1
|
Gusev E, Sarapultsev A. Interplay of G-proteins and Serotonin in the Neuroimmunoinflammatory Model of Chronic Stress and Depression: A Narrative Review. Curr Pharm Des 2024; 30:180-214. [PMID: 38151838 DOI: 10.2174/0113816128285578231218102020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023]
Abstract
INTRODUCTION This narrative review addresses the clinical challenges in stress-related disorders such as depression, focusing on the interplay between neuron-specific and pro-inflammatory mechanisms at the cellular, cerebral, and systemic levels. OBJECTIVE We aim to elucidate the molecular mechanisms linking chronic psychological stress with low-grade neuroinflammation in key brain regions, particularly focusing on the roles of G proteins and serotonin (5-HT) receptors. METHODS This comprehensive review of the literature employs systematic, narrative, and scoping review methodologies, combined with systemic approaches to general pathology. It synthesizes current research on shared signaling pathways involved in stress responses and neuroinflammation, including calcium-dependent mechanisms, mitogen-activated protein kinases, and key transcription factors like NF-κB and p53. The review also focuses on the role of G protein-coupled neurotransmitter receptors (GPCRs) in immune and pro-inflammatory responses, with a detailed analysis of how 13 of 14 types of human 5-HT receptors contribute to depression and neuroinflammation. RESULTS The review reveals a complex interaction between neurotransmitter signals and immunoinflammatory responses in stress-related pathologies. It highlights the role of GPCRs and canonical inflammatory mediators in influencing both pathological and physiological processes in nervous tissue. CONCLUSION The proposed Neuroimmunoinflammatory Stress Model (NIIS Model) suggests that proinflammatory signaling pathways, mediated by metabotropic and ionotropic neurotransmitter receptors, are crucial for maintaining neuronal homeostasis. Chronic mental stress can disrupt this balance, leading to increased pro-inflammatory states in the brain and contributing to neuropsychiatric and psychosomatic disorders, including depression. This model integrates traditional theories on depression pathogenesis, offering a comprehensive understanding of the multifaceted nature of the condition.
Collapse
Affiliation(s)
- Evgenii Gusev
- Laboratory of Inflammation Immunology, Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, Ekaterinburg 620049, Russia
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, Chelyabinsk 454080, Russia
| | - Alexey Sarapultsev
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, Chelyabinsk 454080, Russia
- Laboratory of Immunopathophysiology, Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, Ekaterinburg 620049, Russia
| |
Collapse
|
2
|
Black JD, Affandi T, Black AR, Reyland ME. PKCα and PKCδ: Friends and Rivals. J Biol Chem 2022; 298:102194. [PMID: 35760100 PMCID: PMC9352922 DOI: 10.1016/j.jbc.2022.102194] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 01/06/2023] Open
Abstract
PKC comprises a large family of serine/threonine kinases that share a requirement for allosteric activation by lipids. While PKC isoforms have significant homology, functional divergence is evident among subfamilies and between individual PKC isoforms within a subfamily. Here, we highlight these differences by comparing the regulation and function of representative PKC isoforms from the conventional (PKCα) and novel (PKCδ) subfamilies. We discuss how unique structural features of PKCα and PKCδ underlie differences in activation and highlight the similar, divergent, and even opposing biological functions of these kinases. We also consider how PKCα and PKCδ can contribute to pathophysiological conditions and discuss challenges to targeting these kinases therapeutically.
Collapse
Affiliation(s)
- Jennifer D Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE.
| | - Trisiani Affandi
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus
| | - Adrian R Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
| | - Mary E Reyland
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus.
| |
Collapse
|
3
|
Cooke M, Kazanietz MG. Overarching roles of diacylglycerol signaling in cancer development and antitumor immunity. Sci Signal 2022; 15:eabo0264. [PMID: 35412850 DOI: 10.1126/scisignal.abo0264] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Diacylglycerol (DAG) is a lipid second messenger that is generated in response to extracellular stimuli and channels intracellular signals that affect mammalian cell proliferation, survival, and motility. DAG exerts a myriad of biological functions through protein kinase C (PKC) and other effectors, such as protein kinase D (PKD) isozymes and small GTPase-regulating proteins (such as RasGRPs). Imbalances in the fine-tuned homeostasis between DAG generation by phospholipase C (PLC) enzymes and termination by DAG kinases (DGKs), as well as dysregulation in the activity or abundance of DAG effectors, have been widely associated with tumor initiation, progression, and metastasis. DAG is also a key orchestrator of T cell function and thus plays a major role in tumor immunosurveillance. In addition, DAG pathways shape the tumor ecosystem by arbitrating the complex, dynamic interaction between cancer cells and the immune landscape, hence representing powerful modifiers of immune checkpoint and adoptive T cell-directed immunotherapy. Exploiting the wide spectrum of DAG signals from an integrated perspective could underscore meaningful advances in targeted cancer therapy.
Collapse
Affiliation(s)
- Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Medicine, Einstein Medical Center Philadelphia, Philadelphia, PA 19141, USA
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Muhanna D, Arnipalli SR, Kumar SB, Ziouzenkova O. Osmotic Adaptation by Na +-Dependent Transporters and ACE2: Correlation with Hemostatic Crisis in COVID-19. Biomedicines 2020; 8:E460. [PMID: 33142989 PMCID: PMC7693583 DOI: 10.3390/biomedicines8110460] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 01/08/2023] Open
Abstract
COVID-19 symptoms, including hypokalemia, hypoalbuminemia, ageusia, neurological dysfunctions, D-dimer production, and multi-organ microthrombosis reach beyond effects attributed to impaired angiotensin-converting enzyme 2 (ACE2) signaling and elevated concentrations of angiotensin II (Ang II). Although both SARS-CoV (Severe Acute Respiratory Syndrome Coronavirus) and SARS-CoV-2 utilize ACE2 for host entry, distinct COVID-19 pathogenesis coincides with the acquisition of a new sequence, which is homologous to the furin cleavage site of the human epithelial Na+ channel (ENaC). This review provides a comprehensive summary of the role of ACE2 in the assembly of Na+-dependent transporters of glucose, imino and neutral amino acids, as well as the functions of ENaC. Data support an osmotic adaptation mechanism in which osmotic and hemostatic instability induced by Ang II-activated ENaC is counterbalanced by an influx of organic osmolytes and Na+ through the ACE2 complex. We propose a paradigm for the two-site attack of SARS-CoV-2 leading to ENaC hyperactivation and inactivation of the ACE2 complex, which collapses cell osmolality and leads to rupture and/or necrotic death of swollen pulmonary, endothelial, and cardiac cells, thrombosis in infected and non-infected tissues, and aberrant sensory and neurological perception in COVID-19 patients. This dual mechanism employed by SARS-CoV-2 calls for combinatorial treatment strategies to address and prevent severe complications of COVID-19.
Collapse
Affiliation(s)
| | | | | | - Ouliana Ziouzenkova
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; (D.M.); (S.R.A.); (S.B.K.)
| |
Collapse
|
5
|
Shen Y, Song Z, Lu X, Ma Z, Lu C, Zhang B, Chen Y, Duan M, Apetoh L, Li X, Guo J, Miao Y, Zhang G, Yang D, Cai Z, Wang J. Fas signaling-mediated T H9 cell differentiation favors bowel inflammation and antitumor functions. Nat Commun 2019; 10:2924. [PMID: 31266950 PMCID: PMC6606754 DOI: 10.1038/s41467-019-10889-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 06/07/2019] [Indexed: 11/17/2022] Open
Abstract
Fas induces apoptosis in activated T cell to maintain immune homeostasis, but the effects of non-apoptotic Fas signaling on T cells remain unclear. Here we show that Fas promotes TH9 cell differentiation by activating NF-κB via Ca2+-dependent PKC-β activation. In addition, PKC-β also phosphorylates p38 to inactivate NFAT1 and reduce NFAT1-NF-κB synergy to promote the Fas-induced TH9 transcription program. Fas ligation exacerbates inflammatory bowel disease by increasing TH9 cell differentiation, and promotes antitumor activity in p38 inhibitor-treated TH9 cells. Furthermore, low-dose p38 inhibitor suppresses tumor growth without inducing systemic adverse effects. In patients with tumor, relatively high TH9 cell numbers are associated with good prognosis. Our study thus implicates Fas in CD4+ T cells as a target for inflammatory bowel disease therapy. Furthermore, simultaneous Fas ligation and low-dose p38 inhibition may be an effective approach for TH9 cell induction and cancer therapy. Fas signalling induces apoptosis of activated T cells to maintain immune homeostasis. Here the authors show that Fas also induces PKC-β activation to promote NF-κB-mediated TH9 cell differentiation, while p38 activation by PKC-β antagonizes this effect, thereby supporting a synergy between p38 inhibitor and Fas for TH9 differentiation.
