1
|
Wang Q, Sun W, Zhao J, Tong L, Li B. Development and validation of a nomogram for the estimation of the prognosis of patients presenting with a febrile seizure. BMC Pediatr 2024; 24:655. [PMID: 39395948 PMCID: PMC11470667 DOI: 10.1186/s12887-024-05132-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024] Open
Abstract
BACKGROUND Febrile seizures constitute a prevalent emergency in early childhood. Previous studies indicated that certain febrile seizures in children may progress to epilepsy, exerting a substantial impact on children's health and developmental trajectory. The objective of this study was to formulate a predictive nomogram to assess the likelihood of transitioning from febrile seizures to epilepsy in pediatric patients, thereby facilitating informed decisions regarding medical interventions for febrile seizures. METHODS A total of 306 patients were enrolled and categorized into training (70%) and test (30%) cohorts. Clinical characteristics were subjected to comparison utilizing chi-squared and t tests. Multivariate logistic regression was employed to identify significant factors for predicting the risk of transitioning from febrile seizures to epilepsy, leading to the development of a nomogram. The nomogram's performance was assessed through receiver operating characteristic curves, calibration, and decision curve analysis. RESULTS Predictive factors associated with the transition to epilepsy encompassed lower Na, elevated RDW, IL-6, and increased background slow rhythm and epileptiform discharges in EEG. The nomogram, incorporating five factors, exhibited commendable predictive value (AUC train = 0.812, AUC test = 0.791) for assessing the risk of transitioning from febrile seizures to epilepsy. Calibration analyses confirmed reliability, and decision curve analysis underscored its clinical utility. CONCLUSIONS Lower Na, elevated RDW, IL-6, background slow rhythm, and epileptiform discharges are associated with the risk of transitioning from febrile seizures to epilepsy. The nomogram stands as a valuable tool for predicting this risk, aiding in the strategic implementation of medical interventions to enhance outcomes for patients with febrile seizures.
Collapse
Affiliation(s)
- Qingran Wang
- Department of Pediatrics, Qilu Hospital of Shandong University, No.107 West Wenhua Road, Jinan, Shandong Province, 250012, China
- Department of Pediatrics, Qilu Hospital Dezhou Hospital of Shandong University, No.1166 Dongfang Hongxi Road, Dezhou City, Shandong Province, 253000, China
| | - Weiling Sun
- Department of Pediatrics, Qilu Hospital Dezhou Hospital of Shandong University, No.1166 Dongfang Hongxi Road, Dezhou City, Shandong Province, 253000, China
| | - Jinyan Zhao
- Department of Pediatrics, Qilu Hospital Dezhou Hospital of Shandong University, No.1166 Dongfang Hongxi Road, Dezhou City, Shandong Province, 253000, China
| | - Lili Tong
- Department of Pediatrics, Qilu Hospital of Shandong University, No.107 West Wenhua Road, Jinan, Shandong Province, 250012, China
| | - Baomin Li
- Department of Pediatrics, Qilu Hospital of Shandong University, No.107 West Wenhua Road, Jinan, Shandong Province, 250012, China.
