1
|
Farhangian M, Azarafrouz F, Valian N, Dargahi L. The role of interferon beta in neurological diseases and its potential therapeutic relevance. Eur J Pharmacol 2024; 981:176882. [PMID: 39128808 DOI: 10.1016/j.ejphar.2024.176882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/14/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Interferon beta (IFNβ) is a member of the type-1 interferon family and has various immunomodulatory functions in neuropathological conditions. Although the level of IFNβ is low under healthy conditions, it is increased during inflammatory processes to protect the central nervous system (CNS). In particular, microglia and astrocytes are the main sources of IFNβ upon inflammatory insult in the CNS. The protective effects of IFNβ are well characterized in reducing the progression of multiple sclerosis (MS); however, little is understood about its effects in other neurological/neurodegenerative diseases. In this review, different types of IFNs and their signaling pathways will be described. Then we will focus on the potential role and therapeutic effect of IFNβ in several CNS-related diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, stroke, spinal cord injury, prion disease and spinocerebellar ataxia 7.
Collapse
Affiliation(s)
- Mohsen Farhangian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Forouzan Azarafrouz
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Valian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Chen X, Ke H, Li W, Yin L, Chen W, Chen T, Wu Y, Qiu J, Feng W. Structural basis for the recognition of IFNAR1 by the humanized therapeutic monoclonal antibody QX006N for the treatment of systemic lupus erythematosus. Int J Biol Macromol 2024; 268:131721. [PMID: 38649079 DOI: 10.1016/j.ijbiomac.2024.131721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/10/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Interferon (IFN) alpha/beta receptor 1 (IFNAR1) is indispensable for antiviral responses and the immune regulation. Dysregulation of the IFNAR1-mediaetd signaling pathways leads to deleterious autoimmune diseases such as systemic lupus erythematosus (SLE). QX006N, a humanized therapeutic monoclonal antibody, specifically targets human IFNAR1 and is in the clinical trial phase for treating SLE, but the molecular mechanism underlying the QX006N-mediated recognition of IFNAR1 remains unclear. Here, we report the high neutralization activities of QX006N against IFNAR1-mediated signal transduction. Meanwhile, we determine the structures of the fragment antigen-binding domain (Fab) of QX006N (QX006N-Fab) and QX006N-Fab in complex with the subdomains 1-3 of IFNAR1 (IFNAR1-SD123) at 2.87 Å and 2.68 Å resolutions, respectively. In the structure of the QX006N-Fab/IFNAR1-SD123 complex, QX006N-Fab only recognizes the SD3 subdomain of IFNAR1 by the hydrophobic, hydrogen-bonding and electrostatic interactions. Compared with the structure of the IFN/IFNAR1/IFNAR2 complex, the binding of QX006N-Fab to IFNAR1-SD3 blocks its association with IFN due to steric hindrance, which inhibits the IFN/IFNAR1/IFNAR2 complex formation for signal transduction. The results of this study provide the structural evidence for the specific targeting of IFNAR1 by the therapeutic antibody QX006N and pave the way for the rational design of antibody drugs to combat IFNAR1-related autoimmune diseases.
Collapse
MESH Headings
- Receptor, Interferon alpha-beta/metabolism
- Receptor, Interferon alpha-beta/chemistry
- Lupus Erythematosus, Systemic/drug therapy
- Lupus Erythematosus, Systemic/immunology
- Humans
- Antibodies, Monoclonal, Humanized/chemistry
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/pharmacology
- Protein Binding
- Models, Molecular
- Immunoglobulin Fab Fragments/chemistry
- Immunoglobulin Fab Fragments/immunology
- Signal Transduction/drug effects
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Xiaorong Chen
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Huimin Ke
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.
| | - Wei Li
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Lu Yin
- Qyuns Therapeutics Co., Ltd., Taizhou 225300, China
| | - Wei Chen
- Qyuns Therapeutics Co., Ltd., Taizhou 225300, China
| | - Tao Chen
- Qyuns Therapeutics Co., Ltd., Taizhou 225300, China
| | - Yiliang Wu
- Qyuns Therapeutics Co., Ltd., Taizhou 225300, China
| | - Jiwan Qiu
- Qyuns Therapeutics Co., Ltd., Taizhou 225300, China.
| | - Wei Feng
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Bills C, Xie X, Shi PY. The multiple roles of nsp6 in the molecular pathogenesis of SARS-CoV-2. Antiviral Res 2023; 213:105590. [PMID: 37003304 PMCID: PMC10063458 DOI: 10.1016/j.antiviral.2023.105590] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/19/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve and adapt after its emergence in late 2019. As the causative agent of the coronavirus disease 2019 (COVID-19), the replication and pathogenesis of SARS-CoV-2 have been extensively studied by the research community for vaccine and therapeutics development. Given the importance of viral spike protein in viral infection/transmission and vaccine development, the scientific community has thus far primarily focused on studying the structure, function, and evolution of the spike protein. Other viral proteins are understudied. To fill in this knowledge gap, a few recent studies have identified nonstructural protein 6 (nsp6) as a major contributor to SARS-CoV-2 replication through the formation of replication organelles, antagonism of interferon type I (IFN-I) responses, and NLRP3 inflammasome activation (a major factor of severe disease in COVID-19 patients). Here, we review the most recent progress on the multiple roles of nsp6 in modulating SARS-CoV-2 replication and pathogenesis.
Collapse
Affiliation(s)
- Cody Bills
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA; Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas, USA; World Reference Center of Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, Texas, USA; Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA; Sealy Institute for Drug Discovery, University of Texas Medical Branch, Galveston, Texas, USA.
| |
Collapse
|
4
|
Duncan CJA, Skouboe MK, Howarth S, Hollensen AK, Chen R, Børresen ML, Thompson BJ, Stremenova Spegarova J, Hatton CF, Stæger FF, Andersen MK, Whittaker J, Paludan SR, Jørgensen SE, Thomsen MK, Mikkelsen JG, Heilmann C, Buhas D, Øbro NF, Bay JT, Marquart HV, de la Morena MT, Klejka JA, Hirschfeld M, Borgwardt L, Forss I, Masmas T, Poulsen A, Noya F, Rouleau G, Hansen T, Zhou S, Albrechtsen A, Alizadehfar R, Allenspach EJ, Hambleton S, Mogensen TH. Life-threatening viral disease in a novel form of autosomal recessive IFNAR2 deficiency in the Arctic. J Exp Med 2022; 219:e20212427. [PMID: 35442417 PMCID: PMC9026249 DOI: 10.1084/jem.20212427] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/28/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
Type I interferons (IFN-I) play a critical role in human antiviral immunity, as demonstrated by the exceptionally rare deleterious variants of IFNAR1 or IFNAR2. We investigated five children from Greenland, Canada, and Alaska presenting with viral diseases, including life-threatening COVID-19 or influenza, in addition to meningoencephalitis and/or hemophagocytic lymphohistiocytosis following live-attenuated viral vaccination. The affected individuals bore the same homozygous IFNAR2 c.157T>C, p.Ser53Pro missense variant. Although absent from reference databases, p.Ser53Pro occurred with a minor allele frequency of 0.034 in their Inuit ancestry. The serine to proline substitution prevented cell surface expression of IFNAR2 protein, small amounts of which persisted intracellularly in an aberrantly glycosylated state. Cells exclusively expressing the p.Ser53Pro variant lacked responses to recombinant IFN-I and displayed heightened vulnerability to multiple viruses in vitro-a phenotype rescued by wild-type IFNAR2 complementation. This novel form of autosomal recessive IFNAR2 deficiency reinforces the essential role of IFN-I in viral immunity. Further studies are warranted to assess the need for population screening.