Collapse
Affiliation(s)
- Yingying Shen
- Institute of Immunology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.,Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, 310003, Hangzhou, China.,Institute of Immunology and Department of Orthopaedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Zhengbo Song
- Department of Medical Oncology, Zhejiang Cancer Hospital, 310022, Hangzhou, China
| | - Xinliang Lu
- Institute of Immunology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Zeyu Ma
- Institute of Immunology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Chaojie Lu
- Institute of Immunology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Bei Zhang
- Institute of Immunology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Yinghu Chen
- Division of Infection Disease, Zhejiang Key Laboratory for Neonatal Diseases, Children's Hospital, Zhejiang University School of Medicine, 310006, Hangzhou, China
| | - Meng Duan
- Chronic Disease Research Institute, School of Public Health, School of Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Lionel Apetoh
- INSERM, U866, Dijon, France.,Faculté de Médecine, Université de Bourgogne, Dijon, 21000, France
| | - Xu Li
- School of Life Science, Westlake University, 310024, Hangzhou, China
| | - Jufeng Guo
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 310006, Hangzhou, China
| | - Ying Miao
- Clinical Trial Center, Qingdao Municipal Hospital, 266011, Qingdao, China
| | - Gensheng Zhang
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China
| | - Diya Yang
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Zhijian Cai
- Institute of Immunology and Department of Orthopaedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.
| | - Jianli Wang
- Institute of Immunology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China. .,Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, 310003, Hangzhou, China.
| |
Collapse
|
6
|
Parrish JM, Soni M, Mittal R. Subversion of host immune responses by otopathogens during otitis media. J Leukoc Biol 2019; 106:943-956. [PMID: 31075181 PMCID: PMC7166519 DOI: 10.1002/jlb.4ru0119-003r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/11/2019] [Accepted: 04/05/2019] [Indexed: 12/26/2022] Open
Abstract
Otitis media (OM) is one of the most common ear diseases affecting humans. Children are at greater risk and suffer most frequently from OM, which can cause serious deterioration in the quality of life. OM is generally classified into two main types: acute and chronic OM (AOM and COM). AOM is characterized by tympanic membrane swelling or otorrhea and is accompanied by signs or symptoms of ear infection. In COM, there is a tympanic membrane perforation and purulent discharge. The most common pathogens that cause AOM are Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis whereas Pseudomonas aeruginosa and Staphylococcus aureus are commonly associated with COM. Innate and adaptive immune responses provide protection against OM. However, pathogens employ a wide arsenal of weapons to evade potent immune responses and these mechanisms likely contribute to AOM and COM. Immunologic evasion is multifactorial, and involves damage to host mucociliary tract, genetic polymorphisms within otopathogens, the number and variety of different otopathogens in the nasopharynx as well as the interaction between the host's innate and adaptive immune responses. Otopathogens utilize host mucin production, phase variation, biofilm production, glycans, as well as neutrophil and eosinophilic extracellular traps to induce OM. The objective of this review article is to discuss our current understanding about the mechanisms through which otopathogens escape host immunity to induce OM. A better knowledge about the molecular mechanisms leading to subversion of host immune responses will provide novel clues to develop effective treatment modalities for OM.
Collapse
Affiliation(s)
- James M Parrish
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Manasi Soni
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Rahul Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
7
|
Ma D, Wang P, Fang Q, Yu Z, Zhou Z, He Z, Wei D, Yu K, Lu T, Zhang Y, Wang J. Low-dose staurosporine selectively reverses BCR-ABL-independent IM resistance through PKC-α-mediated G2/M phase arrest in chronic myeloid leukaemia. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 46:S208-S216. [PMID: 30618318 DOI: 10.1080/21691401.2018.1490310] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Dan Ma
- Department of Hematology, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, Affiliated Hospital of Guizhou Medical University, Guizhou Province Institute of Hematology, Guiyang, China
| | - Ping Wang
- Department of Hematology, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, Affiliated Hospital of Guizhou Medical University, Guizhou Province Institute of Hematology, Guiyang, China
| | - Qin Fang
- Department of Pharmacy, Affiliated Baiyun Hospital of Guizhou Medical University, Guiyang, China
- Department of Pharmacy, Affiliated Hospital of Guiyang Medical University, Guiyang, China
| | - Zhengyu Yu
- Department of Hematology, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, Affiliated Hospital of Guizhou Medical University, Guizhou Province Institute of Hematology, Guiyang, China
| | - Zhen Zhou
- Department of Hematology, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, Affiliated Hospital of Guizhou Medical University, Guizhou Province Institute of Hematology, Guiyang, China
- Department of Pharmacy, Affiliated Baiyun Hospital of Guizhou Medical University, Guiyang, China
- Department of Pharmacy, Affiliated Hospital of Guiyang Medical University, Guiyang, China
| | - Zhengchang He
- Department of Hematology, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, Affiliated Hospital of Guizhou Medical University, Guizhou Province Institute of Hematology, Guiyang, China
| | - Danna Wei
- Department of Hematology, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, Affiliated Hospital of Guizhou Medical University, Guizhou Province Institute of Hematology, Guiyang, China
| | - Kunling Yu
- Department of Hematology, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, Affiliated Hospital of Guizhou Medical University, Guizhou Province Institute of Hematology, Guiyang, China
| | - Tingting Lu
- Department of Hematology, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, Affiliated Hospital of Guizhou Medical University, Guizhou Province Institute of Hematology, Guiyang, China
| | - Yaming Zhang
- Department of Hematology, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, Affiliated Hospital of Guizhou Medical University, Guizhou Province Institute of Hematology, Guiyang, China
| | - Jishi Wang
- Department of Hematology, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, Affiliated Hospital of Guizhou Medical University, Guizhou Province Institute of Hematology, Guiyang, China
| |
Collapse
|
8
|
Yu ZY, Xiao H, Wang LM, Shen X, Jing Y, Wang L, Sun WF, Zhang YF, Cui Y, Shan YJ, Zhou WB, Xing S, Xiong GL, Liu XL, Dong B, Feng JN, Wang LS, Luo QL, Zhao QS, Cong YW. Natural Product Vibsanin A Induces Differentiation of Myeloid Leukemia Cells through PKC Activation. Cancer Res 2016; 76:2698-709. [PMID: 26984756 DOI: 10.1158/0008-5472.can-15-1616] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 02/13/2016] [Indexed: 11/16/2022]
Abstract
All-trans retinoic acid (ATRA)-based cell differentiation therapy has been successful in treating acute promyelocytic leukemia, a unique subtype of acute myeloid leukemia (AML). However, other subtypes of AML display resistance to ATRA-based treatment. In this study, we screened natural, plant-derived vibsane-type diterpenoids for their ability to induce differentiation of myeloid leukemia cells, discovering that vibsanin A potently induced differentiation of AML cell lines and primary blasts. The differentiation-inducing activity of vibsanin A was mediated through direct interaction with and activation of protein kinase C (PKC). Consistent with these findings, pharmacological blockade of PKC activity suppressed vibsanin A-induced differentiation. Mechanistically, vibsanin A-mediated activation of PKC led to induction of the ERK pathway and decreased c-Myc expression. In mouse xenograft models of AML, vibsanin A administration prolonged host survival and inhibited PKC-mediated inflammatory responses correlated with promotion of skin tumors in mice. Collectively, our results offer a preclinical proof of concept for vibsanin A as a myeloid differentiation-inducing compound, with potential application as an antileukemic agent. Cancer Res; 76(9); 2698-709. ©2016 AACR.