| |
Collapse
|
2
|
Wang Q, Lin Z, Yao C, Liu J, Chen J, Diao L. Meta-analysis of MMP-9 levels in the serum of patients with epilepsy. Front Neurosci 2024; 18:1296876. [PMID: 38449733 PMCID: PMC10914997 DOI: 10.3389/fnins.2024.1296876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/06/2024] [Indexed: 03/08/2024] Open
Abstract
Background Epilepsy's pathogenesis and progression are significantly influenced by neuroinflammation, blood-brain barrier function, and synaptic remodeling function. Matrix metalloproteinase 9 (MMP-9), as a critical factor, may contribute to the development of epilepsy through one or more of the above-mentioned pathways. This study aims to evaluate and quantify the correlation between MMP-9 levels and epilepsy. Methods We conducted a comprehensive search of Embase, Web of Science, PubMed, Cochrane Library, WanFang DATA, VIP, and the CNKI to identify studies that investigate the potential association between MMP-9 and epilepsy. The data were independently extracted by two researchers and assessed for quality using the Cochrane Collaboration tool. The extracted data were analyzed using Stata 15 and Review Manager 5.4. The study protocol was registered prospectively at PROSPERO, ID: CRD42023468493. Results Thirteen studies with a total of 756 patients and 611 matched controls met the inclusion criteria. Eight of these studies reported total serum MMP-9 levels, and the other five studies were used for a further subgroup analysis. The meta-analysis indicated that the serum MMP-9 level was higher in epilepsy patients (SMD = 4.18, 95% confidence interval = 2.18-6.17, p < 0.00001) compared with that in the control group. Publication bias was not detected according to Begg's test. The subgroup analysis of country indicated that the epilepsy patients in China, Poland, and Egypt had higher levels of serum MMP-9 than the control group, with the increase being more pronounced in Egypt. The subgroup analysis of the age category demonstrated that the serum MMP-9 levels of the adult patients with epilepsy were significantly higher than those of the matched controls. However, the serum MMP-9 levels did not significantly differ in children with epilepsy. The subgroup analysis of the seizure types demonstrated substantial difference in the MMP-9 levels between patients of seizure-free epilepsy (patients who have been seizure-free for at least 7 days) and the control group. Meanwhile, the serum MMP-9 level in patients with epileptic seizures was significantly higher than that in the control group. The subgroup analysis based on seizure duration in patients showed that the serum MMP-9 levels at 1-3, 24, and 72 h after seizure did not exhibit significant differences between female and male patients with epilepsy when compared with the control group. The serum MMP-9 levels at 1-3 and 24 h were significantly higher than those of the matched controls. Nevertheless, the serum MMP-9 level at 72 h was not significantly different from that in the control group. Conclusion This meta-analysis presents the first comprehensive summary of the connection between serum MMP-9 level and epilepsy. The MMP-9 levels in epilepsy patients are elevated. Large-scale studies with a high level of evidence are necessary to determine the exact relationship between MMP-9 and epilepsy.
Collapse
Affiliation(s)
- Qin Wang
- Graduate School of First Clinical Medicine College, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi, Nanning, China
| | - Zehua Lin
- Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chunyuan Yao
- Graduate School of First Clinical Medicine College, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi, Nanning, China
| | - Jinwen Liu
- Graduate School of First Clinical Medicine College, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi, Nanning, China
| | - Jiangwei Chen
- Graduate School of First Clinical Medicine College, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi, Nanning, China
| | - Limei Diao
- Graduate School of First Clinical Medicine College, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi, Nanning, China
| |
Collapse
|
3
|
Mahon EK, Williams TL, Alves L. Serum C-reactive protein concentrations in dogs with structural and idiopathic epilepsy. Vet Rec 2023; 193:e3211. [PMID: 37503700 DOI: 10.1002/vetr.3211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/24/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND C-reactive protein (CRP) is an acute-phase protein produced by the liver during systemic inflammation. In humans, some epilepsies are associated with increased serum CRP (sCRP) concentrations, but this has yet to be proven in veterinary studies. Dogs with structural epilepsy (SE) and normal interictal neurological examination are hard to distinguish from dogs with idiopathic epilepsy (IE) without the use of advanced imaging. METHODS The study included eight dogs with SE and 12 dogs with IE from a referral hospital population. This was a retrospective observational cohort study. The Mann-Whitney test was used to compare the sCRP concentrations within 24 hours of the last epileptic seizure between dogs with SE or IE. RESULTS Dogs with SE had higher sCRP concentrations than dogs with IE (8.9 [range <2.2-53.2] mg/L vs. <2.2 [range <2.2-6.9] mg/L; p = 0.043). Five of the eight (62%) dogs with SE had an sCRP concentration above the reference interval, compared with none of the 12 dogs with IE. LIMITATIONS The small sample size was the major limitation of this study. Other inflammatory causes were also not exclusively ruled out, although further clinical investigations were not indicated. CONCLUSIONS This study found that sCRP concentrations were higher in this cohort of dogs with SE than in those with IE. Further studies with larger cohorts of dogs are warranted to validate if sCRP can be used as an additional biomarker for SE.