Collapse
Affiliation(s)
- Christopher J A Duncan
- Clinical and Translational Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne, UK
- The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Morten K Skouboe
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Sophie Howarth
- Clinical and Translational Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne, UK
| | - Anne K Hollensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Rui Chen
- Clinical and Translational Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne, UK
| | - Malene L Børresen
- Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Benjamin J Thompson
- Clinical and Translational Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne, UK
| | - Jarmila Stremenova Spegarova
- Clinical and Translational Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne, UK
| | - Catherine F Hatton
- Clinical and Translational Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne, UK
| | - Frederik F Stæger
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Mette K Andersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - John Whittaker
- Clinical and Translational Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne, UK
| | - Søren R Paludan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Sofie E Jørgensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Carsten Heilmann
- Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Medical Department, Pediatric Section, Dronning Ingrid Hospital, Nuuk, Greenland
| | - Daniela Buhas
- Division of Genetics, Department of Specialized Medicine, McGill University Health Centre, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Nina F Øbro
- Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jakob T Bay
- Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Hanne V Marquart
- Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark
| | - M Teresa de la Morena
- Seattle Children's Hospital, Seattle, WA
- Department of Pediatrics, University of Washington, Seattle, WA
| | | | | | - Line Borgwardt
- Center for Genomic Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Isabel Forss
- Center for Genomic Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Tania Masmas
- Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Anja Poulsen
- Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Francisco Noya
- Division of Allergy & Clinical Immunology, Montreal Children's Hospital, Montreal General Hospital, McGill University, Montreal, Quebec, Canada
| | - Guy Rouleau
- The Neuro, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sirui Zhou
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Anders Albrechtsen
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Reza Alizadehfar
- Division of Allergy & Clinical Immunology, Montreal Children's Hospital, Montreal General Hospital, McGill University, Montreal, Quebec, Canada
| | - Eric J Allenspach
- Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark
- Seattle Children's Hospital, Seattle, WA
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA
- Brotman Baty Institute for Precision Medicine, Seattle, WA
| | - Sophie Hambleton
- Clinical and Translational Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne, UK
- The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Trine H Mogensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
5
|
Zanin N, Viaris de Lesegno C, Lamaze C, Blouin CM. Interferon Receptor Trafficking and Signaling: Journey to the Cross Roads. Front Immunol 2021; 11:615603. [PMID: 33552080 PMCID: PMC7855707 DOI: 10.3389/fimmu.2020.615603] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/02/2020] [Indexed: 12/19/2022] Open
Abstract
Like most plasma membrane proteins, type I interferon (IFN) receptor (IFNAR) traffics from the outer surface to the inner compartments of the cell. Long considered as a passive means to simply control subunits availability at the plasma membrane, an array of new evidence establishes IFNAR endocytosis as an active contributor to the regulation of signal transduction triggered by IFN binding to IFNAR. During its complex journey initiated at the plasma membrane, the internalized IFNAR complex, i.e. IFNAR1 and IFNAR2 subunits, will experience post-translational modifications and recruit specific effectors. These finely tuned interactions will determine not only IFNAR subunits destiny (lysosomal degradation vs. plasma membrane recycling) but also the control of IFN-induced signal transduction. Finally, the IFNAR system perfectly illustrates the paradigm of the crosstalk between membrane trafficking and intracellular signaling. Investigating the complexity of IFN receptor intracellular routes is therefore necessary to reveal new insight into the role of IFNAR membrane dynamics in type I IFNs signaling selectivity and biological activity.
Collapse
Affiliation(s)
- Natacha Zanin
- NDORMS, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Christine Viaris de Lesegno
- Institut Curie-Centre de Recherche, PSL Research University, Membrane Dynamics and Mechanics of Intracellular Signalling Laboratory, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Centre National de la Recherche Scientifique (CNRS), UMR 3666, Paris, France
| | - Christophe Lamaze
- Institut Curie-Centre de Recherche, PSL Research University, Membrane Dynamics and Mechanics of Intracellular Signalling Laboratory, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Centre National de la Recherche Scientifique (CNRS), UMR 3666, Paris, France
| | - Cedric M Blouin
- Institut Curie-Centre de Recherche, PSL Research University, Membrane Dynamics and Mechanics of Intracellular Signalling Laboratory, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Centre National de la Recherche Scientifique (CNRS), UMR 3666, Paris, France
| |
Collapse
|
6
|
McCormack R, Hunte R, Podack ER, Plano GV, Shembade N. An Essential Role for Perforin-2 in Type I IFN Signaling. THE JOURNAL OF IMMUNOLOGY 2020; 204:2242-2256. [PMID: 32161097 DOI: 10.4049/jimmunol.1901013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/12/2020] [Indexed: 01/14/2023]
Abstract
Type I IFNs play a complex role in determining the fate of microbial pathogens and may also be deleterious to the host during bacterial and viral infections. Upon ligand binding, a receptor proximal complex consisting of IFN-α and -β receptors 1 and 2 (IFNAR1, IFNAR2, respectively), tyrosine kinase 2 (Tyk2), Jak1, and STAT2 are assembled and promote the phosphorylation of STAT1 and STAT2. However, how the IFNARs proximal complex is assembled upon binding to IFN is poorly understood. In this study, we show that the membrane-associated pore-forming protein Perforin-2 (P2) is critical for LPS-induced endotoxic shock in wild-type mice. Type I IFN-mediated JAK-STAT signaling is severely impaired, and activation of MAPKs and PI3K signaling pathways are delayed in P2-deficient mouse bone marrow-derived macrophages, mouse embryonic fibroblasts (MEFs), and human HeLa cells upon IFN stimulation. The P2 N-glycosylated extracellular membrane attack complex/perforin domain and the P2 domain independently associate with the extracellular regions of IFNAR1 and IFNAR2, respectively, in resting MEFs. In addition, the P2 cytoplasmic tail domain mediated the constitutive interaction between STAT2 and IFNAR2 in resting MEFs, an interaction that is dependent on the association of the extracellular regions of P2 and IFNAR2. Finally, the constitutive association of P2 with both receptors and STAT2 is critical for the receptor proximal complex assembly and reciprocal transphosphorylation of Jak1 and Tyk2 as well as the phosphorylation and activation of STAT1 and STAT2 upon IFN-β stimulation.
