied to investigate the impact of 310 nm silica nanoparticles on human vascular endothelial cells (HUVEC) in comparison to a cancer cell line derived from the cervix carcinoma (HeLa). The absolute number of intracellular silica nanoparticles within the first 24 h was determined and shown to be cell type-dependent. As a second case study, Particle_in_Cell-3D was used to assess the uptake kinetics of 8 nm and 30 nm ceria nanoparticles interacting with human microvascular endothelial cells (HMEC-1). These small nanoparticles formed agglomerates in biological medium, and the particles that were in effective contact with cells had a mean diameter of 417 nm and 316 nm, respectively. A significant particle size-dependent effect was observed after 48 h of interaction, and the number of intracellular particles was more than four times larger for the 316 nm agglomerates. Interestingly, our results show that for both particle sizes there is a maximum dose of intracellular nanoparticles at about 24 h. One of the causes for such an interesting and unusual uptake behavior could be cell division.
Collapse
Affiliation(s)
- Adriano A Torrano
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstrasse 5-13(E), 81377 Munich, Germany
| | - Christoph Bräuchle
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstrasse 5-13(E), 81377 Munich, Germany
| |
Collapse
|
12
|
Nazarenus M, Zhang Q, Soliman MG, del Pino P, Pelaz B, Carregal-Romero S, Rejman J, Rothen-Rutishauser B, Clift MJD, Zellner R, Nienhaus GU, Delehanty JB, Medintz IL, Parak WJ. In vitro interaction of colloidal nanoparticles with mammalian cells: What have we learned thus far? BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2014; 5:1477-90. [PMID: 25247131 PMCID: PMC4168913 DOI: 10.3762/bjnano.5.161] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 08/12/2014] [Indexed: 05/20/2023]
Abstract
The interfacing of colloidal nanoparticles with mammalian cells is now well into its second decade. In this review our goal is to highlight the more generally accepted concepts that we have gleaned from nearly twenty years of research. While details of these complex interactions strongly depend, amongst others, upon the specific properties of the nanoparticles used, the cell type, and their environmental conditions, a number of fundamental principles exist, which are outlined in this review.
Collapse
Affiliation(s)
- Moritz Nazarenus
- Fachbereich Physik, Philipps-Universität Marburg, Renthof 7, 35037 Marburg, Germany
| | - Qian Zhang
- Fachbereich Physik, Philipps-Universität Marburg, Renthof 7, 35037 Marburg, Germany
| | - Mahmoud G Soliman
- Fachbereich Physik, Philipps-Universität Marburg, Renthof 7, 35037 Marburg, Germany
| | - Pablo del Pino
- CIC Biomagune, Paseo Miramón 182, 20009 San Sebastian, Spain
| | - Beatriz Pelaz
- Fachbereich Physik, Philipps-Universität Marburg, Renthof 7, 35037 Marburg, Germany
| | | | - Joanna Rejman
- Fachbereich Physik, Philipps-Universität Marburg, Renthof 7, 35037 Marburg, Germany
| | - Barbara Rothen-Rutishauser
- BioNanomaterials, Adolphe Merkle Institute, University of Fribourg, Route de L’ancienne Papeterie CP 209, Marly 1, 1723, Fribourg, Switzerland
| | - Martin J D Clift
- BioNanomaterials, Adolphe Merkle Institute, University of Fribourg, Route de L’ancienne Papeterie CP 209, Marly 1, 1723, Fribourg, Switzerland
| | - Reinhard Zellner
- Institute of Physical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - G Ulrich Nienhaus
- Institute of Applied Physics and Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801, USA
| | - James B Delehanty
- Center for Bio/Molecular Science & Engineering, Code 6900, U.S. Naval Research Laboratory, 4555 Overlook Avenue Southwest, Washington D.C., 20375, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science & Engineering, Code 6900, U.S. Naval Research Laboratory, 4555 Overlook Avenue Southwest, Washington D.C., 20375, USA
| | - Wolfgang J Parak
- Fachbereich Physik, Philipps-Universität Marburg, Renthof 7, 35037 Marburg, Germany
- CIC Biomagune, Paseo Miramón 182, 20009 San Sebastian, Spain
| |
Collapse
|
13
|
Gehr P, Clift MJD, Brandenberger C, Lehmann A, Herzog F, Rothen-Rutishauser B. Endocytosis of environmental and engineered micro- and nanosized particles. Compr Physiol 2013; 1:1159-74. [PMID: 23733639 DOI: 10.1002/cphy.c100035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
There are many studies with cells to find out how particles interact with them. In contrast to micronsized particles, which are actively taken up by phagocytosis or macropinocytosis, nanosized particles may be taken up by cells through different endocytic pathways or by another, yet to be defined mechanism. There is increasing evidence that it is the nanosized particles, which are a particular risk because of their high content of organic chemicals and their pro-oxidative potential due to the high surface-to-volume ratio of the particles as compared to the bulk material. It is the goal of this article to create an understanding for the interaction of particles with biological systems, with particular consideration of the interaction of nanoparticles (NPs) with lung cells. One is attempting to understand, how NPs interact with cellular membranes, as it is hardly known, how they are taken up by cells, how they are trafficking in cells, and how they interact with subcellular compartments, such as with mitochondria or with the nucleus. Cells tend to defend themselves against any foreign material, which is taken up. In general, they try to eliminate particulate intruders and this is what they usually manage with micronsized particles. However, with NPs it is different. NPs may not be eliminated easily, and, hence may stimulate the cells to react in an unfavorable way. What we can learn is that NPs behave differently than microparticles.