Collapse
Affiliation(s)
| | - Tim L Williams
- The Queen's Veterinary School Hospital, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Lisa Alves
- The Queen's Veterinary School Hospital, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
4
|
Chi X, Lu J, Guo Z, Wang J, Liu G, Jin Z, Wang Y, Zhang Q, Sun T, Ji N, Zhang Y. Susceptibility to preoperative seizures in glioma patients with elevated homocysteine levels. Epilepsia Open 2023; 8:1350-1361. [PMID: 37491869 PMCID: PMC10690701 DOI: 10.1002/epi4.12797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/24/2023] [Indexed: 07/27/2023] Open
Abstract
OBJECTIVE Seizures are a common clinical presentation in patients with glioma and substantially impact patients' quality of life. Hyperhomocysteinemia is defined as abnormally high serum levels of homocysteine (Hcy) and is reportedly linked to susceptibility to various nervous system diseases. However, it remains unclear whether and how hyperhomocysteinemia and its associated genetic polymorphisms promote seizures in glioma patients. METHODS We retrospectively reviewed all medical data from 127 patients with malignant gliomas, who underwent initial tumor resection by our team between July 2019 and June 2021 and had preoperative measurements of serum Hcy levels. According to whether they had at least one seizure before surgery, they were divided into the seizure and nonseizure groups. We also detected polymorphisms in the methylenetetrahydrofolate reductase (MTHFR) gene and measured intratumoral Hcy levels in these patients. RESULTS Hyperhomocysteinemia was a susceptibility factor for preoperative seizures in glioma patients according to both univariate analyses (P < 0.001) and multivariate logistic regression analyses (OR 1.239, 95% CI 1.062-1.445, P = 0.007). Patients with the MTHFR C677T variant exhibited elevated serum Hcy levels (P = 0.027) and an increased prevalence of preoperative seizures (P = 0.019). Intratumoral Hcy levels were positively correlated with serum Hcy levels (R = 0.231, P = 0.046) and were elevated in patients with hyperhomocysteinemia (P = 0.031), the MTHFR C677T variant (P = 0.002) and preoperative seizures (P = 0.003). High intratumoral Hcy levels, rather than hyperhomocysteinemia or the MTHFR C677T variant, emerged as an independent risk factor for preoperative seizures (OR 1.303, 95% CI 1.015-1.673, P = 0.038). Furthermore, the effects of hyperhomocysteinemia on epileptic susceptibility were reduced to nonsignificance when intratumoral Hcy was controlled to the same level between groups. SIGNIFICANCE Glioma patients with hyperhomocysteinemia and the MTHFR C677T variant were susceptible to preoperative seizures, suggesting their potential as biomarkers for the management of seizures in glioma patients. The elevation of intratumoral Hcy is a possible mechanism underlying this susceptibility.
Collapse
Affiliation(s)
- Xiaohan Chi
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Jingjing Lu
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Zhengguang Guo
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic MedicinePeking Union Medical CollegeBeijingChina
| | - Junmei Wang
- Department of NeuropathologyBeijing Neurosurgical InstituteBeijingChina
| | - Gaifen Liu
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Zeping Jin
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Yi Wang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Qianhe Zhang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Tai Sun
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Nan Ji
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Yang Zhang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| |
Collapse
|
5
|
Mouliou DS. C-Reactive Protein: Pathophysiology, Diagnosis, False Test Results and a Novel Diagnostic Algorithm for Clinicians. Diseases 2023; 11:132. [PMID: 37873776 PMCID: PMC10594506 DOI: 10.3390/diseases11040132] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/25/2023] Open
Abstract
The current literature provides a body of evidence on C-Reactive Protein (CRP) and its potential role in inflammation. However, most pieces of evidence are sparse and controversial. This critical state-of-the-art monography provides all the crucial data on the potential biochemical properties of the protein, along with further evidence on its potential pathobiology, both for its pentameric and monomeric forms, including information for its ligands as well as the possible function of autoantibodies against the protein. Furthermore, the current evidence on its potential utility as a biomarker of various diseases is presented, of all cardiovascular, respiratory, hepatobiliary, gastrointestinal, pancreatic, renal, gynecological, andrological, dental, oral, otorhinolaryngological, ophthalmological, dermatological, musculoskeletal, neurological, mental, splenic, thyroid conditions, as well as infections, autoimmune-supposed conditions and neoplasms, including other possible factors that have been linked with elevated concentrations of that protein. Moreover, data on molecular diagnostics on CRP are discussed, and possible etiologies of false test results are highlighted. Additionally, this review evaluates all current pieces of evidence on CRP and systemic inflammation, and highlights future goals. Finally, a novel diagnostic algorithm to carefully assess the CRP level for a precise diagnosis of a medical condition is illustrated.