Collapse
Affiliation(s)
- Ryan McCormack
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Richard Hunte
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Eckhard R Podack
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136.,Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136
| | - Gregory V Plano
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Noula Shembade
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136 .,Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136
| |
Collapse
|
7
|
Sprooten J, Garg AD. Type I interferons and endoplasmic reticulum stress in health and disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 350:63-118. [PMID: 32138904 PMCID: PMC7104985 DOI: 10.1016/bs.ircmb.2019.10.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Type I interferons (IFNs) comprise of pro-inflammatory cytokines created, as well as sensed, by all nucleated cells with the main objective of blocking pathogens-driven infections. Owing to this broad range of influence, type I IFNs also exhibit critical functions in many sterile inflammatory diseases and immunopathologies, especially those associated with endoplasmic reticulum (ER) stress-driven signaling pathways. Indeed, over the years accumulating evidence has indicated that the presence of ER stress can influence the production, or sensing of, type I IFNs induced by perturbations like pattern recognition receptor (PRR) agonists, infections (bacterial, viral or parasitic) or autoimmunity. In this article we discuss the link between type I IFNs and ER stress in various diseased contexts. We describe how ER stress regulates type I IFNs production or sensing, or how type I IFNs may induce ER stress, in various circumstances like microbial infections, autoimmunity, diabetes, cancer and other ER stress-related contexts.
Collapse
Affiliation(s)
- Jenny Sprooten
- Department for Cellular and Molecular Medicine, Cell Death Research & Therapy (CDRT) Unit, KU Leuven, Leuven, Belgium
| | - Abhishek D Garg
- Department for Cellular and Molecular Medicine, Cell Death Research & Therapy (CDRT) Unit, KU Leuven, Leuven, Belgium.
| |
Collapse
|
8
|
Guo T, Liu J, Chen X, Jin L, Huang F, Zheng H. PARP11 regulates total levels of type-I interferon receptor IFNAR1. Nat Microbiol 2019; 4:1771-1773. [PMID: 31649358 DOI: 10.1038/s41564-019-0582-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 09/10/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Tingting Guo
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Jin Liu
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Xiangjie Chen
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Lincong Jin
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Fan Huang
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Hui Zheng
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China. .,Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China.
| |
Collapse
|
9
|
Xia C, Anderson P, Hahm B. Viral dedication to vigorous destruction of interferon receptors. Virology 2018; 522:19-26. [PMID: 30014854 PMCID: PMC6087481 DOI: 10.1016/j.virol.2018.06.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 01/12/2023]
Abstract
Interferons (IFNs) exhibit forceful inhibitory activities against numerous viruses by inducing synthesis of anti-viral proteins or promoting immune cell functions, which help eradicate the vicious microbes. Consequently, the degree to which viruses evade or counterattack IFN responses influences viral pathogenicity. Viruses have developed many strategies to interfere with the synthesis of IFNs or IFN receptor signaling pathway. Furthermore, multiple viruses decrease levels of IFN receptors via diverse tactics, which include decreasing type I IFN receptor mRNA expression, blocking post-translational modification of the receptor, and degrading IFN receptors. Recently, influenza virus was found to induce CK1α-induced phosphorylation and subsequent degradation of the receptor for type I and II IFNs. In this review, viral mechanisms that remove IFN receptors are summarized with an emphasis on the mechanisms for virus-induced degradation of IFN receptors.
Collapse
Affiliation(s)
- Chuan Xia
- Departments of Surgery and Molecular Microbiology & Immunology, University of Missouri, Columbia, MO 65212, USA
| | - Paul Anderson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65212, USA; Laboratory for Infectious Disease Research, University of Missouri, Columbia, MO 65211, USA
| | - Bumsuk Hahm
- Departments of Surgery and Molecular Microbiology & Immunology, University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|
10
|
Lubick KJ, Robertson SJ, McNally KL, Freedman BA, Rasmussen AL, Taylor RT, Walts AD, Tsuruda S, Sakai M, Ishizuka M, Boer EF, Foster EC, Chiramel AI, Addison CB, Green R, Kastner DL, Katze MG, Holland SM, Forlino A, Freeman AF, Boehm M, Yoshii K, Best SM. Flavivirus Antagonism of Type I Interferon Signaling Reveals Prolidase as a Regulator of IFNAR1 Surface Expression. Cell Host Microbe 2016; 18:61-74. [PMID: 26159719 DOI: 10.1016/j.chom.2015.06.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 04/08/2015] [Accepted: 06/16/2015] [Indexed: 11/25/2022]
Abstract
Type I interferon (IFN-α/β or IFN-I) signals through two receptor subunits, IFNAR1 and IFNAR2, to orchestrate sterile and infectious immunity. Cellular pathways that regulate IFNAR1 are often targeted by viruses to suppress the antiviral effects of IFN-I. Here we report that encephalitic flaviviruses, including tick-borne encephalitis virus and West Nile virus, antagonize IFN-I signaling by inhibiting IFNAR1 surface expression. Loss of IFNAR1 was associated with binding of the viral IFN-I antagonist, NS5, to prolidase (PEPD), a cellular dipeptidase implicated in primary immune deficiencies in humans. Prolidase was required for IFNAR1 maturation and accumulation, activation of IFNβ-stimulated gene induction, and IFN-I-dependent viral control. Human fibroblasts derived from patients with genetic prolidase deficiency exhibited decreased IFNAR1 surface expression and reduced IFNβ-stimulated signaling. Thus, by understanding flavivirus IFN-I antagonism, prolidase is revealed as a central regulator of IFN-I responses.