Collapse
Affiliation(s)
- Peter Gehr
- Institute of Anatomy, University of Bern, Bern, Switzerland.
| | | | | | | | | | | |
Collapse
|
14
|
Torrano AA, Blechinger J, Osseforth C, Argyo C, Reller A, Bein T, Michaelis J, Bräuchle C. A fast analysis method to quantify nanoparticle uptake on a single cell level. Nanomedicine (Lond) 2013; 8:1815-28. [DOI: 10.2217/nnm.12.178] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Aim: This study examines the absolute quantification of particle uptake into cells. Methods: We developed a novel method to analyze stacks of confocal fluorescence images of single cells interacting with nano-and micro-particles. Particle_in_Cell-3D is a freely available ImageJ macro. During the image analysis routine, single cells are reconstructed in 3D and split into two volumes – intracellular and the membrane region. Next, particles are localized and color-coded accordingly. The mean intensity of single particles, measured in calibration experiments, is used to determine the absolute number of particles. Results: Particle_in_Cell-3D was successfully applied to measure the uptake of 80-nm mesoporous silica nanoparticles into HeLa cells. Furthermore, it was used to quantify the absolute number of 100-nm polystyrene nanoparticles forming agglomerates of up to five particles; the accuracy of these results was confirmed by super-resolution, stimulated emission depletion microscopy. Conclusion: Particle_in_Cell-3D is a fast and accurate method that allows the quantification of particle uptake into cells. Original submitted 10 May 2011; Revised submitted 15 October 2012; Published online 5 February 2013
Collapse
Affiliation(s)
- Adriano A Torrano
- Ludwig-Maximilians-University Munich, Department of Chemistry & Center for NanoScience, Butenandtstrasse 11, Gerhard-Ertl-Gebäude, 81377 Munich, Germany
| | - Julia Blechinger
- Ludwig-Maximilians-University Munich, Department of Chemistry & Center for NanoScience, Butenandtstrasse 11, Gerhard-Ertl-Gebäude, 81377 Munich, Germany
| | - Christian Osseforth
- Ludwig-Maximilians-University Munich, Department of Chemistry & Center for NanoScience, Butenandtstrasse 11, Gerhard-Ertl-Gebäude, 81377 Munich, Germany
| | - Christian Argyo
- Ludwig-Maximilians-University Munich, Department of Chemistry & Center for NanoScience, Butenandtstrasse 11, Gerhard-Ertl-Gebäude, 81377 Munich, Germany
| | - Armin Reller
- University of Augsburg, Institute for Physics, Universitätsstrasse 1a, 86159 Augsburg, Germany
| | - Thomas Bein
- Ludwig-Maximilians-University Munich, Department of Chemistry & Center for NanoScience, Butenandtstrasse 11, Gerhard-Ertl-Gebäude, 81377 Munich, Germany
| | - Jens Michaelis
- Ludwig-Maximilians-University Munich, Department of Chemistry & Center for NanoScience, Butenandtstrasse 11, Gerhard-Ertl-Gebäude, 81377 Munich, Germany
- Ulm University, Faculty of Natural Sciences, Institute of Biophysics Albert-Einstein Allee 11, 89081 Ulm, Germany
| | - Christoph Bräuchle
- Ludwig-Maximilians-University Munich, Department of Chemistry & Center for NanoScience, Butenandtstrasse 11, Gerhard-Ertl-Gebäude, 81377 Munich, Germany
| |
Collapse
|
15
|
Noël A, Charbonneau M, Cloutier Y, Tardif R, Truchon G. Rat pulmonary responses to inhaled nano-TiO₂: effect of primary particle size and agglomeration state. Part Fibre Toxicol 2013; 10:48. [PMID: 24090040 PMCID: PMC3938138 DOI: 10.1186/1743-8977-10-48] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 10/01/2013] [Indexed: 01/11/2023] Open
Abstract
Background The exact role of primary nanoparticle (NP) size and their degree of agglomeration in aerosols on the determination of pulmonary effects is still poorly understood. Smaller NP are thought to have greater biological reactivity, but their level of agglomeration in an aerosol may also have an impact on pulmonary response. The aim of this study was to investigate the role of primary NP size and the agglomeration state in aerosols, using well-characterized TiO2 NP, on their relative pulmonary toxicity, through inflammatory, cytotoxic and oxidative stress effects in Fisher 344 male rats. Methods Three different sizes of TiO2 NP, i.e., 5, 10–30 or 50 nm, were inhaled as small (SA) (< 100 nm) or large agglomerates (LA) (> 100 nm) at 20 mg/m3 for 6 hours. Results Compared to the controls, bronchoalveolar lavage fluids (BALF) showed that LA aerosols induced an acute inflammatory response, characterized by a significant increase in the number of neutrophils, while SA aerosols produced significant oxidative stress damages and cytotoxicity. Data also demonstrate that for an agglomeration state smaller than 100 nm, the 5 nm particles caused a significant increase in cytotoxic effects compared to controls (assessed by an increase in LDH activity), while oxidative damage measured by 8-isoprostane concentration was less when compared to 10–30 and 50 nm particles. In both SA and LA aerosols, the 10–30 nm TiO2 NP size induced the most pronounced pro-inflammatory effects compared to controls. Conclusions Overall, this study showed that initial NP size and agglomeration state are key determinants of nano-TiO2 lung inflammatory reaction, cytotoxic and oxidative stress induced effects.
Collapse
Affiliation(s)
| | | | | | | | - Ginette Truchon
- Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST), 505 Boul, De Maisonneuve Ouest, Montréal, Québec H3A 3C2, Canada.
| |
Collapse
|
16
|
Kettiger H, Schipanski A, Wick P, Huwyler J. Engineered nanomaterial uptake and tissue distribution: from cell to organism. Int J Nanomedicine 2013; 8:3255-69. [PMID: 24023514 PMCID: PMC3767489 DOI: 10.2147/ijn.s49770] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Improved understanding of interactions between nanoparticles and biological systems is needed to develop safety standards and to design new generations of nanomaterials. This article reviews the molecular mechanisms of cellular uptake of engineered nanoparticles, their intracellular fate, and their distribution within an organism. We have reviewed the available literature on the uptake and disposition of engineered nanoparticles. Special emphasis was placed on the analysis of experimental systems and their limitations with respect to their usefulness to predict the in vivo situation. The available literature confirms the need to study particle characteristics in an environment that simulates the situation encountered in biological systems. Phenomena such as protein binding and opsonization are of prime importance since they may have a strong impact on cellular internalization, biodistribution, and immunogenicity of nanoparticles in vitro and in vivo. Extrapolation from in vitro results to the in vivo situation in the whole organism remains a challenge. However, improved understanding of physicochemical properties of engineered nanoparticles and their influence on biological systems facilitates the design of nanomaterials that are safe, well tolerated, and suitable for diagnostic or therapeutic use in humans.
