1
|
Farhat MH, Shadley JD, Halligan NL, Hall MW, Popova AP, Quasney MW, Dahmer MK. Differences in the Genomic Profiles of Immunoparalyzed and Nonimmunoparalyzed Children With Sepsis: A Pilot Study. Pediatr Crit Care Med 2022; 23:79-88. [PMID: 35119428 PMCID: PMC10993860 DOI: 10.1097/pcc.0000000000002860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Sepsis-induced immunoparalysis represents a pathologic downregulation of leukocyte function shown to be associated with adverse outcomes, although its mechanisms remain poorly understood. Our goal was to compare genome-wide gene expression profiles of immunoparalyzed and nonimmunoparalyzed children with sepsis to identify genes and pathways associated with immunoparalysis. DESIGN Prospective observational study. PATIENTS Twenty-six children with lower respiratory tract infection meeting criteria for sepsis, severe sepsis, or septic shock admitted to the PICU. SETTING Two tertiary care PICUs. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Innate immune function was assayed ex vivo by measuring release of tumor necrosis factor-α from whole blood after incubation with lipopolysaccharide for 4 hours. Immunoparalysis was defined as a tumor necrosis factor-α production capacity less than 200 pg/mL. Ten of the 26 children were immunoparalyzed. There were 17 significant differentially expressed genes when comparing genome-wide gene expression profiles of immunoparalyzed and nonimmunoparalyzed children (false discovery rate < 0.05). Nine genes showed increased expression in immunoparalyzed children (+1.5- to +8.8-fold change). Several of these dampen the immune system. Eight showed decreased expression in immunoparalyzed children (-1.7- to -3.9-fold change), several of which are involved in early regulation and activation of immune function. Functional annotation clustering using differentially expressed genes with p value of less than 0.05 showed three clusters related to immunity with significant enrichment scores (2.2-4.5); the most significant gene ontology terms in these clusters were antigen processing and presentation and negative regulation of interleukin-6 production. Network analysis identified potential protein interactions that may be involved in the development of immunoparalysis in children. CONCLUSIONS In this exploratory analysis, immunoparalyzed children with sepsis showed increased expression of genes that dampen the immune system and decreased expression of genes involved in regulation and activation of the immune system. Analysis also implicated other proteins as potentially having as yet unidentified roles in the development of immunoparalysis.
Collapse
Affiliation(s)
- Mohamed Hani Farhat
- Division of Critical Care Medicine, Department of Pediatrics, University of Michigan, C.S. Mott Children’s Hospital, Ann Arbor, Michigan
| | - Jeffery D. Shadley
- Division of Critical Care Medicine, Department of Pediatrics, University of Michigan, C.S. Mott Children’s Hospital, Ann Arbor, Michigan
| | - Nadine L.N. Halligan
- Division of Critical Care Medicine, Department of Pediatrics, University of Michigan, C.S. Mott Children’s Hospital, Ann Arbor, Michigan
| | - Mark W. Hall
- Division of Critical Care Medicine, Department of Pediatrics, Nationwide Children’s Hospital, Columbus, OH
| | - Antonia P. Popova
- Division of Pulmonology, Department of Pediatrics, University of Michigan, C.S. Mott Children’s Hospital, Ann Arbor, Michigan
| | - Michael W. Quasney
- Division of Critical Care Medicine, Department of Pediatrics, University of Michigan, C.S. Mott Children’s Hospital, Ann Arbor, Michigan
| | - Mary K. Dahmer
- Division of Critical Care Medicine, Department of Pediatrics, University of Michigan, C.S. Mott Children’s Hospital, Ann Arbor, Michigan
| |
Collapse
|
2
|
Jin Z, Zheng E, Sareli C, Kolattukudy PE, Niu J. Monocyte Chemotactic Protein-Induced Protein 1 (MCPIP-1): A Key Player of Host Defense and Immune Regulation. Front Immunol 2021; 12:727861. [PMID: 34659213 PMCID: PMC8519509 DOI: 10.3389/fimmu.2021.727861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/08/2021] [Indexed: 01/14/2023] Open