Collapse
Affiliation(s)
- Kirk J Lubick
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Shelly J Robertson
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Kristin L McNally
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Brett A Freedman
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Angela L Rasmussen
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - R Travis Taylor
- Department of Medical Microbiology and Immunology, College of Medicine, University of Toledo Health Science Campus, Toledo, OH 43614, USA
| | - Avram D Walts
- Translational Medicine Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Seitaro Tsuruda
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Mizuki Sakai
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Mariko Ishizuka
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Elena F Boer
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Erin C Foster
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Abhilash I Chiramel
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Conrad B Addison
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Richard Green
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Daniel L Kastner
- Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Michael G Katze
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Steven M Holland
- Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20814, USA
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy
| | - Alexandra F Freeman
- Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20814, USA
| | - Manfred Boehm
- Translational Medicine Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Kentaro Yoshii
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Sonja M Best
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA.
| |
Collapse
|
11
|
Peng L, Oganesyan V, Wu H, Dall'Acqua WF, Damschroder MM. Molecular basis for antagonistic activity of anifrolumab, an anti-interferon-α receptor 1 antibody. MAbs 2015; 7:428-39. [PMID: 25606664 PMCID: PMC4622752 DOI: 10.1080/19420862.2015.1007810] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Anifrolumab (anifrolumab) is an antagonist human monoclonal antibody that targets interferon α receptor 1 (IFNAR1). Anifrolumab has been developed to treat autoimmune diseases and is currently in clinical trials. To decipher the molecular basis of its mechanism of action, we engaged in multiple epitope mapping approaches to determine how it interacts with IFNAR1 and antagonizes the receptor. We identified the epitope of anifrolumab using enzymatic fragmentation, phage-peptide library panning and mutagenesis approaches. Our studies revealed that anifrolumab recognizes the SD3 subdomain of IFNAR1 with the critical residue R279. Further, we solved the crystal structure of anifrolumab Fab to a resolution of 2.3 Å. Guided by our epitope mapping studies, we then used in silico protein docking of the anifrolumab Fab crystal structure to IFNAR1 and characterized the corresponding mode of binding. We find that anifrolumab sterically inhibits the binding of IFN ligands to IFNAR1, thus blocking the formation of the ternary IFN/IFNAR1/IFNAR2 signaling complex. This report provides the molecular basis for the mechanism of action of anifrolumab and may provide insights toward designing antibody therapies against IFNAR1.
Collapse
Key Words
- APBS, Adaptive Poisson-Boltzmann Solver
- BSA, bovine serum albumin
- CDR, complementarity-determining region
- CHARMm, Chemistry at HARvard Macromolecular Mechanics
- CHO, Chinese hamster ovary
- EDTA, ethylene diamine tetra-acetic acid
- ELISA, enzyme-linked immunosorbant assay
- FBS, fetal bovine serum
- Fab, fragment antigen-binding
- Fc, fragment crystallizable
- IFN, interferon
- IFNAR1
- IFNAR1, interferon alpha receptor 1
- IFNAR2, interferon alpha receptor 2
- IgG, immunoglobulin
- KD, equilibrium dissociation constant
- L-Cys, L-cysteine
- MEDI546
- MEMα, minimum essential alpha
- MLE, murine lung epithelial
- PBS, phosphate buffered saline
- PBST, phosphate buffered saline tablets
- PCR, polymerase chain reaction
- PDB, protein data bank
- PVDF, polyvinylidene difluoride
- Ph.D., phage display
- PyMOL, python-enhanced molecular graphics tool
- RDOCK, rigid-body docking algorithm
- RU, resonance units
- SDS–PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis
- SPR, surface plasmon resonance
- VH, variable heavy
- VL, variable light
- ZDOCK, rigid-body docking algorithm
- anifrolumab
- enzymatic fragmentation
- epitope mapping
- kDa, kilodaltons
- mutagenesis
- phage-peptide display
- protein docking
- systemic sclerosis
- Å, ångström
Collapse
Affiliation(s)
- Li Peng
- a Department of Antibody Discovery and Protein Engineering ; MedImmune LLC ; Gaithersburg , MD USA
| | | | | | | | | |
Collapse
|
12
|
Kurt R, Chandra PK, Aboulnasr F, Panigrahi R, Ferraris P, Aydin Y, Reiss K, Wu T, Balart LA, Dash S. Chaperone-Mediated Autophagy Targets IFNAR1 for Lysosomal Degradation in Free Fatty Acid Treated HCV Cell Culture. PLoS One 2015; 10:e0125962. [PMID: 25961570 PMCID: PMC4427131 DOI: 10.1371/journal.pone.0125962] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/27/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Hepatic steatosis is a risk factor for both liver disease progression and an impaired response to interferon alpha (IFN-α)-based combination therapy in chronic hepatitis C virus (HCV) infection. Previously, we reported that free fatty acid (FFA)-treated HCV cell culture induces hepatocellular steatosis and impairs the expression of interferon alpha receptor-1 (IFNAR1), which is why the antiviral activity of IFN-α against HCV is impaired. AIM To investigate the molecular mechanism by which IFNAR1 expression is impaired in HCV cell culture with or without free fatty acid-treatment. METHOD HCV-infected Huh 7.5 cells were cultured with or without a mixture of saturated (palmitate) and unsaturated (oleate) long-chain free fatty acids (FFA). Intracytoplasmic fat accumulation in HCV-infected culture was visualized by oil red staining. Clearance of HCV in FFA cell culture treated with type I IFN (IFN-α) and Type III IFN (IFN-λ) was determined by Renilla luciferase activity, and the expression of HCV core was determined by immunostaining. Activation of Jak-Stat signaling in the FFA-treated HCV culture by IFN-α alone and IFN-λ alone was examined by Western blot analysis and confocal microscopy. Lysosomal degradation of IFNAR1 by chaperone-mediated autophagy (CMA) in the FFA-treated HCV cell culture model was investigated. RESULTS FFA treatment induced dose-dependent hepatocellular steatosis and lipid droplet accumulation in HCV-infected Huh-7.5 cells. FFA treatment of infected culture increased HCV replication in a concentration-dependent manner. Intracellular lipid accumulation led to reduced Stat phosphorylation and nuclear translocation, causing an impaired IFN-α antiviral response and HCV clearance. Type III IFN (IFN-λ), which binds to a separate receptor, induces Stat phosphorylation, and nuclear translocation as well as antiviral clearance in FFA-treated HCV cell culture. We show here that the HCV-induced autophagy response is increased in FFA-treated cell culture. Pharmacological inhibitors of lysosomal degradation, such as ammonium chloride and bafilomycin, prevented IFNAR1 degradation in FFA-treated HCV cell culture. Activators of chaperone-mediated autophagy, including 6-aminonicotinamide and nutrient starvation, decreased IFNAR1 levels in Huh-7.5 cells. Co-immunoprecipitation, colocalization and siRNA knockdown experiments revealed that IFNAR1 but not IFNLR1 interacts with HSC70 and LAMP2A, which are core components of chaperone-mediated autophagy (CMA). CONCLUSION Our study presents evidence indicating that chaperone-mediated autophagy targets IFNAR1 degradation in the lysosome in FFA-treated HCV cell culture. These results provide a mechanism for why HCV induced autophagy response selectively degrades type I but not the type III IFNAR1.