Collapse
Affiliation(s)
- Helene Kettiger
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Basel, Switzerland
| | - Angela Schipanski
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Materials-Biology Interactions, St Gallen, Switzerland
| | - Peter Wick
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Materials-Biology Interactions, St Gallen, Switzerland
| | - Jörg Huwyler
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Basel, Switzerland
| |
Collapse
|
17
|
Rothen-Rutishauser B, Kuhn DA, Ali Z, Gasser M, Amin F, Parak WJ, Vanhecke D, Fink A, Gehr P, Brandenberger C. Quantification of gold nanoparticle cell uptake under controlled biological conditions and adequate resolution. Nanomedicine (Lond) 2013; 9:607-21. [PMID: 23738633 DOI: 10.2217/nnm.13.24] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM We examined cellular uptake mechanisms of fluorescently labeled polymer-coated gold nanoparticles (NPs) under different biological conditions by two quantitative, microscopic approaches. MATERIALS & METHODS Uptake mechanisms were evaluated using endocytotic inhibitors that were tested for specificity and cytotoxicity. Cellular uptake of gold NPs was analyzed either by laser scanning microscopy or transmission electron microscopy, and quantified by means of stereology using cells from the same experiment. RESULTS Optimal inhibitor conditions were only achieved with chlorpromazine (clathrin-mediated endocytosis) and methyl-β-cyclodextrin (caveolin-mediated endocytosis). A significant methyl-β-cyclodextrin-mediated inhibition (63-69%) and chlorpromazine-mediated increase (43-98%) of intracellular NPs was demonstrated with both imaging techniques, suggesting a predominant uptake via caveolin-medicated endocytois. Transmission electron microscopy imaging revealed more than 95% of NPs localized in intracellular vesicles and approximately 150-times more NP events/cell were detected than by laser scanning microscopy. CONCLUSION We emphasize the importance of studying NP-cell interactions under controlled experimental conditions and at adequate microscopic resolution in combination with stereology.
Collapse
|
18
|
Geiser M, Quaile O, Wenk A, Wigge C, Eigeldinger-Berthou S, Hirn S, Schäffler M, Schleh C, Möller W, Mall MA, Kreyling WG. Cellular uptake and localization of inhaled gold nanoparticles in lungs of mice with chronic obstructive pulmonary disease. Part Fibre Toxicol 2013; 10:19. [PMID: 23680060 PMCID: PMC3660288 DOI: 10.1186/1743-8977-10-19] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 05/09/2013] [Indexed: 12/04/2022] Open
Abstract
Background Inhalative nanocarriers for local or systemic therapy are promising. Gold nanoparticles (AuNP) have been widely considered as candidate material. Knowledge about their interaction with the lungs is required, foremost their uptake by surface macrophages and epithelial cells. Diseased lungs are of specific interest, since these are the main recipients of inhalation therapy. We, therefore, used Scnn1b-transgenic (Tg) mice as a model of chronic obstructive pulmonary disease (COPD) and compared uptake and localization of inhaled AuNP in surface macrophages and lung tissue to wild-type (Wt) mice. Methods Scnn1b-Tg and Wt mice inhaled a 21-nm AuNP aerosol for 2 h. Immediately (0 h) or 24 h thereafter, bronchoalveolar lavage (BAL) macrophages and whole lungs were prepared for stereological analysis of AuNP by electron microscopy. Results AuNP were mainly found as singlets or small agglomerates of ≤ 100 nm diameter, at the epithelial surface and within lung-surface structures. Macrophages contained also large AuNP agglomerates (> 100 nm). At 0 h after aerosol inhalation, 69.2±4.9% AuNP were luminal, i.e. attached to the epithelial surface and 24.0±5.9% in macrophages in Scnn1b-Tg mice. In Wt mice, 35.3±32.2% AuNP were on the epithelium and 58.3±41.4% in macrophages. The percentage of luminal AuNP decreased from 0 h to 24 h in both groups. At 24 h, 15.5±4.8% AuNP were luminal, 21.4±14.2% within epithelial cells and 63.0±18.9% in macrophages in Scnn1b-Tg mice. In Wt mice, 9.5±5.0% AuNP were luminal, 2.2±1.6% within epithelial cells and 82.8±0.2% in macrophages. BAL-macrophage analysis revealed enhanced AuNP uptake in Wt animals at 0 h and in Scnn1b-Tg mice at 24 h, confirming less efficient macrophage uptake and delayed clearance of AuNP in Scnn1b-Tg mice. Conclusions Inhaled AuNP rapidly bound to the alveolar epithelium in both Wt and Scnn1b-Tg mice. Scnn1b-Tg mice showed less efficient AuNP uptake by surface macrophages and concomitant higher particle internalization by alveolar type I epithelial cells compared to Wt mice. This likely promotes AuNP depth translocation in Scnn1b-Tg mice, including enhanced epithelial targeting. These results suggest AuNP nanocarrier delivery as successful strategy for therapeutic targeting of alveolar epithelial cells and macrophages in COPD.
Collapse
|
19
|
Singh SP, Rahman MF, Murty USN, Mahboob M, Grover P. Comparative study of genotoxicity and tissue distribution of nano and micron sized iron oxide in rats after acute oral treatment. Toxicol Appl Pharmacol 2012; 266:56-66. [PMID: 23142030 DOI: 10.1016/j.taap.2012.10.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 10/25/2012] [Accepted: 10/29/2012] [Indexed: 10/27/2022]
Abstract
Though nanomaterials (NMs) are being utilized worldwide, increasing use of NMs have raised concerns over their safety to human health and environment. Iron oxide (Fe(2)O(3)) NMs have important applications. The aim of this study was to assess the genotoxicity of Fe(2)O(3)-30nm and Fe(2)O(3)-bulk in female Wistar rats. Fe(2)O(3)-30nm was characterized by using transmission electron microscopy, dynamic light scattering, laser Doppler velocimetry and surface area analysis. The rats were treated orally with the single doses of 500, 1000, 2000mg/kg bw of Fe(2)O(3)-30nm and Fe(2)O(3) -bulk. The genotoxicity was evaluated at 6, 24, 48 and 72h by the comet assay in leucocytes, 48 and 72h by micronucleus test (MNT) in peripheral blood cells, 18 and 24h by chromosomal aberration (CA) assay and 24 and 48h by MNT in bone marrow cells. The biodistribution of iron (Fe) was carried out at 6, 24, 48 and 72h after treatment in liver, spleen, kidney, heart, brain, bone marrow, urine and feces by using atomic absorption spectrophotometry. The % tail DNA, frequencies of micronuclei and CAs were statistically insignificant (p>0.05) at all doses. These results suggest that Fe(2)O(3)-30nm and Fe(2)O(3)-bulk was not genotoxic at the doses tested. Bioavailability of Fe was size and dose dependent in all the tissues from the groups exposed to Fe(2)O(3)-30nm. Fe(2)O(3) NMs were able to enter in the organs and the rats are biocompatible with much higher concentration of Fe. However, the accumulated Fe did not cause significant genotoxicity. This study provides additional knowledge about the toxicology of Fe(2)O(3) NMs.