Abstract
Inflammatory response is a host-protective mechanism against tissue injury or infections, but also has the potential to cause extensive immunopathology and tissue damage, as seen in many diseases, such as cardiovascular diseases, neurodegenerative diseases, metabolic syndrome and many other infectious diseases with public health concerns, such as Coronavirus Disease 2019 (COVID-19), if failure to resolve in a timely manner. Recent studies have uncovered a superfamily of endogenous chemical molecules that tend to resolve inflammatory responses and re-establish homeostasis without causing excessive damage to healthy cells and tissues. Among these, the monocyte chemoattractant protein-induced protein (MCPIP) family consisting of four members (MCPIP-1, -2, -3, and -4) has emerged as a group of evolutionarily conserved molecules participating in the resolution of inflammation. The focus of this review highlights the biological functions of MCPIP-1 (also known as Regnase-1), the best-studied member of this family, in the resolution of inflammatory response. As outlined in this review, MCPIP-1 acts on specific signaling pathways, in particular NFκB, to blunt production of inflammatory mediators, while also acts as an endonuclease controlling the stability of mRNA and microRNA (miRNA), leading to the resolution of inflammation, clearance of virus and dead cells, and promotion of tissue regeneration via its pleiotropic effects. Evidence from transgenic and knock-out mouse models revealed an involvement of MCPIP-1 expression in immune functions and in the physiology of the cardiovascular system, indicating that MCPIP-1 is a key endogenous molecule that governs normal resolution of acute inflammation and infection. In this review, we also discuss the current evidence underlying the roles of other members of the MCPIP family in the regulation of inflammatory processes. Further understanding of the proteins from this family will provide new insights into the identification of novel targets for both host effectors and microbial factors and will lead to new therapeutic treatments for infections and other inflammatory diseases.
Collapse
Affiliation(s)
- Zhuqing Jin
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - En Zheng
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Candice Sareli
- Office of Human Research, Memorial Healthcare System, Hollywood, FL, United States
| | - Pappachan E Kolattukudy
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, United States
| | - Jianli Niu
- Office of Human Research, Memorial Healthcare System, Hollywood, FL, United States.,Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, United States
| |
Collapse
|
3
|
Zhang Y, Zhou J, Wei Z, Dong H, Yang D, Deng Y, Li J, Shi S, Sun Y, Lu H, Yuan J, Ni B, Wu Y, Tian Y, Han C. TTP-mediated regulation of mRNA stability in immune cells contributes to adaptive immunity, immune tolerance and clinical applications. RNA Biol 2021; 18:2150-2156. [PMID: 33866923 DOI: 10.1080/15476286.2021.1917185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Dendritic cells (DCs) form a sentinel network to induce protective immunity against pathogens or self-tolerance. mRNA stability is an important part of the post-transcriptional regulation (PTR) that controls the maturation and function of DCs. In this review, we summarize the effects of TTP-mediated regulation of mRNA stability in DCs, focusing on DC maturation and antigen presentation, T cell activation and differentiation, immune tolerance and inflammation. We also discuss the potential DC-based immune treatment for HIV+ patients through regulation of mRNA stability. This review proposes the regulation of mRNA stability as a novel immune therapy for various inflammatory diseases, such as arthritis and dermatitis.