Collapse
Affiliation(s)
- Zu-Yin Yu
- Department of Pathophysiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - He Xiao
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Li-Mei Wang
- Department of Pathophysiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xing Shen
- Department of Pathophysiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yu Jing
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Lin Wang
- Department of Pathophysiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Wen-Feng Sun
- Department of Pathophysiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yan-Feng Zhang
- Department of Pathophysiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yu Cui
- Department of Pathophysiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Ya-Jun Shan
- Department of Pathophysiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Wen-Bing Zhou
- Department of Pathophysiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Shuang Xing
- Department of Pathophysiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Guo-Lin Xiong
- Department of Pathophysiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiao-Lan Liu
- Department of Pathophysiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Bo Dong
- Department of Pathophysiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jian-Nan Feng
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Li-Sheng Wang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Qing-Liang Luo
- Department of Pathophysiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Qin-Shi Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.
| | - Yu-Wen Cong
- Department of Pathophysiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China.
| |
Collapse
|
9
|
Mittal R, Grati M, Yan D, Liu XZ. Pseudomonas aeruginosa Activates PKC-Alpha to Invade Middle Ear Epithelial Cells. Front Microbiol 2016; 7:255. [PMID: 26973629 PMCID: PMC4777741 DOI: 10.3389/fmicb.2016.00255] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/16/2016] [Indexed: 12/31/2022] Open
Abstract
Otitis media (OM) is a group of complex inflammatory disorders affecting the middle ear which can be acute or chronic. Chronic suppurative otitis media (CSOM) is a form of chronic OM characterized by tympanic membrane perforation and discharge. Despite the significant impact of CSOM on human population, it is still an understudied and unexplored research area. CSOM is a leading cause of hearing loss and life-threatening central nervous system complications. Bacterial exposure especially Pseudomonas aeruginosa is the most common cause of CSOM. Our previous studies have demonstrated that P. aeruginosa invades human middle ear epithelial cells (HMEECs). However, molecular mechanisms leading to bacterial invasion of HMEECs are not known. The aim of this study is to characterize the role of PKC pathway in the ability of P. aeruginosa to colonize HMEECs. We observed that otopathogenic P. aeruginosa activates the PKC pathway, specifically phosphorylation of PKC-alpha (PKC-α) in HMEECs. The ability of otopathogenic P. aeruginosa to phosphorylate PKC-α depends on bacterial OprF expression. The activation of PKC-α was associated with actin condensation. Blocking the PKC pathway attenuated the ability of bacteria to invade HMEECs and subsequent actin condensation. This study, for the first time, demonstrates that the host PKC-α pathway is involved in invasion of HMEECs by P. aeruginosa and subsequently to cause OM. Characterizing the role of the host signaling pathway in the pathogenesis of CSOM will provide novel avenues to design effective treatment modalities against the disease.
Collapse
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami Florida, USA
| | - M'hamed Grati
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami Florida, USA
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami Florida, USA
| | - Xue Z Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, MiamiFlorida, USA; Department of Biochemistry, University of Miami Miller School of Medicine, MiamiFL, USA; Department of Human Genetics, University of Miami Miller School of Medicine, MiamiFL, USA; Department of Otolaryngology, Xiangya Hospital, Central South UniversityChangsha, China
| |
Collapse
|
10
|
Zhang YY, Yu YY, Zhang YR, Zhang W, Yu B. The modulatory effect of TLR2 on LL-37-induced human mast cells activation. Biochem Biophys Res Commun 2016; 470:368-374. [DOI: 10.1016/j.bbrc.2016.01.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 01/07/2016] [Indexed: 12/15/2022]
|
11
|
Gupta SK, Gandham RK, Sahoo AP, Tiwari AK. Viral genes as oncolytic agents for cancer therapy. Cell Mol Life Sci 2015; 72:1073-94. [PMID: 25408521 PMCID: PMC11113997 DOI: 10.1007/s00018-014-1782-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 10/29/2014] [Accepted: 11/13/2014] [Indexed: 12/20/2022]
Abstract
Many viruses have the ability to modulate the apoptosis, and to accomplish it; viruses encode proteins which specifically interact with the cellular signaling pathways. While some viruses encode proteins, which inhibit the apoptosis or death of the infected cells, there are viruses whose encoded proteins can kill the infected cells by multiple mechanisms, including apoptosis. A particular class of these viruses has specific gene(s) in their genomes which, upon ectopic expression, can kill the tumor cells selectively without affecting the normal cells. These genes and their encoded products have demonstrated great potential to be developed as novel anticancer therapeutic agents which can specifically target and kill the cancer cells leaving the normal cells unharmed. In this review, we will discuss about the viral genes having specific cancer cell killing properties, what is known about their functioning, signaling pathways and their therapeutic applications as anticancer agents.
Collapse
Affiliation(s)
- Shishir Kumar Gupta
- Molecular Biology Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 UP India
| | - Ravi Kumar Gandham
- Molecular Biology Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 UP India
| | - A. P. Sahoo
- Molecular Biology Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 UP India
| | - A. K. Tiwari
- Molecular Biology Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 UP India
| |
Collapse
|
12
|
The protein kinase C agonist prostratin induces differentiation of human myeloid leukemia cells and enhances cellular differentiation by chemotherapeutic agents. Cancer Lett 2015; 356:686-96. [DOI: 10.1016/j.canlet.2014.10.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/16/2014] [Accepted: 10/17/2014] [Indexed: 01/08/2023]
|
13
|
Mencalha AL, Corrêa S, Abdelhay E. Role of calcium-dependent protein kinases in chronic myeloid leukemia: combined effects of PKC and BCR-ABL signaling on cellular alterations during leukemia development. Onco Targets Ther 2014; 7:1247-54. [PMID: 25045273 PMCID: PMC4099416 DOI: 10.2147/ott.s64303] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Calcium-dependent protein kinases (PKCs) function in a myriad of cellular processes, including cell-cycle regulation, proliferation, hematopoietic stem cell differentiation, apoptosis, and malignant transformation. PKC inhibitors, when targeted to these pathways, have demonstrated efficacy against several types of solid tumors as well as leukemia. Chronic myeloid leukemia (CML) represents 20% of all adult leukemia. The aberrant Philadelphia chromosome has been reported as the main cause of CML development in hematopoietic stem cells, due to the formation of the BCR-ABL oncogene. PKCs and BCR-ABL coordinate several signaling pathways that are crucial to cellular malignant transformation. Experimental and clinical evidence suggests that pharmacological approaches using PKC inhibitors may be effective in the treatment of CML. This mini review summarizes articles from the National Center for Biotechnology Information website that have shown evidence of the involvement of PKC in CML.
Collapse
Affiliation(s)
- André L Mencalha
- Biophysics and Biometry Department, Roberto Alcântara Gomes Biology Institute, Rio de Janeiro's State University (UERJ), Rio de Janeiro, Brazil
| | - Stephany Corrêa
- Bone Marrow Transplantation Unit (CEMO), National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Eliana Abdelhay
- Bone Marrow Transplantation Unit (CEMO), National Cancer Institute (INCA), Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Grech G, Pollacco J, Portelli M, Sacco K, Baldacchino S, Grixti J, Saliba C. Expression of different functional isoforms in haematopoiesis. Int J Hematol 2013; 99:4-11. [PMID: 24293279 DOI: 10.1007/s12185-013-1477-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 11/18/2013] [Accepted: 11/18/2013] [Indexed: 12/26/2022]
Abstract
Haematopoiesis is a complex process regulated at various levels facilitating rapid responses to external factors including stress, modulation of lineage commitment and terminal differentiation of progenitors. Although the transcription program determines the RNA pool of a cell, various mRNA strands can be obtained from the same template, giving rise to multiple protein isoforms. The majority of variants and isoforms co-occur in normal haematopoietic cells or are differentially expressed at various maturity stages of progenitor maturation and cellular differentiation within the same lineage or across lineages. Genetic aberrations or specific cellular states result in the predominant expression of abnormal isoforms leading to deregulation and disease. The presence of upstream open reading frames (uORF) in 5' untranslated regions (UTRs) of a transcript, couples the utilization of start codons with the cellular status and availability of translation initiation factors (eIFs). In addition, tissue-specific and cell lineage-specific alternative promoter use, regulates several transcription factors producing transcript variants with variable 5' exons. In this review, we propose to give a detailed account of the differential isoform formation, causing haematological malignancies.
Collapse
Affiliation(s)
- Godfrey Grech
- Department of Pathology, Medical School, University of Malta, Msida, MSD2090, Malta,
| | | | | | | | | | | | | |
Collapse
|
15
|
Kazi JU, Kabir NN, Rönnstrand L. Protein kinase C (PKC) as a drug target in chronic lymphocytic leukemia. Med Oncol 2013; 30:757. [PMID: 24174318 DOI: 10.1007/s12032-013-0757-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 10/24/2013] [Indexed: 02/07/2023]
Abstract
Protein kinase C (PKC) belongs to a family of ten serine/threonine protein kinases encoded by nine genes. This family of proteins plays critical roles in signal transduction which results in cell proliferation, survival, differentiation and apoptosis. Due to differential subcellular localization and tissue distribution, each member displays distinct signaling characteristics. In this review, we have summarized the roles of PKC family members in chronic lymphocytic leukemia (CLL). CLL is a heterogeneous hematological disorder with survival ranging from months to decades. PKC isoforms are differentially expressed in CLL and play critical roles in CLL pathogenesis. Thus, isoform-specific PKC inhibitors may be an attractive option for CLL treatment.