Collapse
Affiliation(s)
- Shailendra Pratap Singh
- Toxicology Unit, Biology Division, Indian Institute of Chemical Technology, Hyderabad - 500 007, Andhra Pradesh, India
| | | | | | | | | |
Collapse
|
20
|
Noël A, Maghni K, Cloutier Y, Dion C, Wilkinson KJ, Hallé S, Tardif R, Truchon G. Effects of inhaled nano-TiO2 aerosols showing two distinct agglomeration states on rat lungs. Toxicol Lett 2012; 214:109-19. [PMID: 22944471 DOI: 10.1016/j.toxlet.2012.08.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 08/21/2012] [Accepted: 08/22/2012] [Indexed: 10/27/2022]
Abstract
Nano-aerosols composed of large agglomerates (LA) (>100nm) are more likely to promote pulmonary clearance via macrophages phagocytosis. Small agglomerates (SA) (<100nm) seem to escape this first defense mechanism and are more likely to interact directly with biological material. These different mechanisms can influence pulmonary toxicity. This hypothesis was evaluated by comparing the relative pulmonary toxicity induced by aerosolized nano-TiO(2) showing two different agglomeration states: SA (<100nm) and LA (>100nm) at mass concentrations of 2 or 7mg/m(3). Groups of Fisher 344 male rats were nose-only exposed for 6h. The median number aerodynamic diameters were 30 and 185nm at 2mg/m(3), and 31 and 194nm at 7mg/m(3). We found in rat's bronchoalveolar lavage fluids (BALF) a significant 2.1-fold increase in the number of neutrophils (p<0.05) in the group exposed to the 7mg/m(3) LA nano-aerosol suggesting a mild inflammatory response. Rats exposed to the 7mg/m(3) SA nano-aerosol showed a 1.8-fold increase in LDH activity and 8-isoprostane concentration in BALF, providing evidence for cytotoxic and oxidative stress effects. Our results indicate that biological responses to nanoparticles (NP) might depend on the dimension and concentration of NP agglomerates.
Collapse
Affiliation(s)
- A Noël
- Département de santé environnementale et de santé au travail, Institut de recherche en santé publique, Université de Montréal, Canada
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Eydner M, Schaudien D, Creutzenberg O, Ernst H, Hansen T, Baumgärtner W, Rittinghausen S. Impacts after inhalation of nano- and fine-sized titanium dioxide particles: morphological changes, translocation within the rat lung, and evaluation of particle deposition using the relative deposition index. Inhal Toxicol 2012; 24:557-69. [DOI: 10.3109/08958378.2012.697494] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
22
|
Mühlfeld C, Brandenberger C. Uptake of nanoparticles by cells: do you know their number? Nanomedicine (Lond) 2012; 6:1149-51; author reply 1153-4. [PMID: 21929454 DOI: 10.2217/nnm.11.118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
23
|
Ahmad S, Raemy DO, Loader JE, Kailey JM, Neeves KB, White CW, Ahmad A, Gehr P, Rothen-Rutishauser BM. Interaction and localization of synthetic nanoparticles in healthy and cystic fibrosis airway epithelial cells: effect of ozone exposure. J Aerosol Med Pulm Drug Deliv 2011; 25:7-15. [PMID: 22007674 DOI: 10.1089/jamp.2011.0889] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Nanoparticles (NPs) produced by nanotechnology processes have taken the field of medicine by storm. Concerns about safety of these NPs in humans, however, have recently been raised. Although studies of NP toxicity have focused on lung disease the mechanistic link between NP exposure and lung injury remained unclear. This is primarily due to a lack of availability of appropriate airway disease models and sophisticated microscopic techniques to study nano-sized particulate delivery and resulting responses. METHODS Air-liquid interface (ALI) cultures of non-cystic fibrosis (CF) and CF airway epithelial cells were exposed to the FITC-labeled NPs using a PennCentury microsprayer™. Uptake of NPs was assessed by FACS. Laser scanning microscopy (LSM) was performed and the images were analyzed by an advanced imaging software to study particle deposition and uptake. RESULTS Flow cytometry data revealed that CF cells accumulated increased amounts of NPs. The increased NP uptake could be attributed to the reduced CF transmembrane conductance regulator (CFTR) function as a similar increased retention/uptake was observed in cells whose CFTR expression was downregulated by antisense oligonucleotide. NPs alone did not induce pro-inflammatory cytokine release or cell death. The cell culture system was sensitive to ozone but exposure to the uncoated synthetic NPs used in this study, did not cause any synergistic or suppressive effects. LSM imaging and subsequent image restoration further indicated particle uptake and intracellular localization. Exposure to ozone increased nuclear uptake in both non-CF and CF cells. CONCLUSION Our findings demonstrate the uptake of NPs using ALI cultures of non-CF and CF airway epithelial cells. The NPs used here were useful in demonstrating uptake by airway epithelial cells without causing adverse effects in presence or absence of ozone. However, to totally exclude toxic effects, chronic studies under in vivo conditions using coated particulates are required.
Collapse
Affiliation(s)
- Shama Ahmad
- Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Elsaesser A, Barnes CA, McKerr G, Salvati A, Lynch I, Dawson KA, Howard CV. Quantification of nanoparticle uptake by cells using an unbiased sampling method and electron microscopy. Nanomedicine (Lond) 2011; 6:1189-98. [DOI: 10.2217/nnm.11.70] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Aims: By randomly sampling a known fraction of a pellet of cultured cells, we have accurately estimated the mean number of 50 nm gold nanoparticles accumulated within a single cell. Cellular nanoparticle uptake was measured using a combination of stereological sampling techniques and transmission electron microscopy. Materials & Methods: Nanoparticles were counted individually and their intracellular location was recorded. Quantifying cell and nanoparticle number by analyzing a known fraction of the sample led to precise estimates of intracellular nanoparticle numbers and their spatial locations on an ultrastructural level. We propose a simple and reliable fractionator design and show its applicability and potential using fibroblast cells exposed to 50-nm gold nanoparticles. Results & Conclusion: We demonstrate that this approach is suitable for any electron-dense nanomaterial resolvable by electron microscopy and any convex-shaped cells. In addition, the fractionator concept is flexible enough to be used for spatio–temporal or in vivo studies.