Collapse
Affiliation(s)
- Yiwei Zhang
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Jian Zhou
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Zhiyuan Wei
- Department of Orthopedics, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Hui Dong
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Di Yang
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Yuanyu Deng
- School of Basic Medicine, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Jiahui Li
- School of Basic Medicine, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Saiyu Shi
- School of Basic Medicine, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Yi Sun
- The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Huimin Lu
- The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Jizhao Yuan
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Bing Ni
- Department of Pathophysiology, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, PR China.,Department of Orthopedics, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Yi Tian
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, PR China.,School of Basic Medicine, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Chao Han
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, PR China
| |
Collapse
|
4
|
Uehata T, Takeuchi O. RNA Recognition and Immunity-Innate Immune Sensing and Its Posttranscriptional Regulation Mechanisms. Cells 2020; 9:cells9071701. [PMID: 32708595 PMCID: PMC7407594 DOI: 10.3390/cells9071701] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/13/2022] Open
Abstract
RNA acts as an immunostimulatory molecule in the innate immune system to activate nucleic acid sensors. It functions as an intermediate, conveying genetic information to control inflammatory responses. A key mechanism for RNA sensing is discriminating self from non-self nucleic acids to initiate antiviral responses reliably, including the expression of type I interferon (IFN) and IFN-stimulated genes. Another important aspect of the RNA-mediated inflammatory response is posttranscriptional regulation of gene expression, where RNA-binding proteins (RBPs) have essential roles in various RNA metabolisms, including splicing, nuclear export, modification, and translation and mRNA degradation. Recent evidence suggests that the control of mRNA stability is closely involved in signal transduction and orchestrates immune responses. In this study, we review the current understanding of how RNA is sensed by host RNA sensing machinery and discuss self/non-self-discrimination in innate immunity focusing on mammalian species. Finally, we discuss how posttranscriptional regulation by RBPs shape immune reactions.
Collapse
|
5
|
de Azevedo SSD, Ribeiro-Alves M, Côrtes FH, Delatorre E, Spangenberg L, Naya H, Seito LN, Hoagland B, Grinsztejn B, Veloso VG, Morgado MG, Souza TML, Bello G. Increased expression of CDKN1A/p21 in HIV-1 controllers is correlated with upregulation of ZC3H12A/MCPIP1. Retrovirology 2020; 17:18. [PMID: 32615986 PMCID: PMC7333275 DOI: 10.1186/s12977-020-00522-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 06/02/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Some multifunctional cellular proteins, as the monocyte chemotactic protein-induced protein 1 (ZC3H12A/MCPIP1) and the cyclin-dependent kinase inhibitor CDKN1A/p21, are able to modulate the cellular susceptibility to the human immunodeficiency virus type 1 (HIV-1). Several studies showed that CDKN1A/p21 is expressed at high levels ex vivo in cells from individuals who naturally control HIV-1 replication (HIC) and a recent study supports a coordinate regulation of ZC3H12A/MCPIP1 and CDKN1A/p21 transcripts in a model of renal carcinoma cells. Here, we explored the potential associations between mRNA expression of ZC3H12A/MCPIP1 and CDKN1A/p21 in HIC sustaining undetectable (elite controllers-EC) or low (viremic controllers-VC) viral loads. RESULTS We found a selective upregulation of ZC3H12A/MCPIP1 and CDKN1A/p21 mRNA levels in PBMC from HIC compared with both ART-suppressed and HIV-negative control groups (P≤ 0.02) and higher MCPIP1 and p21 proteins levels in HIC than in HIV-1 negative subjects. There was a moderate positive correlation (r ≥ 0.57; P ≤ 0.014) between expressions of both transcripts in HIC and in HIC combined with control groups. We found positive correlations between the mRNA level of CDKN1A/p21 with activated CD4+ T cells levels in HIC (r ≥ 0.53; P ≤ 0.017) and between the mRNA levels of both CDKN1A/p21 (r = 0.74; P = 0.005) and ZC3H12A/MCPIP1 (r = 0.58; P = 0.040) with plasmatic levels of sCD14 in EC. Reanalysis of published transcriptomic data confirmed the positive association between ZC3H12A/MCPIP1 and CDKN1A/p21 mRNA levels in CD4+ T cells and monocytes from disparate cohorts of HIC and other HIV-positive control groups. CONCLUSIONS These data show for the first time the simultaneous upregulation of ZC3H12A/MCPIP1 and CDKN1A/p21 transcripts in the setting of natural suppression of HIV-1 replication in vivo and the positive correlation of the expression of these cellular factors in disparate cohorts of HIV-positive individuals. The existence of a common regulatory pathway connecting ZC3H12A/MCPIP1 and CDKN1A/p21 could have a synergistic effect on HIV-1 replication control and pharmacological manipulation of these multifunctional host factors may open novel therapeutic perspectives to prevent HIV-1 replication and disease progression.