Collapse
Affiliation(s)
- Julhash U Kazi
- Translational Cancer Research, Lund University, Medicon Village, Building 404:C3, 223 63, Lund, Sweden,
| | | | | |
Collapse
|
16
|
Fuchs SY. Hope and fear for interferon: the receptor-centric outlook on the future of interferon therapy. J Interferon Cytokine Res 2013; 33:211-25. [PMID: 23570388 DOI: 10.1089/jir.2012.0117] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
After several decades of intense clinical research, the great promise of Type I interferons (IFN1) as the anticancer wonder drugs that could cure or, at the very least, curb the progression of various oncological diseases has regrettably failed to deliver. Severe side effects and low efficacy of IFN1-based pharmaceutics greatly limited use of these drugs and further reduced the enthusiasm of clinical oncologists for future optimization of IFN1-based therapeutic modalities. Incredibly, extensive clinical studies to assess the efficacy of IFN1 alone or in combination with other anticancer drugs have not been paralleled by an equal scope in defining the determinants that confer cell sensitivity or refractoriness to IFN1. Given that all effects of IFN1 on malignant and benign cells alike are mediated by its receptor, the mechanisms regulating these receptor cell surface levels should play a paramount role in shaping the magnitude and duration of IFN1-elicited effects. These mechanisms and their role in controlling IFN1 responses, as well as an ability of a growing tumor to commandeer these events, are the focus of our review. We postulate that activation of numerous signaling pathways leading to elimination of IFN1 receptor occurs in cancer cells and benign cells that contribute to tumor tissue. We further hypothesize that activation of these eliminative pathways enables the escape from IFN1-driven suppression of tumorigenesis and elicits the primary refractoriness of tumor to the pharmaceutical IFN1.
Collapse
Affiliation(s)
- Serge Y Fuchs
- Department of Animal Biology and Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania , Philadelphia, PA 19104-4539, USA.
| |
Collapse
|
17
|
Mehrotra S, Sharma B, Joshi S, Kroczynska B, Majchrzak B, Stein BL, McMahon B, Altman JK, Licht JD, Baker DP, Eklund EA, Wickrema A, Verma A, Fish EN, Platanias LC. Essential role for the Mnk pathway in the inhibitory effects of type I interferons on myeloproliferative neoplasm (MPN) precursors. J Biol Chem 2013; 288:23814-22. [PMID: 23814052 DOI: 10.1074/jbc.m113.476192] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The mechanisms of generation of the antineoplastic effects of interferons (IFNs) in malignant hematopoietic cells remain to be precisely defined. We examined the activation of type I IFN-dependent signaling pathways in malignant cells transformed by Jak2V617F, a critical pathogenic mutation in myeloproliferative neoplasms (MPNs). Our studies demonstrate that during engagement of the type I IFN receptor (IFNAR), there is activation of Jak-Stat pathways and also engagement of Mnk kinases. Activation of Mnk kinases is regulated by the Mek/Erk pathway and is required for the generation of IFN-induced growth inhibitory responses, but Mnk kinase activation does not modulate IFN-regulated Jak-Stat signals. We demonstrate that for type I IFNs to exert suppressive effects in malignant hematopoietic progenitors from patients with polycythemia vera, induction of Mnk kinase activity is required, as evidenced by studies involving pharmacological inhibition of Mnk or siRNA-mediated Mnk knockdown. Altogether, these findings provide evidence for key and essential roles of the Mnk kinase pathway in the generation of the antineoplastic effects of type I IFNs in Jak2V617F-dependent MPNs.
Collapse
Affiliation(s)
- Swarna Mehrotra
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Genomic editing of the HIV-1 coreceptor CCR5 in adult hematopoietic stem and progenitor cells using zinc finger nucleases. Mol Ther 2013; 21:1259-69. [PMID: 23587921 PMCID: PMC3677314 DOI: 10.1038/mt.2013.65] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The HIV-1 coreceptor CCR5 is a validated target for HIV/AIDS therapy. The apparent elimination of HIV-1 in a patient treated with an allogeneic stem cell transplant homozygous for a naturally occurring CCR5 deletion mutation (CCR5(Δ32/Δ32)) supports the concept that a single dose of HIV-resistant hematopoietic stem cells can provide disease protection. Given the low frequency of naturally occurring CCR5(Δ32/Δ32) donors, we reasoned that engineered autologous CD34(+) hematopoietic stem/progenitor cells (HSPCs) could be used for AIDS therapy. We evaluated disruption of CCR5 gene expression in HSPCs isolated from granulocyte colony-stimulating factor (CSF)-mobilized adult blood using a recombinant adenoviral vector encoding a CCR5-specific pair of zinc finger nucleases (CCR5-ZFN). Our results demonstrate that CCR5-ZFN RNA and protein expression from the adenoviral vector is enhanced by pretreatment of HSPC with protein kinase C (PKC) activators resulting in >25% CCR5 gene disruption and that activation of the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling pathway is responsible for this activity. Importantly, using an optimized dose of PKC activator and adenoviral vector we could generate CCR5-modified HSPCs which engraft in a humanized mouse model (albeit at a reduced level) and support multilineage differentiation in vitro and in vivo. Together, these data establish the basis for improved approaches exploiting adenoviral vector delivery in the modification of HSPCs.
Collapse
|
19
|
Galli D, Gobbi G, Carrubbi C, Di Marcantonio D, Benedetti L, De Angelis MGC, Meschi T, Vaccarezza M, Sampaolesi M, Mirandola P, Vitale M. The role of PKCε-dependent signaling for cardiac differentiation. Histochem Cell Biol 2012; 139:35-46. [PMID: 22936275 DOI: 10.1007/s00418-012-1022-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2012] [Indexed: 01/01/2023]
Abstract
Protein kinase Cepsilon (PKCε) exerts a well-known cardio-protective activity in ischemia-reperfusion injury and plays a pivotal role in stem cell proliferation and differentiation. Although many studies have been performed on physiological and morphological effects of PKCε mis-expression in cardiomyocytes, molecular information on the role of PKCε on early cardiac gene expression are still lacking. We addressed the molecular role of PKCε in cardiac cells using mouse cardiomyocytes and rat bone marrow mesenchymal stem cells. We show that PKCε is modulated in cardiac differentiation producing an opposite regulation of the cardiac genes NK2 transcription factor related, locus 5 (nkx2.5) and GATA binding protein 4 (gata4) both in vivo and in vitro. Phospho-extracellular regulated mitogen-activated protein kinase 1/2 (p-ERK1/2) levels increase in PKCε over-expressing cells, while pkcε siRNAs produce a decrease in p-ERK1/2. Indeed, pharmacological inhibition of ERK1/2 rescues the expression levels of both nkx2.5 and gata4, suggesting that a reinforced (mitogen-activated protein kinase) MAPK signaling is at the basis of the observed inhibition of cardiac gene expression in the PKCε over-expressing hearts. We demonstrate that PKCε is critical for cardiac cell early gene expression evidencing that this protein is a regulator that has to be fine tuned in precursor cardiac cells.