Collapse
Affiliation(s)
- Andreas Elsaesser
- Nano Systems Biology Group, Center for Molecular Biosciences, University of Ulster, UK
| | - Clifford A Barnes
- Nano Systems Biology Group, Center for Molecular Biosciences, University of Ulster, UK
| | - George McKerr
- Nano Systems Biology Group, Center for Molecular Biosciences, University of Ulster, UK
| | - Anna Salvati
- Center for BioNano Interactions, School of Chemistry & Chemical Biology, University College Dublin, Ireland
| | - Iseult Lynch
- Center for BioNano Interactions, School of Chemistry & Chemical Biology, University College Dublin, Ireland
| | - Kenneth A Dawson
- Center for BioNano Interactions, School of Chemistry & Chemical Biology, University College Dublin, Ireland
| | | |
Collapse
|
25
|
Elsaesser A, Taylor A, de Yanés GS, McKerr G, Kim EM, O’Hare E, Howard CV. Quantification of nanoparticle uptake by cells using microscopical and analytical techniques. Nanomedicine (Lond) 2010; 5:1447-57. [DOI: 10.2217/nnm.10.118] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Quantification of nanoparticles in biological systems (i.e., cells, tissues and organs) is becoming a vital part of nanotoxicological and nanomedical fields. Dose is a key parameter when assessing behavior and any potential risk of nanomaterials. Various techniques for nanoparticle quantification in cells and tissues already exist but will need further development in order to make measurements reliable, reproducible and intercomparable between different techniques. Microscopy allows detection and location of nanoparticles in cells and has been used extensively in recent years to characterize nanoparticles and their pathways in living systems. Besides microscopical techniques (light microscopy and electron microscopy mainly), analytical techniques such as mass spectrometry, an established technique in trace element analysis, have been used in nanoparticle research. Other techniques require ‘labeled’ particles, fluorescently, radioactively or magnetically. However, these techniques lack spatial resolution and subcellular localization is not possible. To date, only electron microscopy offers the resolving power to determine accumulation of nanoparticles in cells due to its ability to image particles individually. So-called super-resolution light microscopy techniques are emerging to provide sufficient resolution on the light microscopy level to image or ‘see’ particles as individual particles. Nevertheless, all microscopy techniques require statistically sound sampling strategies in order to provide quantitative results. Stereology is a well-known sampling technique in various areas and, in combination with electron microscopy, proves highly successful with regard to quantification of nanoparticle uptake by cells.
Collapse
Affiliation(s)
- Andreas Elsaesser
- Nano Systems Biology Group, Centre for Molecular Biosciences, University of Ulster, Coleraine, UK Centre for Molecular Biosciences, University of Ulster, Cromore Road, BT52 1SA, Coleraine, UK
| | - Ashley Taylor
- Nano Systems Biology Group, Centre for Molecular Biosciences, University of Ulster, Coleraine, UK Centre for Molecular Biosciences, University of Ulster, Cromore Road, BT52 1SA, Coleraine, UK
| | - Gesa Staats de Yanés
- Nano Systems Biology Group, Centre for Molecular Biosciences, University of Ulster, Coleraine, UK Centre for Molecular Biosciences, University of Ulster, Cromore Road, BT52 1SA, Coleraine, UK
| | - George McKerr
- Nano Systems Biology Group, Centre for Molecular Biosciences, University of Ulster, Coleraine, UK Centre for Molecular Biosciences, University of Ulster, Cromore Road, BT52 1SA, Coleraine, UK
| | - Eun-Mee Kim
- School of Psychology, University of Ulster, Coleraine, UK
| | - Eugene O’Hare
- School of Psychology, Queens University Belfast, Belfast, UK
| | | |
Collapse
|
26
|
Brandenberger C, Mühlfeld C, Ali Z, Lenz AG, Schmid O, Parak WJ, Gehr P, Rothen-Rutishauser B. Quantitative evaluation of cellular uptake and trafficking of plain and polyethylene glycol-coated gold nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2010; 6:1669-78. [PMID: 20602428 DOI: 10.1002/smll.201000528] [Citation(s) in RCA: 251] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
This study addresses the cellular uptake and intracellular trafficking of 15-nm gold nanoparticles (NPs), either plain (i.e., stabilized with citrate) or coated with polyethylene glycol (PEG), exposed to human alveolar epithelial cells (A549) at the air-liquid interface for 1, 4, and 24 h. Quantitative analysis by stereology on transmission electron microscopy images reveals a significant, nonrandom intracellular distribution for both NP types. No particles are observed in the nucleus, mitochondria, endoplasmic reticulum, or golgi. The cytosol is not a preferred cellular compartment for both NP types, although significantly more PEG-coated than citrate-stabilized NPs are present there. The preferred particle localizations are vesicles of different sizes (<150, 150-1000, >1000 nm). This is observed for both NP types and indicates a predominant uptake by endocytosis. Subsequent inhibition of caveolin- and clathrin-mediated endocytosis by methyl-beta-cyclodextrin (MbetaCD) results in a significant reduction of intracellular NPs. The inhibition, however, is more pronounced for PEG-coated than citrate-stabilized NPs. The latter are mostly found in larger vesicles; therefore, they are potentially taken up by macropinocytosis, which is not inhibited by MbetaCD. With prolonged exposure times, both NPs are preferentially localized in larger-sized intracellular vesicles such as lysosomes, thus indicating intracellular particle trafficking. This quantitative evaluation reveals that NP surface coatings modulate endocytotic uptake pathways and cellular NP trafficking. Other nonendocytotic entry mechanisms are found to be involved as well, as indicated by localization of a minority of PEG-coated NPs in the cytosol.
Collapse
|
27
|
Hsia CCW, Hyde DM, Ochs M, Weibel ER. An official research policy statement of the American Thoracic Society/European Respiratory Society: standards for quantitative assessment of lung structure. Am J Respir Crit Care Med 2010; 181:394-418. [PMID: 20130146 DOI: 10.1164/rccm.200809-1522st] [Citation(s) in RCA: 677] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
28
|
Geiser M, Kreyling WG. Deposition and biokinetics of inhaled nanoparticles. Part Fibre Toxicol 2010; 7:2. [PMID: 20205860 PMCID: PMC2826283 DOI: 10.1186/1743-8977-7-2] [Citation(s) in RCA: 407] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 01/20/2010] [Indexed: 11/21/2022] Open
Abstract
Particle biokinetics is important in hazard identification and characterization of inhaled particles. Such studies intend to convert external to internal exposure or biologically effective dose, and may help to set limits in that way. Here we focus on the biokinetics of inhaled nanometer sized particles in comparison to micrometer sized ones.The presented approach ranges from inhaled particle deposition probability and retention in the respiratory tract to biokinetics and clearance of particles out of the respiratory tract. Particle transport into the blood circulation (translocation), towards secondary target organs and tissues (accumulation), and out of the body (clearance) is considered. The macroscopically assessed amount of particles in the respiratory tract and secondary target organs provides dose estimates for toxicological studies on the level of the whole organism. Complementary, microscopic analyses at the individual particle level provide detailed information about which cells and subcellular components are the target of inhaled particles. These studies contribute to shed light on mechanisms and modes of action eventually leading to adverse health effects by inhaled nanoparticles.We review current methods for macroscopic and microscopic analyses of particle deposition, retention and clearance. Existing macroscopic knowledge on particle biokinetics and microscopic views on particle organ interactions are discussed comparing nanometer and micrometer sized particles. We emphasize the importance for quantitative analyses and the use of particle doses derived from real world exposures.