Collapse
Affiliation(s)
- Ramazan Kurt
- Department of Medicine, Division of Gastroenterology and Hepatology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Partha K. Chandra
- Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Fatma Aboulnasr
- Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Rajesh Panigrahi
- Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Pauline Ferraris
- Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Yucel Aydin
- Department of Medicine, Division of Gastroenterology and Hepatology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Krzysztof Reiss
- Neurological Cancer Research, Stanley S Scott Cancer Center, LSU Health Science Center, New Orleans, Louisiana, United States of America
| | - Tong Wu
- Department of Medicine, Division of Gastroenterology and Hepatology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Luis A. Balart
- Department of Medicine, Division of Gastroenterology and Hepatology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Srikanta Dash
- Department of Medicine, Division of Gastroenterology and Hepatology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
- Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
13
|
Evans JD, Crown RA, Sohn JA, Seeger C. West Nile virus infection induces depletion of IFNAR1 protein levels. Viral Immunol 2011; 24:253-63. [PMID: 21830897 DOI: 10.1089/vim.2010.0126] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Productive virus infection requires evasion, inhibition, or subversion of innate immune responses. West Nile virus (WNV), a human pathogen that can cause symptomatic infections associated with meningitis and encephalitis, inhibits the interferon (IFN) signal transduction pathway by preventing phosphorylation of Janus kinases and STAT transcription factors. Inhibition of the IFN signal cascade abrogates activation of IFN-induced genes, thus attenuating an antiviral response. We investigated the mechanism responsible for this inhibition and found that WNV infection prevents accumulation of the IFN-α receptor subunit 1 (IFNAR1). The WNV-induced depletion of IFNAR1 was conserved across multiple cell types. Our results indicated that expression of WNV nonstructural proteins resulted in activated lysosomal and proteasomal protein degradation pathways independent of the unfolded protein response (UPR). Furthermore, WNV infection did not induce serine phosphorylation, a modification on IFNAR1 that precedes its natural turnover. These data demonstrate that WNV infection results in a reduction of IFNAR1 protein through a non-canonical protein degradation pathway, and may participate in the inhibition of the IFN response.
Collapse
Affiliation(s)
- Jared D Evans
- Institute for Cancer Research , Fox Chase Cancer Center, Pittsburgh, PA 15261, USA.
| | | | | | | |
Collapse
|
14
|
Marijanovic Z, Ragimbeau J, Kumar K, Fuchs S, Pellegrini S. TYK2 activity promotes ligand-induced IFNAR1 proteolysis. Biochem J 2006; 397:31-8. [PMID: 16551269 PMCID: PMC1479745 DOI: 10.1042/bj20060272] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The type I IFNR (interferon receptor) is a heterodimer composed of two transmembrane chains, IFNAR1 (interferon-alpha receptor 1 subunit) and IFNAR2, which are associated with the tyrosine kinases Tyk2 and Jak1 (Janus kinase 1) respectively. Ligand-induced down-regulation of the type I IFNR is a major mechanism of negative regulation of cellular signalling and involves the internalization and lysosomal degradation of IFNAR1. IFNalpha promotes the phosphorylation of IFNAR1 on Ser535, followed by recruitment of the E3 ubiquitin ligase, beta-TrCP2 (beta-transducin repeats-containing protein 2), ubiquitination of IFNAR1 and proteolysis. The non-catalytic role of Tyk2 in sustaining the steady-state IFNAR1 level at the plasma membrane is well documented; however, little is known about the function of Tyk2 in the steps that precede and succeed serine phosphorylation and ubiquitination of IFNAR1 in response to ligand binding. In the present study, we show that catalytic activation of Tyk2 is not essential for IFNAR1 internalization, but is required for ligand-induced IFNAR1 serine phosphorylation, ubiquitination and efficient lysosomal proteolysis.
Collapse
Affiliation(s)
- Zrinka Marijanovic
- *Cytokine Signalling Unit, CNRS URA 1961, Pasteur Institute, Paris 75724, France
| | - Josiane Ragimbeau
- *Cytokine Signalling Unit, CNRS URA 1961, Pasteur Institute, Paris 75724, France
| | - K. G. Suresh Kumar
- †Department of Animal Biology, University of Pennsylvania, Philadelphia, PA 19104-6046, U.S.A
| | - Serge Y. Fuchs
- †Department of Animal Biology, University of Pennsylvania, Philadelphia, PA 19104-6046, U.S.A
| | - Sandra Pellegrini
- *Cytokine Signalling Unit, CNRS URA 1961, Pasteur Institute, Paris 75724, France
- To whom correspondence should be addressed (email )
| |
Collapse
|
15
|
Cheon MS, Shim KS, Kim SH, Hara A, Lubec G. Protein levels of genes encoded on chromosome 21 in fetal Down syndrome brain: Challenging the gene dosage effect hypothesis (Part IV). Amino Acids 2003; 25:41-7. [PMID: 12836057 DOI: 10.1007/s00726-003-0009-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Down syndrome (DS) is the most frequent genetic disorder with mental retardation and caused by trisomy 21. Although the molecular mechanisms of the various phenotypes of DS could be due to overexpression of gene(s) on chromosome 21, several groups have challenged this gene dosage effect hypothesis. The near completion of the sequencing of human chromosome 21 provides unprecedented opportunities to understand the molecular pathology of DS, however, functional information on gene products is limited so far. We therefore evaluated the levels of six proteins whose genes are encoded on chromosome 21 (trefoil factor 1, trefoil factor 2, trefoil factor 3, coxsackie virus and adenovirus receptor, carbonyl reductase 1 and interferon- alpha receptor) in fetal cerebral cortex from DS and controls at the early second trimester using Western blot analysis. None of the investigated proteins showed overexpression in DS compared to controls suggesting that these proteins are not involved in abnormal development of fetal DS brain and that DS phenotype can not be simply explained by the gene dosage effect hypothesis. We are systematically quantifying all proteins whose genes are encoded on chromosome 21 and these studies may provide a better understanding of genotype-phenotype correlation in DS.