Collapse
Affiliation(s)
- D Galli
- Department of Biomedical, Biotechnological and Translational Sciences-S.Bi.Bi.T., University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Sassano A, Altman JK, Gordon LI, Platanias LC. Statin-dependent activation of protein kinase Cδ in acute promyelocytic leukemia cells and induction of leukemic cell differentiation. Leuk Lymphoma 2012; 53:1779-84. [PMID: 22356114 DOI: 10.3109/10428194.2012.668287] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Statins are HMG-CoA (3-hydroxy-3-methyl-glutaryl-coenzyme A) reductase inhibitors, which block the conversion of HMG-CoA to mevalonate and have potent cholesterol lowering properties. Beyond their importance in the generation of lipid lowering effects, the regulatory effects of statins on the mevalonate pathway have a significant impact on multiple other cellular functions. There is now extensive evidence that statins have anti-inflammatory and anti-neoplastic properties, but the precise mechanisms by which such responses are generated are not well understood. In the present study we demonstrate that statins engage a member of the protein kinase C (PKC) family of proteins, PKCδ, in acute promyelocytic leukemia (APL) cells. Our study shows that atorvastatin and fluvastatin induce proteolytic activation of PKCδ in the APL NB4 cell line, which expresses the t(15;17) translocation. Such engagement of PKCδ results in induction of its kinase domain and downstream regulation of pathways important for statin-dependent leukemia cell differentiation. Our research shows that the function of PKCδ is essential for statin-induced leukemic cell differentiation, as demonstrated by studies involving selective targeting of PKCδ using siRNAs. We also demonstrate that the potent enhancing effects of statins on all-trans retinoic acid (ATRA)-induced gene expression for CCL3 and CCL4 requires the function of PKCδ, suggesting a mechanism by which statins may promote ATRA-induced antileukemic responses. Altogether, our data establish a novel function for PKCδ as a mediator of statin-induced differentiation of APL cells and antileukemic effects.
Collapse
Affiliation(s)
- Antonella Sassano
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology/Oncology and Northwestern University Medical School, Chicago, IL 60611, USA.
| | | | | | | |
Collapse
|
21
|
Hamdorf M, Berger A, Schüle S, Reinhardt J, Flory E. PKCδ-induced PU.1 phosphorylation promotes hematopoietic stem cell differentiation to dendritic cells. Stem Cells 2011; 29:297-306. [PMID: 21732487 DOI: 10.1002/stem.564] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Human CD34(+) hematopoietic stem cells (HSCs) exhibit the potential to differentiate into a variety of specialized blood cells. The distinct intracellular mechanisms that control cell fate and lineage commitment of these multipotent cells are not well defined. In this study, we investigate and modulate the signaling processes during HSC differentiation toward myeloid dendritic cells (mDCs). DC differentiation induced by the cytokines Granulocyte macrophage colony-stimulating factor (GM-CSF) and Interleukin-4 (IL-4) led to activation of the Extracellular-signal-regulated kinase (ERK), protein kinase C (PKC), and Janus kinase (JAK)/Signal Transducer and Activator of Transcription (STAT) but not the SAPK/c-Jun NH(2) -terminal kinase and p38 mitogen-activated protein kinase signaling pathways. From the activated signaling pathways the PKC isoform δ was found to phosphorylate the transcription factor PU.1, which is described as one of the key factors for myeloid HSC differentiation. On molecular level, PKCδ regulated PU.1 activity by affecting its transactivation activity, whereas its DNA binding activity remained unaffected. This was accompanied by PKCδ-induced phosphorylation of the PU.1 transactivation domain. Furthermore, treatment with PKC- and ERK1/2-specific signaling inhibitors impaired both HSC differentiation toward mDCs as well as phosphorylation-mediated transactivation activity of PU.1. Taken together, these results provide new insights into the molecular mechanisms promoting the differentiation process of HSCs toward mDCs and introduce the PKC isoform δ as critical mediator.
Collapse
Affiliation(s)
- Matthias Hamdorf
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| | | | | | | | | |
Collapse
|
22
|
Zhu J, Coyne CB, Sarkar SN. PKC alpha regulates Sendai virus-mediated interferon induction through HDAC6 and β-catenin. EMBO J 2011; 30:4838-49. [PMID: 21952047 DOI: 10.1038/emboj.2011.351] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 09/01/2011] [Indexed: 12/25/2022] Open
Abstract
Recognition of viral RNA by cytoplasmic retinoic acid inducible gene I (RIG-I)-like receptors initiates signals leading to the induction of type I interferon (IFN) transcription via transcription factors such as interferon regulatory factor 3 (IRF3) and nuclear factor κB (NF-κB). Here, we describe a new signalling pathway that involves protein kinase C alpha (PKCα), histone deacetylase 6 (HDAC6) and beta-catenin (β-catenin), which is essential for IFN gene induction following virus infection. Knockdown of PKCα in various human cells, including primary cells, inhibited Sendai virus (SeV)-mediated IFN induction and enhanced virus replication. In the absence of this pathway IRF3 becomes activated, but does not bind to its promoter and is thus unable to support transcription. Mechanistically, SeV infection induced the activation of PKCα, which promoted its interaction with HDAC6 and enhanced its deacetylation activity in a phosphorylation-dependent manner. Further downstream, HDAC6 caused deacetylation of β-catenin and enhanced its nuclear translocation and promoter binding. In the nucleus, β-catenin acted as a co-activator for IRF3-mediated transcription. Our findings suggest an important role of a novel signalling pathway mediated by PKCα-HDAC6-β-catenin in controlling IRF3-mediated transcription.
Collapse
Affiliation(s)
- Jianzhong Zhu
- Cancer Virology Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | | | | |
Collapse
|
23
|
Sharma B, Altman JK, Goussetis DJ, Verma AK, Platanias LC. Protein kinase R as mediator of the effects of interferon (IFN) gamma and tumor necrosis factor (TNF) alpha on normal and dysplastic hematopoiesis. J Biol Chem 2011; 286:27506-14. [PMID: 21659535 DOI: 10.1074/jbc.m111.238501] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
IFNγ and TNFα are potent inhibitors of hematopoiesis and have been implicated in the pathophysiology of bone marrow failure and myelodysplastic syndromes (MDS). We examined the role of protein kinase R (PKR) in the generation of the inhibitory effects of these myelosuppressive cytokines on hematopoiesis. Our data demonstrate that PKR is rapidly phosphorylated/activated in response to engagement of IFNγ or TNFα receptors in normal human hematopoietic progenitors. Such engagement of PKR is important for the suppressive effects of these cytokines on normal hematopoiesis. Pharmacological targeting of PKR using a specific inhibitor or siRNA-mediated PKR knockdown results in partial reversal of the suppressive effects of IFNγ and TNFα on normal human CD34+-derived myeloid (colony-forming unit-granulocyte-monocytic) and erythroid (burst-forming unit-erythroid) progenitors. Importantly, inhibition of PKR activity or expression increases hematopoietic colony formation from human MDS progenitors, suggesting that drugs that target PKR may provide a novel approach for the treatment of MDS and marrow failure syndromes. Altogether, our data establish that beyond its key role in the induction of IFN-antiviral responses, PKR plays important roles in signaling for IFNγ and other myelosuppressive cytokine receptors as a common mediator of signals for hematopoietic suppression.
Collapse
Affiliation(s)
- Bhumika Sharma
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|
24
|
Ruvolo PP, Zhou L, Watt JC, Ruvolo VR, Burks JK, Jiffar T, Kornblau S, Konopleva M, Andreeff M. Targeting PKC-mediated signal transduction pathways using enzastaurin to promote apoptosis in acute myeloid leukemia-derived cell lines and blast cells. J Cell Biochem 2011; 112:1696-707. [PMID: 21360576 PMCID: PMC3394435 DOI: 10.1002/jcb.23090] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Recent studies in acute myeloid leukemia (AML) suggest activation of pro-proliferative signaling cascades including those mediated by protein kinase C (PKC) represent a poor prognostic factor for patients. The classical PKC isoforms α and β generally support survival signaling and have emerged as important targets for anti-cancer therapy. Enzastaurin is a PKC β inhibitor and is in clinical trials for lymphomas, gliomas, and lung cancer. Presently, it is not known if enzastaurin could be effective against AML. In the current study, we found that high dose enzastaurin was found to promote apoptosis in the AML-derived cell lines and in blast cells from AML patients. The mechanism of cell death, however, likely does not involve PKC β as another PKC β inhibitor was not toxic to AML cell lines and did not promote enzastaurin-induced cell killing. While enzastaurin is fairly specific for PKC β, the agent can inhibit other PKC isoforms at higher concentrations. Enzastaurin was effective at inhibiting PKC α phosphorylation and membrane localization in the AML cell lines and suppressed phosphorylation of BCL2. Furthermore, enzastaurin suppressed activation of ERK (which can be activated by PKC α). Analysis of the serine/threonine phosphorylation profile in HL60 cells after enzastaurin treatment revealed that the drug inhibits the phosphorylation of a distinct set of proteins while promoting phosphorylation of another set of proteins. This suggests the drug may regulate multiple signaling pathways. Taken together, these findings suggest that enzastaurin could be effective in the therapy of AML.