Collapse
Affiliation(s)
- Marianne Geiser
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, CH-3000 Bern 9, Switzerland
| | - Wolfgang G Kreyling
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease and Focus-Network Nanoparticles and Health, Helmholtz Center Munich, Munich, Germany
- German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, D-85764 Neuherberg/Munich, Germany
| |
Collapse
|
29
|
Hoet P, Legiest B, Geys J, Nemery B. Do nanomedicines require novel safety assessments to ensure their safety for long-term human use? Drug Saf 2009; 32:625-36. [PMID: 19591528 DOI: 10.2165/00002018-200932080-00002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Nanomaterials have different chemical, physical and biological characteristics than larger materials of the same chemical composition. These differences give nanotechnology a double identity: their use implies novel and interesting medical and/or industrial applications but also potential danger for human and environmental health. Here, we briefly review the most important types of nanomaterials, the difficulties in assessing safety or toxicity, and describe existing test protocols used in nanomaterial safety evaluation. In general, the big challenge of nanotechnology, particularly for nanomedicine (nano-bioengineering), is to understand which nano-specific characteristics interact with particular biological systems and functions in order to optimize the therapeutic potential and reduce the undesired responses. The evaluation of the safety of medicinal nanomaterials, especially for long-term application, is an important challenge for the near future. At present, it is still too early to predict, on the basis of the characteristics of the nanomaterial, a possible biological response because no reliable database exists. Therefore, a case-by-case approach for hazard identification is still required, so it is difficult to establish a risk assessment framework.
Collapse
Affiliation(s)
- Peter Hoet
- K.U. Leuven, Faculty of Medicine, Department of Public Health Occupational, Environmental & Insurance Medicine, Laboratorium voor Pneumologie (Longtoxicologie), B-3000 Leuven, Belgium.
| | | | | | | |
Collapse
|
30
|
Brain JD, Curran MA, Donaghey T, Molina RM. Biologic responses to nanomaterials depend on exposure, clearance, and material characteristics. Nanotoxicology 2009. [DOI: 10.1080/17435390802654628] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Rothen-Rutishauser B, Clift M, Brandenberger C, Lehmann A, Müller L, Raemy D, Gehr P. An in vitro model of the human epithelial airway barrier to study the toxicity of nanoparticles. Toxicol Lett 2009. [DOI: 10.1016/j.toxlet.2009.06.074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Tian F, Tian F, Prina-Mello A, Estrada G, Beyerle A, Möller W, Schulz H, Kreyling W, Stoeger T. A novel assay for the quantification of internalized nanoparticles in macrophages. Nanotoxicology 2009. [DOI: 10.1080/17435390802504229] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
Quantifying Immunogold Localization Patterns on Electron Microscopic Thin Sections of Placenta: Recent Developments. Placenta 2009; 30:565-70. [DOI: 10.1016/j.placenta.2009.04.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 04/29/2009] [Accepted: 04/30/2009] [Indexed: 01/31/2023]
|
34
|
A review of recent methods for efficiently quantifying immunogold and other nanoparticles using TEM sections through cells, tissues and organs. Ann Anat 2008; 191:153-70. [PMID: 19135344 DOI: 10.1016/j.aanat.2008.11.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 11/21/2008] [Indexed: 02/02/2023]
Abstract
Detecting, localising and counting ultrasmall particles and nanoparticles in sub- and supra-cellular compartments are of considerable current interest in basic and applied research in biomedicine, bioscience and environmental science. For particles with sufficient contrast (e.g. colloidal gold, ferritin, heavy metal-based nanoparticles), visualization requires the high resolutions achievable by transmission electron microscopy (TEM). Moreover, if particles can be counted, their spatial distributions can be subjected to statistical evaluation. Whatever the level of structural organisation, particle distributions can be compared between different compartments within a given structure (cell, tissue and organ) or between different sets of structures (in, say, control and experimental groups). Here, a portfolio of stereology-based methods for drawing such comparisons is presented. We recognise two main scenarios: (1) section surface localisation, in which particles, exemplified by antibody-conjugated colloidal gold particles or quantum dots, are distributed at the section surface during post-embedding immunolabelling, and (2) section volume localisation (or full section penetration), in which particles are contained within the cell or tissue prior to TEM fixation and embedding procedures. Whatever the study aim or hypothesis, the methods for quantifying particles rely on the same basic principles: (i) unbiased selection of specimens by multistage random sampling, (ii) unbiased estimation of particle number and compartment size using stereological test probes (points, lines, areas and volumes), and (iii) statistical testing of an appropriate null hypothesis. To compare different groups of cells or organs, a simple and efficient approach is to compare the observed distributions of raw particle counts by a combined contingency table and chi-squared analysis. Compartmental chi-squared values making substantial contributions to total chi-squared values help identify where the main differences between distributions reside. Distributions between compartments in, say, a given cell type, can be compared using a relative labelling index (RLI) or relative deposition index (RDI) combined with a chi-squared analysis to test whether or not particles preferentially locate in certain compartments. This approach is ideally suited to analysing particles located in volume-occupying compartments (organelles or tissue spaces) or surface-occupying compartments (membranes) and expected distributions can be generated by the stereological devices of point, intersection and particle counting. Labelling efficiencies (number of gold particles per antigen molecule) in immunocytochemical studies can be determined if suitable calibration methods (e.g. biochemical assays of golds per membrane surface or per cell) are available. In addition to relative quantification for between-group and between-compartment comparisons, stereological methods also permit absolute quantification, e.g. total volumes, surfaces and numbers of structures per cell. Here, the utility, limitations and recent applications of these methods are reviewed.