Collapse
Affiliation(s)
- M S Cheon
- Department of Pediatrics, University of Vienna, Vienna, Austria
| | | | | | | | | |
Collapse
|
16
|
Ragimbeau J, Dondi E, Alcover A, Eid P, Uzé G, Pellegrini S. The tyrosine kinase Tyk2 controls IFNAR1 cell surface expression. EMBO J 2003; 22:537-47. [PMID: 12554654 PMCID: PMC140723 DOI: 10.1093/emboj/cdg038] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The four mammalian Jak tyrosine kinases are non-covalently associated with cell surface receptors binding helical bundled cytokines. In the type I interferon receptor, Tyk2 associates with the IFNAR1 receptor subunit and positively influences ligand binding to the receptor complex. Here, we report that Tyk2 is essential for stable cell surface expression of IFNAR1. In the absence of Tyk2, mature IFNAR1 is weakly expressed on the cell surface. Rather, it is localized into a perinuclear endosomal compartment which overlaps with that of recycling transferrin receptors and with early endosomal antigen-1 (EEA1) positive vesicles. Conversely, co-expressed Tyk2 greatly enhances surface IFNAR1 expression. Importantly, we demonstrate that Tyk2 slows down IFNAR1 degradation and that this is due, at least in part, to inhibition of IFNAR1 endocytosis. In addition, Tyk2 induces plasma membrane relocalization of the R2 subunit of the interleukin-10 receptor. These results reveal a novel function of a Jak protein on internalization of a correctly processed cytokine receptor. This function is distinct from the previously reported effect of other Jak proteins on receptor exit from the endoplasmic reticulum.
Collapse
Affiliation(s)
- Josiane Ragimbeau
- Unité de Signalisation des Cytokines, CNRS URA 1961, Unité de Biologie des Interactions Cellulaires, CNRS URA 1960, Institut Pasteur, Paris 75724 cedex 15, Laboratoire d’Oncologie Virale, UPR 9045, CNRS, Villejuif and CNRS UMR 5124, Institut de Génétique Moléculaire, Montpellier 34293 cedex 5, France Corresponding author e-mail:
| | - Elisabetta Dondi
- Unité de Signalisation des Cytokines, CNRS URA 1961, Unité de Biologie des Interactions Cellulaires, CNRS URA 1960, Institut Pasteur, Paris 75724 cedex 15, Laboratoire d’Oncologie Virale, UPR 9045, CNRS, Villejuif and CNRS UMR 5124, Institut de Génétique Moléculaire, Montpellier 34293 cedex 5, France Corresponding author e-mail:
| | - Andrés Alcover
- Unité de Signalisation des Cytokines, CNRS URA 1961, Unité de Biologie des Interactions Cellulaires, CNRS URA 1960, Institut Pasteur, Paris 75724 cedex 15, Laboratoire d’Oncologie Virale, UPR 9045, CNRS, Villejuif and CNRS UMR 5124, Institut de Génétique Moléculaire, Montpellier 34293 cedex 5, France Corresponding author e-mail:
| | - Pierre Eid
- Unité de Signalisation des Cytokines, CNRS URA 1961, Unité de Biologie des Interactions Cellulaires, CNRS URA 1960, Institut Pasteur, Paris 75724 cedex 15, Laboratoire d’Oncologie Virale, UPR 9045, CNRS, Villejuif and CNRS UMR 5124, Institut de Génétique Moléculaire, Montpellier 34293 cedex 5, France Corresponding author e-mail:
| | - Gilles Uzé
- Unité de Signalisation des Cytokines, CNRS URA 1961, Unité de Biologie des Interactions Cellulaires, CNRS URA 1960, Institut Pasteur, Paris 75724 cedex 15, Laboratoire d’Oncologie Virale, UPR 9045, CNRS, Villejuif and CNRS UMR 5124, Institut de Génétique Moléculaire, Montpellier 34293 cedex 5, France Corresponding author e-mail:
| | - Sandra Pellegrini
- Unité de Signalisation des Cytokines, CNRS URA 1961, Unité de Biologie des Interactions Cellulaires, CNRS URA 1960, Institut Pasteur, Paris 75724 cedex 15, Laboratoire d’Oncologie Virale, UPR 9045, CNRS, Villejuif and CNRS UMR 5124, Institut de Génétique Moléculaire, Montpellier 34293 cedex 5, France Corresponding author e-mail:
| |
Collapse
|
17
|
Rosenfeld CS, Han CS, Alexenko AP, Spencer TE, Roberts RM. Expression of interferon receptor subunits, IFNAR1 and IFNAR2, in the ovine uterus. Biol Reprod 2002; 67:847-53. [PMID: 12193393 DOI: 10.1095/biolreprod.102.004267] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Interferon-tau (IFN-tau) is the antiluteolytic factor released by concepti of ruminant ungulate species prior to implantation. All type I interferons, including IFN-tau, exert their action through a common receptor, which consists of two subunits, IFNAR1 and IFNAR2c, but the distribution of the two polypeptides in uterine endometrium has not been examined. In situ hybridization and immunohistochemistry on sections from pregnant and nonpregnant ovine uteri at Days 14 and 15 after estrus and mating showed that both IFNAR1 and IFNAR2 mRNA and protein were strongly expressed in endometrial luminal epithelium (LE), superficial glandular epithelium (GE), and stromal cells, within but not outside caruncles. Similar staining patterns were noted in pregnant and nonpregnant uteri for both subunits. Western blot analysis of membrane fractions from cell lines derived from endometrial LE, GE, and stromal cells, and affinity cross-linking experiments with radioactively labeled IFN-tau performed on crude endometrial membranes indicated the presence of both high ( approximately 110 kDa) and low (75-80 kDa) molecular mass forms of the two receptor subunits. To localize where IFN-tau binds when it is introduced into the uterine lumen, immunohistochemistry with an antiserum against IFN-tau was performed on sections of uteri from Day 14 nonpregnant ewes whose uteri had previously been infused with IFN-tau. Staining was concentrated on the LE and superficial GE cells, and was absent from the deeper regions of the glands and from the stromal tissues. These studies demonstrate the heavy concentration of IFNAR1 and IFNAR2 in cells of the LE and superficial GE, which appear to be the main targets for IFN-tau.
Collapse
Affiliation(s)
- Cheryl S Rosenfeld
- Department of Animal Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | |
Collapse
|
18
|
Frado LY, Strickler JE. Structural characterization of oligosaccharides in recombinant soluble human interferon receptor 2 using fluorophore-assisted carbohydrate electrophoresis. Electrophoresis 2000; 21:2296-308. [PMID: 10939438 DOI: 10.1002/1522-2683(20000701)21:12<2296::aid-elps2296>3.0.co;2-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The N-linked oligosaccharide profiles (banding patterns in gels) and structures of recombinant soluble human interferon receptor 2 (r-shIFNAR2) were determined using fluorophore-assisted carbohydrate electrophoresis (FACE, Glyko, Novato, CA). The method involves releasing N-linked oligosaccharide moieties from a glycoprotein by digestion with peptide-N glycanase (PNGase F), labeling the released oligosaccharides with the fluorescent dye 8-aminonaphthalene-1,3,6-trisulfonate (ANTS), and separating the labeled oligosaccharides by gel electrophoresis. The isolated oligosaccharides in the bands from the profiling gels can then be sequenced using exoglycosidases to reveal the oligosaccharide structures. The oligosaccharide profile of r-shIFNAR2 consists of at least nine oligosaccharide bands. The relative amount of oligosaccharide in each band can vary, depending on the culture conditions of the source cells. FACE structural analysis shows that r-shIFNAR2 contains only core-fucosylated N-linked oligosaccharides, most of which are fully sialylated (approximately 92%). The major types and relative amounts of the oligosaccharides from a representative sample are: disialylated, galactosylated, biantennary (15%); trisialylated, galactosylated, triantennary (19%), tetrasialylated, galactosylated, tetraantennary (30%), and N-acetyllactosamine-containing higher-order oligosaccharides including tri-, tetra-, and pentaantennary (28%). The remaining oligosaccharides are not fully sialylated and/or not fully galactosylated di-, tri-, and tetraantennary structures (approximately 5%) and unidentified structures (approximately 3%). A method for determining the types and structures of the N-acetyllactosamine containing oligosaccharides is also reported in this study.