Collapse
Affiliation(s)
- Peter P. Ruvolo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Division of Signal Transduction and Apoptosis, University of Minnesota Hormel Institute, Austin, Minnesota
| | - Liran Zhou
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Julie C. Watt
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vivian R. Ruvolo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Division of Signal Transduction and Apoptosis, University of Minnesota Hormel Institute, Austin, Minnesota
| | - Jared K. Burks
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tilahun Jiffar
- Division of Signal Transduction and Apoptosis, University of Minnesota Hormel Institute, Austin, Minnesota
| | - Steven Kornblau
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael Andreeff
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
25
|
Moon UY, Bae JH, Kim CH, Kim HJ, Kang JW, Yoon JH. Activation of c-Myb transcription factor is critical for PMA-induced lysozyme expression in airway epithelial cells. J Cell Biochem 2011; 111:476-87. [PMID: 20524209 DOI: 10.1002/jcb.22730] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Lysozyme is a major component of airway epithelial secretions, acts as cationic anti-microbial protein for innate immunity. Although lysozyme plays an important role in airway defense and is a key component of airway secretions under inflammatory conditions, little is understood about the regulation of its expression and the associated signaling pathway. We wanted to examine whether Phorbol 12-myristate 13-acetate (PMA), one of PKC activators, treatment of the airway epithelial cell line NCI-H292 increases lysozyme gene expression. In this study, we sought to determine which signal molecules are involved in PMA-induced lysozyme gene expression. We found that PKC and mitogen-activating protein/ERK2 kinase are essential for PMA-induced lysozyme expression and also mediate the PMA-induced activation of c-Myb protein. We identified a proximal region of the lysozyme promoter essential for promoter activity containing c-Myb transcription factor binding site. Additionally, by site-directed promoter mutagenesis, we identified that c-Myb preferred the CAA motif of the -85/-73 region of the lysozyme promoter. Finally, we showed that overexpression of c-Myb without PMA treatment increased the lysozyme promoter activity and protein expression. From these results, we conclude that PMA induces overexpression of lysozyme via ERK1/2 MAP kinase-c-Myb signaling pathways in NCI-H292 cells.
Collapse
Affiliation(s)
- Uk Yeol Moon
- The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
26
|
Carrillo C, del Mar Cavia M, Roelofs H, Wanten G, Alonso-Torre SR. Activation of Human Neutrophils by Oleic Acid Involves the Production of Reactive Oxygen Species and a Rise in Cytosolic Calcium Concentration: a Comparison with N-6 Polyunsaturated Fatty Acids. Cell Physiol Biochem 2011; 28:329-38. [DOI: 10.1159/000331749] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2011] [Indexed: 12/26/2022] Open
|
27
|
Ahluwalia M, Donovan H, Singh N, Butcher L, Erusalimsky JD. Anagrelide represses GATA-1 and FOG-1 expression without interfering with thrombopoietin receptor signal transduction. J Thromb Haemost 2010; 8:2252-61. [PMID: 20586925 DOI: 10.1111/j.1538-7836.2010.03970.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Anagrelide is a selective inhibitor of megakaryocytopoiesis used to treat thrombocytosis in patients with chronic myeloproliferative disorders. The effectiveness of anagrelide in lowering platelet counts is firmly established, but its primary mechanism of action remains elusive. OBJECTIVES AND METHODS Here, we have evaluated whether anagrelide interferes with the major signal transduction cascades stimulated by thrombopoietin in the hematopoietic cell line UT-7/mpl and in cultured CD34(+) -derived human hematopoietic cells. In addition, we have used quantitative mRNA expression analysis to assess whether the drug affects the levels of known transcription factors that control megakaryocytopoiesis. RESULTS In UT-7/mpl cells, anagrelide (1μm) did not interfere with MPL-mediated signaling as monitored by its lack of effect on JAK2 phosphorylation. Similarly, the drug did not affect the phosphorylation of STAT3, ERK1/2 or AKT in either UT-7/mpl cells or primary hematopoietic cells. In contrast, during thrombopoietin-induced megakaryocytic differentiation of normal hematopoietic cultures, anagrelide (0.3μm) reduced the rise in the mRNA levels of the transcription factors GATA-1 and FOG-1 as well as those of the downstream genes encoding FLI-1, NF-E2, glycoprotein IIb and MPL. However, the drug showed no effect on GATA-2 or RUNX-1 mRNA expression. Furthermore, anagrelide did not diminish the rise in GATA-1 and FOG-1 expression during erythropoietin-stimulated erythroid differentiation. Cilostamide, an exclusive and equipotent phosphodiesterase III (PDEIII) inhibitor, did not alter the expression of these genes. CONCLUSIONS Anagrelide suppresses megakaryocytopoiesis by reducing the expression levels of GATA-1 and FOG-1 via a PDEIII-independent mechanism that is differentiation context-specific and does not involve inhibition of MPL-mediated early signal transduction events.
Collapse
Affiliation(s)
- M Ahluwalia
- University of Wales Institute, Cardiff School of Health Sciences, Cardiff, UK
| | | | | | | | | |
Collapse
|
28
|
Jiang J, Cole D, Westwood N, Macpherson L, Farzaneh F, Mufti G, Tavassoli M, Gäken J. Crucial Roles for Protein Kinase C Isoforms in Tumor-Specific Killing by Apoptin. Cancer Res 2010; 70:7242-52. [DOI: 10.1158/0008-5472.can-10-1204] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Role for PKC δ in Fenretinide-Mediated Apoptosis in Lymphoid Leukemia Cells. JOURNAL OF SIGNAL TRANSDUCTION 2010; 2010:584657. [PMID: 20844597 PMCID: PMC2938797 DOI: 10.1155/2010/584657] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The synthetic Vitamin A analog fenretinide is a promising chemotherapeutic agent. In the current paper, the role of PKC δ was examined in fenretinide-induced apoptosis in lymphoid leukemia cells. Levels of proapoptotic cleaved PKC δ positively correlated with drug sensitivity. Fenretinide promoted reactive oxygen species (ROS) generation. The antioxidant Vitamin C prevented fenretinide-induced PKC δ cleavage and protected cells from fenretinide. Suppression of PKC δ expression by shRNA sensitized cells to fenretinide-induced apoptosis possibly by a mechanism involving ROS production. A previous study demonstrated that fenretinide promotes degradation of antiapoptotic MCL-1 in ALL cells via JNK. Now we have found that fenretinide-induced MCL-1 degradation may involve PKC δ as cleavage of the kinase correlated with loss of MCL-1 even in cells when JNK was not activated. These results suggest that PKC δ may play a complex role in fenretinide-induced apoptosis and may be targeted in antileukemia strategies that utilize fenretinide.
Collapse
|
30
|
Wu SF, Huang Y, Hou JK, Yuan TT, Zhou CX, Zhang J, Chen GQ. The downregulation of onzin expression by PKCɛ-ERK2 signaling and its potential role in AML cell differentiation. Leukemia 2010; 24:544-51. [DOI: 10.1038/leu.2009.280] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Kroczynska B, Kaur S, Platanias LC. Growth suppressive cytokines and the AKT/mTOR pathway. Cytokine 2009; 48:138-43. [PMID: 19682919 DOI: 10.1016/j.cyto.2009.07.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 07/06/2009] [Indexed: 11/29/2022]
Abstract
The mTOR signaling pathway plays a very important role in the transmission of signals for initiation of mRNA translation and protein expression in mammalian cells. mTOR activates various downstream effectors to promote initiation of cap-dependent mRNA translation and mediate pro-mitogenic and pro-survival signals. Recent evidence has implicated effectors of this signaling cascade in mRNA translation for interferon stimulated genes (ISGs). In addition, it was recently shown that AKT/mTOR-mediated signals play important roles in the generation of IFN-dependent antiviral and growth inhibitory responses, suggesting that mTOR and its effectors can mediate diverse biological responses, depending on the cellular context and the triggering stimuli. In this review, the regulatory effects of various growth suppressive cytokines on the mTOR pathway are summarized and the emerging new functions of mTOR are discussed.