Collapse
|
6
|
Cheng YY, Feng XZ, Zhan T, An QQ, Han GC, Chen Z, Kraatz HB. A facile indole probe for ultrasensitive immunosensor fabrication toward C-reactive protein sensing. Talanta 2023; 262:124696. [PMID: 37244246 DOI: 10.1016/j.talanta.2023.124696] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/15/2023] [Accepted: 05/20/2023] [Indexed: 05/29/2023]
Abstract
C-reactive protein (CRP) is a protein biomarker for acute phase response. Herein, we fabricate a highly sensitive electrochemical immunosensor for CRP on a screen-printed carbon electrode (SPCE) with indole as a novel electrochemical probe and Au nanoparticles for signal amplification. Amongst, indole appeared as transparent nanofilms on the electrode surface, and underwent a one-electron and one-proton transfer to form oxindole during the oxidation process. Upon optimization of experimental conditions, a logarithmic correlation between CRP concentration (0.0001-100 μg∙mL-1) and response current was revealed with a detection limit of 0.03 ng∙mL-1 and a sensitivity of 5.7055 μA∙μg-1∙mL∙cm-2. The sensor exhibited exceptionally distinction selectivity, reproducibility and stability of the electrochemical immunosensor studied. The recovery rate of CRP in human serum samples determined by the standard addition method, ranged between 98.2-102.2%. Overall, the developed immunosensor is promising, and has the potential for CRP detection in real human serum samples.
Collapse
Affiliation(s)
- Yun-Yun Cheng
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, PR China
| | - Xiao-Zhen Feng
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, PR China
| | - Tao Zhan
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, PR China
| | - Qi-Qi An
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, PR China
| | - Guo-Cheng Han
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, PR China.
| | - Zhencheng Chen
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, PR China.
| | - Heinz-Bernhard Kraatz
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada.
| |
Collapse
|
7
|
Stredny C, Rotenberg A, Leviton A, Loddenkemper T. Systemic inflammation as a biomarker of seizure propensity and a target for treatment to reduce seizure propensity. Epilepsia Open 2023; 8:221-234. [PMID: 36524286 PMCID: PMC9978091 DOI: 10.1002/epi4.12684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
People with diabetes can wear a device that measures blood glucose and delivers just the amount of insulin needed to return the glucose level to within bounds. Currently, people with epilepsy do not have access to an equivalent wearable device that measures a systemic indicator of an impending seizure and delivers a rapidly acting medication or other intervention (e.g., an electrical stimulus) to terminate or prevent a seizure. Given that seizure susceptibility is reliably increased in systemic inflammatory states, we propose a novel closed-loop device where release of a fast-acting therapy is governed by sensors that quantify the magnitude of systemic inflammation. Here, we review the evidence that patients with epilepsy have raised levels of systemic indicators of inflammation than controls, and that some anti-inflammatory drugs have reduced seizure occurrence in animals and humans. We then consider the options of what might be incorporated into a responsive anti-seizure system.