Collapse
|
35
|
Mayhew TM, Lucocq JM. Developments in cell biology for quantitative immunoelectron microscopy based on thin sections: a review. Histochem Cell Biol 2008; 130:299-313. [PMID: 18553098 PMCID: PMC2491712 DOI: 10.1007/s00418-008-0451-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2008] [Indexed: 01/01/2023]
Abstract
Quantitative immunoelectron microscopy uses ultrathin sections and gold particle labelling to determine distributions of molecules across cell compartments. Here, we review a portfolio of new methods for comparing labelling distributions between different compartments in one study group (method 1) and between the same compartments in two or more groups (method 2). Specimen samples are selected unbiasedly and then observed and expected distributions of gold particles are estimated and compared by appropriate statistical procedures. The methods can be used to analyse gold label distributed between volume-occupying (organelle) and surface-occupying (membrane) compartments, but in method 1, membranes must be treated as organelles. With method 1, gold counts are combined with stereological estimators of compartment size to determine labelling density (LD). For volume-occupiers, LD can be expressed simply as golds per test point and, for surface-occupiers, as golds per test line intersection. Expected distributions are generated by randomly assigning gold particles to compartments and expressing observed/expected counts as a relative labelling index (RLI). Preferentially-labelled compartments are identified from their RLI values and by Chi-squared analysis of observed and expected distributions. For method 2, the raw gold particle counts distributed between compartments are simply compared across groups by contingency table and Chi-squared analysis. This identifies the main compartments responsible for the differences between group distributions. Finally, we discuss labelling efficiency (the number of gold particles per target molecule) and describe how it can be estimated for volume- or surface-occupiers by combining stereological data with biochemical determinations.
Collapse
Affiliation(s)
- Terry M Mayhew
- Centre for Integrated Systems Biology and Medicine, School of Biomedical Sciences, Queen's Medical Centre, E Floor, University of Nottingham, Nottingham, NG7 2UH, UK.
| | | |
Collapse
|
36
|
Mühlfeld C, Rothen-Rutishauser B, Blank F, Vanhecke D, Ochs M, Gehr P. Interactions of nanoparticles with pulmonary structures and cellular responses. Am J Physiol Lung Cell Mol Physiol 2008; 294:L817-29. [DOI: 10.1152/ajplung.00442.2007] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Combustion-derived and synthetic nano-sized particles (NSP) have gained considerable interest among pulmonary researchers and clinicians for two main reasons. 1) Inhalation exposure to combustion-derived NSP was associated with increased pulmonary and cardiovascular morbidity and mortality as suggested by epidemiological studies. Experimental evidence has provided a mechanistic picture of the adverse health effects associated with inhalation of combustion-derived and synthetic NSP. 2) The toxicological potential of NSP contrasts with the potential application of synthetic NSP in technological as well as medicinal settings, with the latter including the use of NSP as diagnostics or therapeutics. To shed light on this paradox, this article aims to highlight recent findings about the interaction of inhaled NSP with the structures of the respiratory tract including surfactant, alveolar macrophages, and epithelial cells. Cellular responses to NSP exposure include the generation of reactive oxygen species and the induction of an inflammatory response. Furthermore, this review places special emphasis on methodological differences between experimental studies and the caveats associated with the dose metrics and points out ways to overcome inherent methodological problems.
Collapse
|
37
|
Quantifying immunogold labelling patterns of cellular compartments when they comprise mixtures of membranes (surface-occupying) and organelles (volume-occupying). Histochem Cell Biol 2008; 129:367-78. [PMID: 18180944 DOI: 10.1007/s00418-007-0375-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2007] [Indexed: 12/20/2022]
Abstract
In quantitative immunoelectron microscopy, subcellular compartments that are preferentially labelled with colloidal gold particles can be identified by estimating labelling densities (LDs) and relative labelling indices (RLIs). Hitherto, this approach has been limited to compartments which are either surface occupying (membranes) or volume occupying (organelles) but not a mixture of both (membranes and organelles). However, some antigens are known to translocate between membrane and organelle compartments and the problem then arises of expressing gold particle LDs in a consistent manner (e.g., as number per compartment profile area). Here, we present one possible solution to tackle this problem. With this method, each membrane is treated as a volume-occupying compartment and this is achieved by creating an acceptance zone at a fixed distance on each side of membrane images. Gold signal intensity is then expressed as an LD within the membrane profile area so created and this LD can be compared to LDs found in volume-occupying compartments. Acceptance zone width is determined largely by the expected dispersion of gold labelling. In some cases, the zone can be applied to all visible membrane images but there is a potential problem when image loss occurs due to the fact that membranes are not cut orthogonal to their surface but are tilted within the section. The solution presented here is to select a subset of clear images representing orthogonally sectioned membranes (so-called local vertical windows, LVWs). The fraction of membrane images forming LVWs can be estimated in two ways: goniometrically (by determining the angle at which images become unclear) or stereologically (by counting intersections with test lines). The fraction obtained by either method can then be used to calculate a factor correcting for membrane image loss. In turn, this factor is used to estimate the total gold labelling associated with the acceptance zone of the entire (volume-occupying) membrane. However calculated, the LDs over the chosen (membrane and organelle) compartments are used to obtain observed and expected gold particle counts. The observed distribution is determined simply by counting gold particles associated with each compartment. Next, an expected distribution is created by randomly superimposing test points and counting those hitting each compartment. LDs of the chosen compartments are used to calculate RLI and chi-squared values and these serve to identify those compartments in which there is preferential labelling. The methods are illustrated by synthetic and real data.