Collapse
Affiliation(s)
- Barbara Kroczynska
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School, 303 East Superior Street, Lurie 3-107, Chicago, IL 60611, USA
| | | | | |
Collapse
|
32
|
Regulation of protein kinase C isozymes during early postnatal hippocampal development. Brain Res 2009; 1288:29-41. [PMID: 19591813 DOI: 10.1016/j.brainres.2009.06.074] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 05/29/2009] [Accepted: 06/23/2009] [Indexed: 11/22/2022]
Abstract
During neonatal hippocampal development, serotonin 1A receptor-mediated signaling initially employs PKCepsilon to boost neuronal proliferation and then uses PKCalpha to promote synaptogenesis. Such stage-specific involvement of a PKC isozyme could be determined by its relative expression level. In mouse hippocampi, we detected relatively low levels of alpha, beta, gamma, and delta isozymes at postnatal days 2-6 (P2-6), which was followed by a large increase in their expression. In contrast, the PKC isozymes epsilon and theta were relatively abundant at P6, following which they underwent a further increase by P15. Comparison with purified proteins confirmed that the PKCepsilon levels at P6 and P15 were respectively 1.75 and 7.36 ng per 60 microg of protein, whereas PKCalpha levels at P6 and P15 were respectively 160 pg and 1.186 ng per 60 microg of protein. Therefore, at P6, PKCepsilon was about 11-fold more abundant than PKCalpha. Consequently, signaling cascades could use the relatively abundant PKCepsilon (and possibly PKCtheta) molecules for early events at P2-6 (e.g. neurogenesis), following which PKCalpha (and the beta, gamma, or delta isozymes) could guide maturation or apoptosis. Notably, at P6 but not P15, PKCepsilon, was localized to the nuclei of neuroblasts, probably directing mitosis. In contrast, at P15 but not P6, PKCalpha was highly expressed in the processes of the differentiated hippocampal neurons. In summary, PKC isozymes follow differential profiles of expression in neonatal hippocampus and the relative abundance of each may determine its mode and stage of involvement in hippocampal development.
Collapse
|
33
|
Xie Z, Dong Y, Zhang J, Scholz R, Neumann D, Zou MH. Identification of the serine 307 of LKB1 as a novel phosphorylation site essential for its nucleocytoplasmic transport and endothelial cell angiogenesis. Mol Cell Biol 2009; 29:3582-96. [PMID: 19414597 PMCID: PMC2698771 DOI: 10.1128/mcb.01417-08] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 10/17/2008] [Accepted: 04/26/2009] [Indexed: 11/20/2022] Open
Abstract
LKB1, a master kinase that controls at least 13 downstream protein kinases including the AMP-activated protein kinase (AMPK), resides mainly in the nucleus. A key step in LKB1 activation is its export from the nucleus to the cytoplasm. Here, we identified S307 of LKB1 as a putative novel phosphorylation site which is essential for its nucleocytoplasmic transport. In a cell-free system, recombinant PKC-zeta phosphorylates LKB1 at S307. AMPK-activating agents stimulate PKC-zeta activity and LKB1 phosphorylation at S307 in endothelial cells, hepatocytes, skeletal muscle cells, and vascular smooth muscle cells. Like the kinase-dead LKB1 D194A mutant (mutation of Asp194 to Ala), the constitutively nucleus-localized LKB1 SL26 mutant and the LKB1 S307A mutant (Ser307 to Ala) exhibit a decreased association with STRAD alpha. Interestingly, the PKC-zeta consensus sequence surrounding LKB1 S307 is disrupted in the LKB1 SL26 mutant, thus providing a likely molecular explanation for this mutation causing LKB1 dysfunction. In addition, LKB1 nucleocytoplasmic transport and AMPK activation in response to peroxynitrite are markedly reduced by pharmacological inhibition of CRM1, which normally facilitates nuclear export of LKB1-STRAD complexes. In comparison to the LKB1 wild type, the S307A mutant complexes show reduced association with CRM1. Finally, adenoviral overexpression of wild-type LKB1 suppresses, while the LKB1 S307A mutant increases, tube formation and hydrogen peroxide-enhanced apoptosis in cultured endothelial cells. Taken together, our results suggest that, in multiple cell types the signaling pathways engaged by several physiological stimuli converge upon PKC-zeta-dependent LKB1 phosphorylation at S307, which directs the nucleocytoplasmic transport of LKB1 and consequent AMPK activation.
Collapse
Affiliation(s)
- Zhonglin Xie
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
The best characterised oestrogen receptors (ERs) that are responsible for membrane-initiated oestradiol signalling are the classic ERs, ERalpha and ERbeta. When in the nucleus, these proteins are oestradiol activated transcription factors but, when trafficked to the cell membrane, ERalpha and ERbeta rapidly activate protein kinase pathways, alter membrane electrical properties, modulate ion flux and can mediate long-term effects through gene expression. To initiate cell signalling, membrane ERs transactivate metabotropic glutamate receptors (mGluRs) to stimulate Gq signalling through pathways using PKC and calcium. In this review, we discuss the interaction of membrane ERalpha with metabotropic glutamate receptor 1a (mGluR1a) to initiate rapid oestradiol cell signalling and its critical roles in female reproduction: sexual behaviour and oestrogen positive feedback of the luteinising hormone (LH) surge. Although long considered to be regulated by the long-term actions of oestradiol on gene transcription, recent results indicate that membrane oestradiol cell signalling is vital for a full display of sexual receptivity. Similarly, the source of pre-ovulatory progesterone necessary for initiating the LH surge is hypothalamic astrocytes. Oestradiol rapidly amplifies progesterone synthesis through the release of intracellular calcium stores. The ERalpha-mGluR1a interaction is necessary for critical calcium flux. These two examples provide support for the hypothesis that membrane ERs are not themselves G-protein receptors; rather, they use mGluRs to signal.
Collapse
Affiliation(s)
- P Micevych
- Department of Neurobiology, Laboratory of Neuroendocrinology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | | | | |
Collapse
|
35
|
Redig AJ, Sassano A, Majchrzak-Kita B, Katsoulidis E, Liu H, Altman JK, Fish EN, Wickrema A, Platanias LC. Activation of protein kinase C{eta} by type I interferons. J Biol Chem 2009; 284:10301-14. [PMID: 19211565 DOI: 10.1074/jbc.m807254200] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Type I interferons (IFNs) are cytokines with diverse biological properties, including antiviral, growth inhibitory, and immunomodulatory effects. Although several signaling pathways are activated during engagement of the type I IFN receptor and participate in the induction of IFN responses, the mechanisms of generation of specific signals for distinct biological effects remain to be elucidated. We provide evidence that a novel member of the protein kinase C (PKC) family of proteins is rapidly phosphorylated and activated during engagement of the type I IFN receptor. In contrast to other members of the PKC family that are also regulated by IFN receptors, PKCeta does not regulate IFN-inducible transcription of interferon-stimulated genes or generation of antiviral responses. However, its function promotes cell cycle arrest and is essential for the generation of the suppressive effects of IFNalpha on normal and leukemic human myeloid (colony-forming unit-granulocyte macrophage) bone marrow progenitors. Altogether, our studies establish PKCeta as a unique element in IFN signaling that plays a key and essential role in the generation of the regulatory effects of type I IFNs on normal and leukemic hematopoiesis.
Collapse
Affiliation(s)
- Amanda J Redig
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology/Oncology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Role of PKCβ in hepatocellular carcinoma cells migration and invasion in vitro: a potential therapeutic target. Clin Exp Metastasis 2008; 26:189-95. [DOI: 10.1007/s10585-008-9230-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Accepted: 11/26/2008] [Indexed: 02/01/2023]
|
37
|
Shatos MA, Hodges RR, Bair JA, Lashkari K, Dartt DA. Stimulatory role of PKCalpha in extracellular regulated kinase 1/2 pathway in conjunctival goblet cell proliferation. Invest Ophthalmol Vis Sci 2008; 50:1619-25. [PMID: 19074803 DOI: 10.1167/iovs.08-2930] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
PURPOSE To determine whether a constitutively active protein kinase C (PKC)-alpha stimulates rat and human conjunctival goblet cell proliferation through activation of ERK 1/2. METHODS Conjunctivas from rat and human were minced and goblet cells were allowed to grow. Goblet cells were serum starved and incubated with an adenovirus containing a constitutively active form of PKCalpha (Ad-myr-PKCalpha, 1 x 10(7) pfu), EGF (10(-7) M), or both. The location of myrPKCalpha was determined by immunofluorescence microscopy. Cultured goblet cells were preincubated with the PKC inhibitor calphostin C (10(-10)-10(-7) M) or the ERK 1/2 inhibitor U0126 (10(-9)-10(-6) M) before incubation with Ad-myr-PKCalpha. Cell proliferation was measured. RESULTS Transduction of rat goblet cells with Ad-myr-PKCalpha did not change PKC location compared with nontransduced cells. Incubation with Ad-myr-PKCalpha caused an increase in cell proliferation by 2.5+/-0.3-fold, whereas EGF increased proliferation by 2.1+/-0.2-fold. Simultaneous addition of Ad-myr-PKCalpha and EGF did not further increase proliferation. U0126 inhibited Ad-myr-PKCalpha-stimulated proliferation a maximum of 70%. In human goblet cells, incubation with Ad-myr-PKCalpha caused an increase in cell proliferation by 2.3+/-0.3-fold, whereas EGF increased proliferation by 3.1+/-0.4-fold. Simultaneous addition of Ad-myr-PKCalpha and EGF decreased proliferation compared with either compound alone. Ad-myr-PKCalpha caused ERK 1/2 to translocate to the nucleus in rat and human cells, but the translocation was blocked by U0126. CONCLUSIONS Activation of PKCalpha alone by inducing phosphorylation of ERK 1/2 and translocating it to the nucleus is necessary and sufficient to cause conjunctival cell proliferation in rat, and probably human, goblet cells.