Collapse
Affiliation(s)
- Coral Stredny
- Division of Epilepsy and Clinical Neurophysiology, Department of NeurologyBoston Children's HospitalBostonMassachusettsUSA
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Alexander Rotenberg
- Division of Epilepsy and Clinical Neurophysiology, Department of NeurologyBoston Children's HospitalBostonMassachusettsUSA
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Alan Leviton
- Division of Epilepsy and Clinical Neurophysiology, Department of NeurologyBoston Children's HospitalBostonMassachusettsUSA
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Tobias Loddenkemper
- Division of Epilepsy and Clinical Neurophysiology, Department of NeurologyBoston Children's HospitalBostonMassachusettsUSA
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
8
|
Cudna A, Bronisz E, Jopowicz A, Kurkowska-Jastrzębska I. Changes in serum blood-brain barrier markers after bilateral tonic-clonic seizures. Seizure 2023; 106:129-137. [PMID: 36841062 DOI: 10.1016/j.seizure.2023.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023] Open
Abstract
OBJECTIVE Seizures have been shown to increase blood-brain barrier (BBB) permeability, yet the role of this phenomenon is not fully understood. Additionally, dysfunction of the BBB leads to initiation and propagation of seizures in animal models. To demonstrate the increased permeability of the BBB in time, we investigated changes of the serum levels of BBB markers in patients with epilepsy after bilateral tonic-clonic seizures. We chose markers that might reflect endothelial activation (ICAM-1, selectins), BBB leakage (MMP-9, S100B) and mechanisms of BBB restoration (TIMP-1, thrombomodulin -TM). METHODS We enrolled 50 consecutive patients hospitalised after bilateral tonic-clonic seizures who agreed to take part in the study and 50 participants with no history of epilepsy. Serum levels of selected markers were measured by ELISA at 1-3, 24, and 72 hours after seizures and one time in the control group. RESULTS We found increased levels of S100B, ICAM-1, MMP-9 and P-selectin at 1-3 and 24 hours after seizures and TIMP-1 and TM at 24 and 72 hours after seizures as compared to the control group. The level of E-selectin was decreased at 72 hours after seizures. CONCLUSIONS Our findings suggest early activation of endothelium and increased BBB permeability after seizures. While we are aware of the limitations due to the non-specificity of the tested proteins, our results might indicate the presence of prolonged BBB impairment due to seizure activity.
Collapse
Affiliation(s)
- Agnieszka Cudna
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Elżbieta Bronisz
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Anna Jopowicz
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | | |
Collapse
|
9
|
Gao H, Li J, Li Q, Lin Y. Identification of hub genes significantly linked to subarachnoid hemorrhage and epilepsy via bioinformatics analysis. Front Neurol 2023; 14:1061860. [PMID: 36741285 PMCID: PMC9893862 DOI: 10.3389/fneur.2023.1061860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/02/2023] [Indexed: 01/20/2023] Open
Abstract
Background Although epilepsy has been linked to subarachnoid hemorrhage (SAH), the underlying mechanism has not been fully elucidated. This study aimed to further explore the potential mechanisms in epilepsy and SAH through genes. Methods Gene expression profiles for subarachnoid hemorrhage (GSE36791) and epilepsy (GSE143272) were downloaded from the Gene Expression Omnibus (GEO) database. Differential expression analysis was performed to identify the common differentially expressed genes (DEGs) to epilepsy and SAH, which were further analyzed by functional enrichment analysis. Single-sample gene set enrichment analysis (ssGSEA) and weighted correlation network analysis (WGCNA) were used to identify common module genes related to the infiltration of immune cells in epilepsy and SAH. Hub module genes were identified using a protein-protein interaction (PPI) network. Finally, the most relevant genes were obtained by taking the intersection points between the DEGs and hub module genes. We performed validation by retrospectively analyzing the RT-PCR levels of the most relevant genes in patients with pure SAH and patients with SAH complicated with epilepsy. Our experiments verified that the SAH and SAH+epilepsy groups were significantly different from the normal control group. In addition, significant differences were observed between the SAH and SAH+epilepsy groups. Results In total, 159 common DEGs-85 downregulated genes and 74 upregulated genes-were identified. Functional analysis emphasized that the immune response was a common feature to epilepsy and SAH. The results of ssGSEA and WGCNA revealed changes in immunocyte recruitment and the related module genes. Finally, MMP9 and C3aR1 were identified as hub genes, and RT-PCR confirmed that the expression levels of the hub genes were higher in epilepsy and SAH samples than in normal samples. Conclusions Our study revealed the pathogenesis of SAH complicated with epilepsy and identified hub genes that might provide new ideas for further mechanistic studies.