Collapse
|
38
|
Mühlfeld C, Rothen-Rutishauser B, Vanhecke D, Blank F, Gehr P, Ochs M. Visualization and quantitative analysis of nanoparticles in the respiratory tract by transmission electron microscopy. Part Fibre Toxicol 2007; 4:11. [PMID: 17996124 PMCID: PMC2211502 DOI: 10.1186/1743-8977-4-11] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Accepted: 11/12/2007] [Indexed: 11/11/2022] Open
Abstract
Nanotechnology in its widest sense seeks to exploit the special biophysical and chemical properties of materials at the nanoscale. While the potential technological, diagnostic or therapeutic applications are promising there is a growing body of evidence that the special technological features of nanoparticulate material are associated with biological effects formerly not attributed to the same materials at a larger particle scale. Therefore, studies that address the potential hazards of nanoparticles on biological systems including human health are required. Due to its large surface area the lung is one of the major sites of interaction with inhaled nanoparticles. One of the great challenges of studying particle-lung interactions is the microscopic visualization of nanoparticles within tissues or single cells both in vivo and in vitro. Once a certain type of nanoparticle can be identified unambiguously using microscopic methods it is desirable to quantify the particle distribution within a cell, an organ or the whole organism. Transmission electron microscopy provides an ideal tool to perform qualitative and quantitative analyses of particle-related structural changes of the respiratory tract, to reveal the localization of nanoparticles within tissues and cells and to investigate the 3D nature of nanoparticle-lung interactions.This article provides information on the applicability, advantages and disadvantages of electron microscopic preparation techniques and several advanced transmission electron microscopic methods including conventional, immuno and energy-filtered electron microscopy as well as electron tomography for the visualization of both model nanoparticles (e.g. polystyrene) and technologically relevant nanoparticles (e.g. titanium dioxide). Furthermore, we highlight possibilities to combine light and electron microscopic techniques in a correlative approach. Finally, we demonstrate a formal quantitative, i.e. stereological approach to analyze the distributions of nanoparticles in tissues and cells.This comprehensive article aims to provide a basis for scientists in nanoparticle research to integrate electron microscopic analyses into their study design and to select the appropriate microscopic strategy.
Collapse
Affiliation(s)
- Christian Mühlfeld
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, CH-3000 Bern 9, Switzerland
| | | | - Dimitri Vanhecke
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, CH-3000 Bern 9, Switzerland
| | - Fabian Blank
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, CH-3000 Bern 9, Switzerland
| | - Peter Gehr
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, CH-3000 Bern 9, Switzerland
| | - Matthias Ochs
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, CH-3000 Bern 9, Switzerland
| |
Collapse
|
39
|
Rothen-Rutishauser B, Mühlfeld C, Blank F, Musso C, Gehr P. Translocation of particles and inflammatory responses after exposure to fine particles and nanoparticles in an epithelial airway model. Part Fibre Toxicol 2007; 4:9. [PMID: 17894871 PMCID: PMC2039730 DOI: 10.1186/1743-8977-4-9] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 09/25/2007] [Indexed: 11/18/2022] Open
Abstract
Background Experimental studies provide evidence that inhaled nanoparticles may translocate over the airspace epithelium and cause increased cellular inflammation. Little is known, however, about the dependence of particle size or material on translocation characteristics, inflammatory response and intracellular localization. Results Using a triple cell co-culture model of the human airway wall composed of epithelial cells, macrophages and dendritic cells we quantified the entering of fine (1 μm) and nano-sized (0.078 μm) polystyrene particles by laser scanning microscopy. The number distribution of particles within the cell types was significantly different between fine and nano-sized particles suggesting different translocation characteristics. Analysis of the intracellular localization of gold (0.025 μm) and titanium dioxide (0.02–0.03 μm) nanoparticles by energy filtering transmission electron microscopy showed differences in intracellular localization depending on particle composition. Titanium dioxide nanoparticles were detected as single particles without membranes as well as in membrane-bound agglomerations. Gold nanoparticles were found inside the cells as free particles only. The potential of the different particle types (different sizes and different materials) to induce a cellular response was determined by measurements of the tumour necrosis factor-α in the supernatants. We measured a 2–3 fold increase of tumour necrosis factor-α in the supernatants after applying 1 μm polystyrene particles, gold nanoparticles, but not with polystyrene and titanium dioxide nanoparticles. Conclusion Quantitative laser scanning microscopy provided evidence that the translocation and entering characteristics of particles are size-dependent. Energy filtering transmission electron microscopy showed that the intracellular localization of nanoparticles depends on the particle material. Both particle size and material affect the cellular responses to particle exposure as measured by the generation of tumour necrosis factor-α.
Collapse
Affiliation(s)
| | - Christian Mühlfeld
- Institute for Anatomy, Division of Histology, University of Bern, Bern, Switzerland
| | - Fabian Blank
- Institute for Anatomy, Division of Histology, University of Bern, Bern, Switzerland
| | - Claudia Musso
- Institute for Anatomy, Division of Histology, University of Bern, Bern, Switzerland
| | - Peter Gehr
- Institute for Anatomy, Division of Histology, University of Bern, Bern, Switzerland
| |
Collapse
|
40
|
Mühlfeld C, Geiser M, Kapp N, Gehr P, Rothen-Rutishauser B. Re-evaluation of pulmonary titanium dioxide nanoparticle distribution using the "relative deposition index": Evidence for clearance through microvasculature. Part Fibre Toxicol 2007; 4:7. [PMID: 17727712 PMCID: PMC2018701 DOI: 10.1186/1743-8977-4-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 08/29/2007] [Indexed: 12/31/2022] Open
Abstract
Background Translocation of nanoparticles (NP) from the pulmonary airways into other pulmonary compartments or the systemic circulation is controversially discussed in the literature. In a previous study it was shown that titanium dioxide (TiO2) NP were "distributed in four lung compartments (air-filled spaces, epithelium/endothelium, connective tissue, capillary lumen) in correlation with compartment size". It was concluded that particles can move freely between these tissue compartments. To analyze whether the distribution of TiO2 NP in the lungs is really random or shows a preferential targeting we applied a newly developed method for comparing NP distributions. Methods Rat lungs exposed to an aerosol containing TiO2 NP were prepared for light and electron microscopy at 1 h and at 24 h after exposure. Numbers of TiO2 NP associated with each compartment were counted using energy filtering transmission electron microscopy. Compartment size was estimated by unbiased stereology from systematically sampled light micrographs. Numbers of particles were related to compartment size using a relative deposition index and chi-squared analysis. Results Nanoparticle distribution within the four compartments was not random at 1 h or at 24 h after exposure. At 1 h the connective tissue was the preferential target of the particles. At 24 h the NP were preferentially located in the capillary lumen. Conclusion We conclude that TiO2 NP do not move freely between pulmonary tissue compartments, although they can pass from one compartment to another with relative ease. The residence time of NP in each tissue compartment of the respiratory system depends on the compartment and the time after exposure. It is suggested that a small fraction of TiO2 NP are rapidly transported from the airway lumen to the connective tissue and subsequently released into the systemic circulation.
Collapse
Affiliation(s)
- Christian Mühlfeld
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, CH-3000 Bern 9, Switzerland
| | - Marianne Geiser
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, CH-3000 Bern 9, Switzerland
| | - Nadine Kapp
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, CH-3000 Bern 9, Switzerland
| | - Peter Gehr
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, CH-3000 Bern 9, Switzerland
| | | |
Collapse
|