Collapse
Affiliation(s)
- Marie A Shatos
- Schepens Eye Research Institute, Boston, Massachusetts 02114, USA
| | | | | | | | | |
Collapse
|
38
|
2-(6-Phenyl-1H-indazol-3-yl)-1H-benzo[d]imidazoles: design and synthesis of a potent and isoform selective PKC-zeta inhibitor. Bioorg Med Chem Lett 2008; 19:908-11. [PMID: 19097791 DOI: 10.1016/j.bmcl.2008.11.105] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 11/24/2008] [Accepted: 11/26/2008] [Indexed: 11/22/2022]
Abstract
The inhibition of PKC-zeta has been proposed to be a potential drug target for immune and inflammatory diseases. A series of 2-(6-phenyl-1H indazol-3-yl)-1H-benzo[d]imidazoles with initial high crossover to CDK-2 has been optimized to afford potent and selective inhibitors of protein kinase c-zeta (PKC-zeta). The determination of the crystal structures of key inhibitor:CDK-2 complexes informed the design and analysis of the series. The most selective and potent analog was identified by variation of the aryl substituent at the 6-position of the indazole template to give a 4-NH(2) derivative. The analog displays good selectivity over other PKC isoforms (alpha, betaII, gamma, delta, epsilon, mu, theta, eta and iota/lambda) and CDK-2, however it displays marginal selectivity against a panel of other kinases (37 profiled).
Collapse
|
39
|
Pino SC, O’Sullivan-Murphy B, Lidstone EA, Thornley TB, Jurczyk A, Urano F, Greiner DL, Mordes JP, Rossini AA, Bortell R. Protein kinase C signaling during T cell activation induces the endoplasmic reticulum stress response. Cell Stress Chaperones 2008; 13:421-34. [PMID: 18418732 PMCID: PMC2673927 DOI: 10.1007/s12192-008-0038-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 02/25/2008] [Accepted: 03/17/2008] [Indexed: 01/27/2023] Open
Abstract
T cell receptor (TCR) ligation (signal one) in the presence of co-stimulation (signal two) results in downstream signals that increase protein production enabling naïve T cells to fully activate and gain effector function. Enhanced production of proteins by a cell requires an increase in endoplasmic reticulum (ER) chaperone expression, which is accomplished through activation of a cellular mechanism known as the ER stress response. The ER stress response is initiated during the cascade of events that occur for the activation of many cells; however, this process has not been comprehensively studied for T cell function. In this study, we used primary T cells and mice circulating TCR transgenic CD8(+) T cells to investigate ER chaperone expression in which TCR signaling was initiated in the presence or absence of co-stimulation. In the presence of both signals, in vitro and in vivo analyses demonstrated induction of the ER stress response, as evidenced by elevated expression of GRP78 and other ER chaperones. Unexpectedly, ER chaperones were also increased in T cells exposed only to signal one, a treatment known to cause T cells to enter the 'nonresponsive' states of anergy and tolerance. Treatment of T cells with an inhibitor to protein kinase C (PKC), a serine/threonine protein kinase found downstream of TCR signaling, indicated PKC is involved in the induction of the ER stress response during the T cell activation process, thus revealing a previously unknown role for this signaling protein in T cells. Collectively, these data suggest that induction of the ER stress response through PKC signaling is an important component for the preparation of a T cell response to antigen.
Collapse
Affiliation(s)
- Steven C. Pino
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | | | - Erich A. Lidstone
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Thomas B. Thornley
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Agata Jurczyk
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Fumihiko Urano
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605 USA
- Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Dale L. Greiner
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - John P. Mordes
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Aldo A. Rossini
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605 USA
- Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Rita Bortell
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605 USA
- Diabetes Division, Suite 218, 373 Plantation Street, Worcester, MA 01605 USA
| |
Collapse
|
40
|
Abstract
The protein kinase C (PKC) family of proteins includes several kinases that share structural homology, but at the same time exhibit substantial functional diversity. There is a significant amount of evidence establishing distinct patterns of expression and function for different PKC isoforms and groups in different leukemias. Although most members of this family promote leukemic cell survival and growth, others exhibit opposing effects and participate in the generation of antileukemic responses. This review summarizes work in this field on the relevance of distinct members of the PKC family in the pathophysiology of myeloid and lymphoid leukemias. The clinical-therapeutic potential of such ongoing work for the treatment of future development of novel approaches for the treatment of different types of leukemias is discussed.
Collapse
Affiliation(s)
- Amanda J Redig
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology/Oncology, Northwestern University Medical School and Lakeside VA Medical Center, Chicago, IL 60611, USA
| | | |
Collapse
|
41
|
Versleijen MWJ, van Esterik JCJ, Roelofs HMJ, van Emst-de Vries SE, Willems PHGM, Wanten GJA. Parenteral medium-chain triglyceride-induced neutrophil activation is not mediated by a Pertussis Toxin sensitive receptor. Clin Nutr 2008; 28:59-64. [PMID: 18952326 DOI: 10.1016/j.clnu.2008.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 08/28/2008] [Accepted: 09/08/2008] [Indexed: 10/21/2022]
Abstract
BACKGROUND & AIMS Lipid-induced immune modulation might contribute to the increased infection rate that is observed in patients using parenteral nutrition. We previously showed that emulsions containing medium-chain triglycerides (LCT/MCTs or pure MCTs), but not pure long-chain triglycerides (LCTs), impair neutrophil functions, modulate cell-signaling and induce neutrophil activation in vitro. It has recently been shown that medium-chain fatty acids are ligands for GPR84, a pertussis toxin (PT)-sensitive G-protein-coupled receptor (GPCR). This finding urged us to investigate whether MCT-induced neutrophil activation is mediated by PT-sensitive GPCRs. METHODS Neutrophils isolated from blood of healthy volunteers were pre-incubated with PT (0.5-1 microg/mL, 1.5 h) and analyzed for the effect of this pre-incubation on LCT/MCT (2.5 mmol/L)-dependent modulation of serum-treated zymosan (STZ)-induced intracellular Ca(2+) mobilization and on LCT/MCT (5 mmol/L)-induced expression of cell surface adhesion (CD11b) and degranulation (CD66b) markers and oxygen radical (ROS) production. RESULTS PT did not inhibit the effects of LCT/MCT on the STZ-induced increase in cytosolic free Ca(2+) concentration. LCT/MCT increased ROS production to 146% of unstimulated cells. However, pre-incubation with PT did not inhibit the LCT/MCT-induced ROS production. Furthermore, the LCT/MCT-induced increase in CD11b and CD66b expression (196% and 235% of unstimulated cells, respectively) was not inhibited by pre-incubation with PT. CONCLUSION LCT/MCT-induced neutrophil activation does not involve the action of a PT-sensitive G-protein-coupled receptor.
Collapse
Affiliation(s)
- Michelle W J Versleijen
- Department of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
42
|
Hashizume H, Kamio N, Nakao S, Matsushima K, Sugiya H. Protein Kinase C Synergistically Stimulates Tumor Necrosis Factor-α–Induced Secretion of Urokinase-Type Plasminogen Activator in Human Dental Pulp Cells. J Physiol Sci 2008; 58:83-6. [DOI: 10.2170/physiolsci.sc013607] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Accepted: 01/07/2008] [Indexed: 11/05/2022]
|