Collapse
Affiliation(s)
- Hong Gao
- Department of Neurosurgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China,Department of Neurosurgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian, China
| | - Jie Li
- Department of Medical Intensive Care Unit, Tongji Medical College, Maternal and Child Health Hospital of Hubei Province, Hua Zhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiuping Li
- Department of Neurosurgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian, China
| | - Yuanxiang Lin
- Department of Neurosurgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China,*Correspondence: Yuanxiang Lin ✉
| |
Collapse
|
10
|
Bronisz E, Cudna A, Wierzbicka A, Kurkowska-Jastrzębska I. Blood-Brain Barrier-Associated Proteins Are Elevated in Serum of Epilepsy Patients. Cells 2023; 12:cells12030368. [PMID: 36766708 PMCID: PMC9913812 DOI: 10.3390/cells12030368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/08/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Blood-brain barrier (BBB) dysfunction emerges as one of the mechanisms underlying the induction of seizures and epileptogenesis. There is growing evidence that seizures also affect BBB, yet only scarce data is available regarding serum levels of BBB-associated proteins in chronic epilepsy. In this study, we aimed to assess serum levels of molecules associated with BBB in patients with epilepsy in the interictal period. Serum levels of MMP-9, MMP-2, TIMP-1, TIMP-2, S100B, CCL-2, ICAM-1, P-selectin, and TSP-2 were examined in a group of 100 patients who were seizure-free for a minimum of seven days and analyzed by ELISA. The results were compared with an age- and sex-matched control group. Serum levels of MMP-9, MMP-2, TIMP-1, TIMP-2 and S100B were higher in patients with epilepsy in comparison to control group (p < 0.0001; <0.0001; 0.001; <0.0001; <0.0001, respectively). Levels of CCL-2, ICAM-1, P-selectin and TSP-2 did not differ between the two groups. Serum levels of MMP-9, MMP-2, TIMP-1, TIMP-2 and S100B are elevated in patients with epilepsy in the interictal period, which suggests chronic processes of BBB disruption and restoration. The pathological process initiating epilepsy, in addition to seizures, is probably the factor contributing to the elevation of serum levels of the examined molecules.
Collapse
Affiliation(s)
- Elżbieta Bronisz
- Second Department of Neurology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
- Correspondence:
| | - Agnieszka Cudna
- Second Department of Neurology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| | - Aleksandra Wierzbicka
- Sleep Disorders Center, Department of Clinical Neurophysiology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| | - Iwona Kurkowska-Jastrzębska
- Sleep Disorders Center, Department of Clinical Neurophysiology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| |
Collapse
|
11
|
Wang L, Duan C, Wang R, Chen L, Wang Y. Inflammation-related genes and immune infiltration landscape identified in kainite-induced temporal lobe epilepsy based on integrated bioinformatics analysis. Front Neurosci 2022; 16:996368. [PMID: 36389252 PMCID: PMC9648357 DOI: 10.3389/fnins.2022.996368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/06/2022] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Temporal lobe epilepsy (TLE) is a common brain disease. However, the pathogenesis of TLE and its relationship with immune infiltration remains unclear. We attempted to identify inflammation-related genes (IRGs) and the immune cell infiltration pattern involved in the pathological process of TLE via bioinformatics analysis. MATERIALS AND METHODS The GSE88992 dataset was downloaded from the Gene Expression Omnibus (GEO) database to perform differentially expressed genes screening and weighted gene co-expression network analysis (WGCNA). Subsequently, the functional enrichment analysis was performed to explore the biological function of the differentially expressed IRGs (DEIRGs). The hub genes were further identified by the CytoHubba algorithm and validated by an external dataset (GSE60772). Furthermore, the CIBERSORT algorithm was applied to assess the differential immune cell infiltration between control and TLE groups. Finally, we used the DGIbd database to screen the candidate drugs for TLE. RESULTS 34 DEIRGs (33 up-regulated and 1 down-regulated gene) were identified, and they were significantly enriched in inflammation- and immune-related pathways. Subsequently, 4 hub DEIRGs (Ptgs2, Jun, Icam1, Il6) were further identified. Immune cell infiltration analysis revealed that T cells CD4 memory resting, NK cells activated, Monocytes and Dendritic cells activated were involved in the TLE development. Besides, there was a significant correlation between hub DEIRGs and some of the specific immune cells. CONCLUSION 4 hub DEIRGs (Ptgs2, Jun, Icam1, Il6) were associated with the pathogenesis of TLE via regulation of immune cell functions, which provided a novel perspective for the understanding of TLE.