Collapse
Affiliation(s)
- Suwellen S. D. de Azevedo
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz–IOC, FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ 21045-900 Brazil
| | - Marcelo Ribeiro-Alves
- Laboratório de Pesquisa Clínica em DST-AIDS, Instituto Nacional de Infectologia Evandro Chagas-INI, FIOCRUZ, Rio de Janeiro, Brazil
| | - Fernanda H. Côrtes
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz–IOC, FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ 21045-900 Brazil
| | - Edson Delatorre
- Departamento de Biologia, Centro de Ciências Exatas, Naturais e da Saúde, Universidade Federal do Espírito Santo, Alegre, Brazil
| | - Lucia Spangenberg
- Unidad de Bioinformática, Institut Pasteur Montevideo, Montevideo, Uruguay
- Departamento de Informática y Ciencias de la Computación, Facultad de Ingeniería y Tecnologías, Universidad Católica del Uruguay, Montevideo, Uruguay
| | - Hugo Naya
- Unidad de Bioinformática, Institut Pasteur Montevideo, Montevideo, Uruguay
- Departamento de Producción Animal y Pasturas, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Leonardo N. Seito
- Laboratório de Farmacologia Aplicada, Instituto de Tecnologia em Fármacos–Farmanguinhos FIOCRUZ, Rio de Janeiro, Brazil
| | - Brenda Hoagland
- Laboratório de Pesquisa Clínica em DST-AIDS, Instituto Nacional de Infectologia Evandro Chagas-INI, FIOCRUZ, Rio de Janeiro, Brazil
| | - Beatriz Grinsztejn
- Laboratório de Pesquisa Clínica em DST-AIDS, Instituto Nacional de Infectologia Evandro Chagas-INI, FIOCRUZ, Rio de Janeiro, Brazil
| | - Valdilea G. Veloso
- Laboratório de Pesquisa Clínica em DST-AIDS, Instituto Nacional de Infectologia Evandro Chagas-INI, FIOCRUZ, Rio de Janeiro, Brazil
| | - Mariza G. Morgado
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz–IOC, FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ 21045-900 Brazil
| | - Thiago Moreno L. Souza
- National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDPN), FIOCRUZ, Center for Technological Development in Health-CDTS, Rio de Janeiro, Brazil
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz–IOC, FIOCRUZ, Rio de Janeiro, Brazil
| | - Gonzalo Bello
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz–IOC, FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ 21045-900 Brazil
| |
Collapse
|
6
|
Wawro M, Wawro K, Kochan J, Solecka A, Sowinska W, Lichawska-Cieslar A, Jura J, Kasza A. ZC3H12B/MCPIP2, a new active member of the ZC3H12 family. RNA (NEW YORK, N.Y.) 2019; 25:840-856. [PMID: 30988100 PMCID: PMC6573786 DOI: 10.1261/rna.071381.119] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 04/12/2019] [Indexed: 06/09/2023]
Abstract
ZC3H12B is the most enigmatic member of the ZC3H12 protein family. The founding member of this family, Regnase-1/MCPIP1/ZC3H12A, is a well-known modulator of inflammation and is involved in the degradation of inflammatory mRNAs. In this study, for the first time, we characterized the properties of the ZC3H12B protein. We show that the biological role of ZC3H12B depends on an intact NYN/PIN RNase domain. Using RNA immunoprecipitation, experiments utilizing actinomycin D and ELISA, we show that ZC3H12B binds interleukin-6 (IL-6) mRNA in vivo, regulates its turnover, and results in reduced production of IL-6 protein upon stimulation with IL-1β. We verified that regulation of IL-6 mRNA stability occurs via interaction of ZC3H12B with the stem-loop structure present in the IL-6 3'UTR. The IL-6 transcript is not the only target of ZC3H12B. ZC3H12B also interacts with other known substrates of Regnase-1 and ZC3H12D, such as the 3'UTRs of IER3 and Regnase-1, and binds IER3 mRNA in vivo. Using immunofluorescence, we examined the localization of ZC3H12B within the cell. ZC3H12B forms small, granule-like structures in the cytoplasm that are characteristic of proteins involved in mRNA turnover. The overexpression of ZC3H12B inhibits proliferation by stalling the cell cycle in the G2 phase. This effect of ZC3H12B is also NYN/PIN dependent. The analysis of the ZC3H12B mRNA level reveals its highest expression in the human brain and the neuroblastoma cell line SH-SY5Y, although the factors regulating its expression remain elusive. Down-regulation of ZC3H12B in SH-SY5Y cells by specific shRNAs results in up-regulation of ZC3H12B-target mRNAs.