Collapse
Affiliation(s)
- L Y Frado
- Department of Biopharmaceutical Sciences, Ares Advanced Technology, Inc., Randolph, MA, USA
| | | |
Collapse
|
19
|
Arduini RM, Strauch KL, Runkel LA, Carlson MM, Hronowski X, Foley SF, Young CN, Cheng W, Hochman PS, Baker DP. Characterization of a soluble ternary complex formed between human interferon-beta-1a and its receptor chains. Protein Sci 1999; 8:1867-77. [PMID: 10493588 PMCID: PMC2144400 DOI: 10.1110/ps.8.9.1867] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The extracellular portions of the chains that comprise the human type I interferon receptor, IFNAR1 and IFNAR2, have been expressed and purified as recombinant soluble His-tagged proteins, and their interactions with each other and with human interferon-beta-1a (IFN-beta-1a) were studied by gel filtration and by cross-linking. By gel filtration, no stable binary complexes between IFN-beta-1a and IFNAR1, or between IFNAR1 and IFNAR2 were detected. However, a stable binary complex formed between IFN-beta-1a and IFNAR2. Analysis of binary complex formation using various molar excesses of IFN-beta-1a and IFNAR2 indicated that the complex had a 1:1 stoichiometry, and reducing SDS-PAGE of the binary complex treated with the cross-linking reagent dissucinimidyl glutarate (DSG) indicated that the major cross-linked species had an apparent Mr consistent with the sum of its two individual components. Gel filtration of a mixture of IFNAR1 and the IFN-beta-1a/IFNAR2 complex indicated that the three proteins formed a stable ternary complex. Analysis of ternary complex formation using various molar excesses of IFNAR1 and the IFN-beta-1a/IFNAR2 complex indicated that the ternary complex had a 1:1:1 stoichiometry, and reducing SDS-PAGE of the ternary complex treated with DSG indicated that the major cross-linked species had an apparent Mr consistent with the sum of its three individual components. We conclude that the ternary complex forms by the sequential association of IFN-beta-1a with IFNAR2, followed by the association of IFNAR1 with the preformed binary complex. The ability to produce the IFN-beta-1a/IFNAR2 and IFN-beta-1a/IFNAR1/IFNAR2 complexes make them attractive candidates for X-ray crystallography studies aimed at determining the molecular interactions between IFN-beta-1a and its receptor.
Collapse
Affiliation(s)
- R M Arduini
- Biogen Inc., Cambridge, Massachusetts 02142, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Smith D, Buckle GJ, Hafler DA, Frank DA, Höllsberg P. HTLV-I-infected T cells evade the antiproliferative action of IFN-beta. Virology 1999; 257:314-21. [PMID: 10329542 DOI: 10.1006/viro.1999.9679] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human T-cell lymphotropic virus type I (HTLV-I)-infected T-cell clones enter the S-phase of the cell cycle in the absence of exogenous IL-2. The pathway by which HTLV-I activates the host T cell may circumvent normal immunoregulatory mechanisms and thus be important for the pathogenesis of HTLV-I-induced diseases. The early control of viral infections is in part mediated by interferons (IFNs), which possess both antiviral and antiproliferative functions. In order to investigate the antiproliferative effect of IFN-beta on HTLV-I-induced T-cell activation, we generated T-cell clones from patients with HTLV-I-associated myelopathy/tropical spastic paraparesis by single-cell cloning under limiting dilution conditions. Here we demonstrate that HTLV-I-induced T-cell proliferation is resistant to the antiproliferative action of IFN-beta. Moreover, HTLV-I-infected T-cell clones continue to constitutively secrete IFN-gamma in the presence of high doses of IFN-beta. HTLV-I-infected T cells express normal levels of IFNAR1 and are able to respond to IFN-beta by phosphorylation of STAT1 on Tyr701, although they display a relative increase in phosphorylation of the transcriptionally inactive STAT1beta when compared with STAT1alpha. Thus, HTLV-I promotes cell cycle progression in G1 by a mechanism that overcomes inhibitory signals, thereby circumventing an innate immune defense mechanism.
Collapse
Affiliation(s)
- D Smith
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
21
|
Abstract
Type I interferons (IFNs) constitute a family of structurally related proteins that are all derived from the same ancestral gene and act on a common cell-surface receptor. Contrary to many other cytokines, the production of type I IFNs is not a specialized function, and all cells in the organism can produce them, usually as a result of induction by viruses, via the formation of double-stranded RNA. Type I IFNs are indeed responsible for the first line of defense during virus infection and act through the induction of a great number of proteins. Of these, at least thirty have been characterized, and there are probably many more. In addition to their direct antiviral effect, type I IFNs exert a wide variety of other activities, such as for example the induction of various cytokines and the stimulation of different effector cells of the immune system. Due to these pleiotropic effects, recombinant interferons are used in the clinic to treat a variety of diseases, among which cancer, viral hepatitis and multiple sclerosis.
Collapse
Affiliation(s)
- E De Maeyer
- Institut Curie, Université Paris-Sud, Orsay, France
| | | |
Collapse
|
22
|
Goldman LA, Zafari M, Cutrone EC, Dang A, Brickelmeier M, Runkel L, Benjamin CD, Ling LE, Langer JA. Characterization of antihuman IFNAR-1 monoclonal antibodies: epitope localization and functional analysis. J Interferon Cytokine Res 1999; 19:15-26. [PMID: 10048764 DOI: 10.1089/107999099314379] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The type I interferon receptor (IFNAR) is composed of two subunits, IFNAR-1 and IFNAR-2, encoding transmembrane polypeptides. IFNAR-2 has a dominant role in ligand binding, but IFNAR-1 contributes to binding affinity and to differential ligand recognition. A panel of five monoclonal antibodies (mAb) to human IFNAR-1 (HuIFNAR-1) was produced and characterized. The reactivity of each mAb toward HuIFNAR-1 on native and transfected cells and in Western blot and ELISA formats was determined. In functional assays, one mAb, EA12, blocked IFN-a2 binding to human cells and interfered with Stat activation and antiviral activity. Epitopes for the mAb were localized to subdomains of the HuIFNAR-1 extracellular domain by differential reactivity of the mAb to a series of human/bovine IFNAR-1 chimeras. The antibody EA12 seems to require native HuIFNAR-1 for reactivity and does not map to a single subdomain, perhaps recognizing an epitope containing noncontiguous sequences in at least two subdomains. In contrast, the epitopes of the non-neutralizing mAb FB2, AA3, and GB8 mapped, respectively, to the first, second, and third subdomains of HuIFNAR-1. The mAb DB2 primarily maps to the fourth subdomain, although its reactivity may be affected by other determinants.
