1
|
He X, Zhang S, Zou Z, Gao P, Yang L, Xiang B. Antiviral Effects of Avian Interferon-Stimulated Genes. Animals (Basel) 2024; 14:3062. [PMID: 39518785 PMCID: PMC11545081 DOI: 10.3390/ani14213062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Interferons (IFNs) stimulate the expression of numerous IFN-stimulating genes via the Janus kinase-signal transducers and activators of the transcription (JAK-STAT) signaling pathway, which plays an important role in the host defense against viral infections. In mammals, including humans and mice, a substantial number of IFN-stimulated genes (ISGs) have been identified, and their molecular mechanisms have been elucidated. It is important to note that avian species are phylogenetically distant from mammals, resulting in distinct IFN-induced ISGs that may have different functions. At present, only a limited number of avian ISGs have been identified. In this review, we summarized the identified avian ISGs and their antiviral activities. As gene-editing technology is widely used in avian breeding, the identification of avian ISGs and the elucidation of their molecular mechanism may provide important support for the breeding of avians for disease resistance.
Collapse
Affiliation(s)
- Xingchen He
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (X.H.); (S.Z.); (Z.Z.); (L.Y.)
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Shiyuan Zhang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (X.H.); (S.Z.); (Z.Z.); (L.Y.)
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Ziheng Zou
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (X.H.); (S.Z.); (Z.Z.); (L.Y.)
| | - Pei Gao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453000, China;
| | - Liangyu Yang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (X.H.); (S.Z.); (Z.Z.); (L.Y.)
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Bin Xiang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (X.H.); (S.Z.); (Z.Z.); (L.Y.)
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
2
|
Tian Y, Wen J, Zhang W, Zhang R, Xu X, Jiang Y, Wang X, Man C. CircMYO1B/miR-155 pathway is a common mechanism of stress-induced immunosuppression affecting immune response to three vaccines in chicken. Int Immunopharmacol 2024; 130:111719. [PMID: 38377854 DOI: 10.1016/j.intimp.2024.111719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/09/2024] [Accepted: 02/16/2024] [Indexed: 02/22/2024]
Abstract
Stress-induced immunosuppression (SIIS) can weaken the immune response effect of poultry vaccination, and bring huge hidden dangers and economic losses to the poultry industry. However, the detailed molecular mechanisms are still not fully understood. Unveiling the common mechanism of SIIS affecting the immune response to different vaccines is critical for detecting and minimizing the losses caused by SIIS. This study used glucocorticoid dexamethasone (Dex) to simulate SIIS, and three classic avian vaccines (including avian influenza virus (AIV), Newcastle disease virus (NDV), and infectious bursal disease virus (IBDV)) were used to induce immune responses in chicken. Quantitative real-time PCR (qRT-PCR) revealed the expression characteristics and functions of circMYO1B and miR-155 in the processes of SIIS affecting the immune response to the aforementioned avian vaccines, as well as their targeted regulatory relationship. Subsequent bioinformatics analysis predicted FOS, one of the potential target genes of miR-155. The results showed that circMYO1B/miR-155 pathway served as a key common mechanism by which SIIS affected the immune response to the three vaccines. Both heart and proventriculus appeared to be the crucial tissues for this process, with five days post immunization (dpi) emerging as the primary time of interest. Moreover, mitogen-activated protein kinase (MAPK) signaling system played a key role in modulating the immune response subsequent to SIIS administration. Our findings provide new insights into the immune function of competitive endogenous RNA (ceRNA), which have important function in the detection and treatment of SIIS affecting vaccine immunity.
Collapse
Affiliation(s)
- Yufei Tian
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Jie Wen
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Wei Zhang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Rui Zhang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Xinxin Xu
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Yi Jiang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Xiangnan Wang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Chaolai Man
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China.
| |
Collapse
|
3
|
Lu M, Lee Y, Lillehoj HS. Evolution of developmental and comparative immunology in poultry: The regulators and the regulated. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 138:104525. [PMID: 36058383 DOI: 10.1016/j.dci.2022.104525] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Avian has a unique immune system that evolved in response to environmental pressures in all aspects of innate and adaptive immune responses, including localized and circulating lymphocytes, diversity of immunoglobulin repertoire, and various cytokines and chemokines. All of these attributes make birds an indispensable vertebrate model for studying the fundamental immunological concepts and comparative immunology. However, research on the immune system in birds lags far behind that of humans, mice, and other agricultural animal species, and limited immune tools have hindered the adequate application of birds as disease models for mammalian systems. An in-depth understanding of the avian immune system relies on the detailed studies of various regulated and regulatory mediators, such as cell surface antigens, cytokines, and chemokines. Here, we review current knowledge centered on the roles of avian cell surface antigens, cytokines, chemokines, and beyond. Moreover, we provide an update on recent progress in this rapidly developing field of study with respect to the availability of immune reagents that will facilitate the study of regulatory and regulated components of poultry immunity. The new information on avian immunity and available immune tools will benefit avian researchers and evolutionary biologists in conducting fundamental and applied research.
Collapse
Affiliation(s)
- Mingmin Lu
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| | - Youngsub Lee
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| |
Collapse
|
5
|
Chen S, Zhang W, Zhou Q, Wang A, Sun L, Wang M, Jia R, Zhu D, Liu M, Sun K, Yang Q, Wu Y, Chen X, Cheng A. Cross-species antiviral activity of goose interferon lambda against duck plague virus is related to its positive self-regulatory feedback loop. J Gen Virol 2017; 98:1455-1466. [PMID: 28678686 DOI: 10.1099/jgv.0.000788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Duck plague virus (DPV) is a virus of the Herpesviridae family that leads to acute disease with a high mortality rate in ducks. Control of the disease contributes to the development of poultry breeding. Type III IFN family (IFN-λs) is a novel member of the IFN family, and goose IFN-λ (goIFN-λ) is a newly identified gene whose antiviral function has only been investigated to a limited extent. Here, the cross-species antiviral activity of goIFN-λ against DPV in duck embryo fibroblasts (DEFs) was studied. We found that pre-treatment with goIFN-λ greatly increased the expression of IFN-λ in both heterologous DEFs and homologous goose embryo fibroblasts (GEFs), while differentially inducing IFNα- and IFN-stimulated genes. Additionally, a positive self-regulatory feedback loop of goIFN-λ was blocked by a mouse anti-goIFN-λ polyclonal antibody, which was confirmed in both homologous GEFs and goose peripheral blood mononuclear cells (PBMCs). The suppression of the BAC-DPV-EGFP by goIFN-λ in DEFs was confirmed by fluorescence microscopy, flow cytometry (FCM) analysis, viral copies and titre detection, which can be rescued by mouse anti-goIFN-λ polyclonal antibody incubation. Finally, reporter gene assays indicated that the cross-species antiviral activity of goIFN-λ against BAC-DPV-EGFP is related to its positive self-regulatory feedback loop and subsequent ISG induction. Our data shed light on the fundamental mechanisms of goIFN-λ antiviral function in vitro and extend the considerable range of therapeutic applications in multiple-poultry disease.
Collapse
Affiliation(s)
- Shun Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, PR China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.,Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Wei Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Qin Zhou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Anqi Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Lipei Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Mingshu Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, PR China.,Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Renyong Jia
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, PR China.,Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, PR China.,Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Mafeng Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, PR China.,Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Kunfeng Sun
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, PR China.,Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Qiao Yang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, PR China.,Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Ying Wu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, PR China.,Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Xiaoyue Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, PR China.,Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.,Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, PR China
| |
Collapse
|