Collapse
Affiliation(s)
- Mateusz Wawro
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow 30-387, Poland
| | - Karolina Wawro
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow 30-387, Poland
| | - Jakub Kochan
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow 30-387, Poland
| | - Aleksandra Solecka
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow 30-387, Poland
| | - Weronika Sowinska
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow 30-387, Poland
| | - Agata Lichawska-Cieslar
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow 30-387, Poland
| | - Jolanta Jura
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow 30-387, Poland
| | - Aneta Kasza
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow 30-387, Poland
| |
Collapse
|
7
|
Heck AM, Wilusz J. The Interplay between the RNA Decay and Translation Machinery in Eukaryotes. Cold Spring Harb Perspect Biol 2018; 10:a032839. [PMID: 29311343 PMCID: PMC5932591 DOI: 10.1101/cshperspect.a032839] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
RNA decay plays a major role in regulating gene expression and is tightly networked with other aspects of gene expression to effectively coordinate post-transcriptional regulation. The goal of this work is to provide an overview of the major factors and pathways of general messenger RNA (mRNA) decay in eukaryotic cells, and then discuss the effective interplay of this cytoplasmic process with the protein synthesis machinery. Given the transcript-specific and fluid nature of mRNA stability in response to changing cellular conditions, understanding the fundamental networking between RNA decay and translation will provide a foundation for a complete mechanistic understanding of this important aspect of cell biology.
Collapse
Affiliation(s)
- Adam M Heck
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80525
- Program in Cell & Molecular Biology, Colorado State University, Fort Collins, Colorado 80525
| | - Jeffrey Wilusz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80525
- Program in Cell & Molecular Biology, Colorado State University, Fort Collins, Colorado 80525
| |
Collapse
|
8
|
MINO T, TAKEUCHI O. Post-transcriptional regulation of immune responses by RNA binding proteins. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2018; 94:248-258. [PMID: 29887569 PMCID: PMC6085518 DOI: 10.2183/pjab.94.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Cytokines are critical mediators of inflammation and host immune defense. Cytokine production is regulated at both transcriptional and post-transcriptional levels. Post-transcriptional damping of inflammatory mRNAs is mediated by a set of RNA binding proteins (RBPs) interacting with cis-elements, such as AU-rich elements (ARE) and stem-loop structures. Whereas ARE-binding proteins such as tristetraprolin and a stem-loop recognizing protein, Roquin, downregulate cytokine mRNA abundance by recruiting a CCR4-NOT deadenylase complex, another stem-loop RBP, Regnase-1, acts as an endoribonuclease, directly degrading target cytokine mRNAs. These RBPs control translation-active or -inactive mRNAs in distinct intracellular locations. The presence of various RBPs regulating mRNAs in distinct locations enables elaborate control of cytokines under inflammatory conditions. Dysregulation of cytokine mRNA decay leads to pathologies such as the development of autoimmune diseases or impaired activation of immune responses. Here we review current knowledge about the post-transcriptional regulation of immune responses by RBPs and the importance of their alteration during inflammatory pathology and autoimmunity.
Collapse
Affiliation(s)
- Takashi MINO
- Laboratory of Infection and Prevention, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Osamu TAKEUCHI
- Laboratory of Infection and Prevention, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Correspondence should be addressed: O. Takeuchi, Laboratory of Infection and Prevention, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan (e-mail: )
| |
Collapse
|