Collapse
Affiliation(s)
- L A Goldman
- Department of Molecular Genetics and Microbiology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Langer JA, Yang J, Carmillo P, Ling LE. Bovine type I interferon receptor protein BoIFNAR-1 has high-affinity and broad specificity for human type I interferons. FEBS Lett 1998; 421:131-5. [PMID: 9468293 DOI: 10.1016/s0014-5793(97)01550-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The type I interferon receptor (IFNAR) is composed of two transmembrane polypeptides, IFNAR-1 and IFNAR-2. Human IFNAR-1 has low intrinsic affinity for IFNs, but enhances the affinity for IFNs of the complex over that of HuIFNAR-2 alone, and modulates the ligand specificity. Bovine cells respond to human alpha interferons. The bovine homologue of HuIFNAR-1, BoIFNAR-1, when expressed in heterologous cells, confers high-affinity binding and broad specificity for human type I IFNs. A soluble fusion protein of the ectodomain of BoIFNAR-1 and an immunoglobulin Fc domain was produced. In contrast to HuIFNAR-1, this protein competes strongly with human cells for IFN binding, and directly binds a wide spectrum of human type I IFNs, including diverse IFN-alphas, IFN-beta and IFN-omega, with moderate to high affinity. This accounts for much of the specificity for human IFNs possessed by bovine cells, with several exceptions. The BoIFNAR-1 ectodomain, in contrast to HuIFNAR-1, may be useful for studies of binary and ternary complexes with IFNs and IFNAR-2, and for purification, assay and biological neutralization protocols.
Collapse
Affiliation(s)
- J A Langer
- Department of Molecular Genetics and Microbiology, Robert Wood Johnson Medical School-UMDNJ, Piscataway, NJ 08854, USA.
| | | | | | | |
Collapse
|
24
|
Gauzzi MC, Barbieri G, Richter MF, Uzé G, Ling L, Fellous M, Pellegrini S. The amino-terminal region of Tyk2 sustains the level of interferon alpha receptor 1, a component of the interferon alpha/beta receptor. Proc Natl Acad Sci U S A 1997; 94:11839-44. [PMID: 9342324 PMCID: PMC23625 DOI: 10.1073/pnas.94.22.11839] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/1997] [Indexed: 02/05/2023] Open
Abstract
Tyk2 belongs to the Janus kinase (JAK) family of receptor associated tyrosine kinases, characterized by a large N-terminal region, a kinase-like domain and a tyrosine kinase domain. It was previously shown that Tyk2 contributes to interferon-alpha (IFN-alpha) signaling not only catalytically, but also as an essential intracellular component of the receptor complex, being required for high affinity binding of IFN-alpha. For this function the tyrosine kinase domain was found to be dispensable. Here, it is shown that mutant cells lacking Tyk2 have significantly reduced IFN-alpha receptor 1 (IFNAR1) protein level, whereas the mRNA level is unaltered. Expression of the N-terminal region of Tyk2 in these cells reconstituted wild-type IFNAR1 level, but did not restore the binding activity of the receptor. Studies of mutant Tyk2 forms deleted at the N terminus indicated that the integrity of the N-terminal region is required to sustain IFNAR1. These studies also showed that the N-terminal region does not directly modulate the basal autophosphorylation activity of Tyk2, but it is required for efficient in vitro IFNAR1 phosphorylation and for rendering the enzyme activatable by IFN-alpha. Overall, these results indicate that distinct Tyk2 domains provide different functions to the receptor complex: the N-terminal region sustains IFNAR1 level, whereas the kinase-like domain provides a function toward high affinity ligand binding.
Collapse
Affiliation(s)
- M C Gauzzi
- Institut Pasteur, Institut National de la Santé et de la Recherche Médicale Unité 276, Paris 75724 Cedex 15, France
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The type-I interferon receptor is a multisubunit receptor of the cytokine receptor superfamily. The production of specific monoclonal antibodies against the receptor and the cloning of different receptor subunits have contributed to understanding the type-I interferon receptor structure and function. The present article analyzes these new advances and the role of the different receptor subunits in type-I interferon signaling.
Collapse
Affiliation(s)
- P Domanski
- Department of Pathology, University of Tennessee, Memphis 38163, USA
| | | |
Collapse
|
26
|
Ghislain J, Sussman G, Goelz S, Ling LE, Fish EN. Configuration of the interferon-alpha/beta receptor complex determines the context of the biological response. J Biol Chem 1995; 270:21785-92. [PMID: 7665599 DOI: 10.1074/jbc.270.37.21785] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Constituents of the Type 1 interferon (IFN) receptor (IFNABR) identified to date include the alpha and beta transmembrane subunits and the associated intracellular kinases, Jak 1 and Tyk 2. In this report, we demonstrate that a human cell type that expresses both subunits of IFNABR, together with Jak 1 and Tyk 2, exhibits a limited binding capacity for and is only partially sensitive to the effects of IFN-alpha/beta, despite adequate levels of the cytoplasmic transcription factors Stat1, Stat2, and Stat3. Specifically, a low affinity interaction between IFN-alpha/beta and cell surface receptors results in ISGF3 (Stat1:2) activation and an antiviral response, yet no IFN-inducible growth inhibition. Using a panel of murine cells that are variably configured with respect to the human IFNABR-alpha/beta subunits, we provide evidence that an additional component(s) encoded on human chromosome 21 is required to confer high affinity binding and IFN-inducible growth inhibition to cells that express the alpha and beta subunits of the IFNABR. The data indicate that transcriptional activation that leads to an antiviral response is mediated by IFN-alpha/beta activation of IFNABR-alpha and IFNABR-beta in the context of a low affinity interaction, yet a high affinity interaction is necessary for signal transducing events that mediate growth inhibition. We provide evidence that the extent of ISGF3 activation correlates directly with the magnitude of an antiviral but not a growth inhibitory response.
Collapse
Affiliation(s)
- J Ghislain
- Department of Microbiology, University of Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|