Collapse
Affiliation(s)
| | | | | | | | - Yue Wang
- Department of Neurology, Xinqiao Hospital and The Second Affiliated Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
12
|
Network Pharmacology and Molecular Docking to Explore the Mechanism of Kangxian Decoction for Epilepsy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3333878. [PMID: 36193133 PMCID: PMC9525756 DOI: 10.1155/2022/3333878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/21/2022]
Abstract
Purpose Kangxian decoction (KXD) has been used in clinical practice to treat epilepsy. The purpose of this study was to explore the active components of KXD and clarify its antiepileptic mechanism through network pharmacology and molecular docking. Methods The components of KXD were collected from the Encyclopedia of Traditional Chinese Medicine (ETCM) database and the literature was searched. Then, active ingredients were screened by SwissADME and potential targets were predicted by the SwissTargetPrediction database. Epilepsy-related differentially expressed genes were downloaded from the Gene Expression Omnibus database. A component-target-pathway network was constructed with Cytoscape. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and protein‒protein interaction network analysis revealed the potential mechanism and critical targets. Receiver operating characteristic (ROC) curves and box plots in microarray data validated the good diagnostic value and significant differential expression of these critical genes. Molecular docking verified the association between active ingredients and essential target proteins. Results In our study, we screened the important compounds of KXD for epilepsy, including quercetin, baicalin, kaempferol, yohimbine, geissoschizine methyl ether, baicalein, etc. KXD may exert its therapeutic effect on epilepsy through the following targets: PTGS2, MMP9, CXCL8, ERBB2, and ARG1, acting on the following pathways: neuroactive ligand-receptor interactions, arachidonic acid metabolism, IL-17, TNF, NF-kappa B, and MAPK signaling pathways. The molecular docking results showed that the active ingredients in KXD exhibited good binding ability to the key targets. Conclusion In this study, we explored the possibility that KXD for epilepsy may act on multiple targets through multiple active ingredients, involving neurotransmitters and neuroinflammatory pathways, providing a theoretical basis for subsequent clinical and experimental studies that will help develop effective new drugs to treat epilepsy.
Collapse
|
13
|
Neuroinflammation and Proinflammatory Cytokines in Epileptogenesis. Mol Neurobiol 2022; 59:1724-1743. [PMID: 35015252 DOI: 10.1007/s12035-022-02725-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/30/2021] [Indexed: 02/06/2023]
Abstract
Increasing evidence corroborates the fundamental role of neuroinflammation in the development of epilepsy. Proinflammatory cytokines (PICs) are crucial contributors to the inflammatory reactions in the brain. It is evidenced that epileptic seizures are associated with elevated levels of PICs, particularly interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α), which underscores the impact of neuroinflammation and PICs on hyperexcitability of the brain and epileptogenesis. Since the pathophysiology of epilepsy is unknown, determining the possible roles of PICs in epileptogenesis could facilitate unraveling the pathophysiology of epilepsy. About one-third of epileptic patients are drug-resistant, and existing treatments only resolve symptoms and do not inhibit epileptogenesis; thus, treatment of epilepsy is still challenging. Accordingly, understanding the function of PICs in epilepsy could provide us with promising targets for the treatment of epilepsy, especially drug-resistant type. In this review, we outline the role of neuroinflammation and its primary mediators, including IL-1β, IL-1α, IL-6, IL-17, IL-18, TNF-α, and interferon-γ (IFN-γ) in the pathophysiology of epilepsy. Furthermore, we discuss the potential therapeutic targeting of PICs and cytokine receptors in the treatment of epilepsy.
Collapse
|
14
|
Advances in the Development of Biomarkers for Poststroke Epilepsy. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5567046. [PMID: 33959658 PMCID: PMC8075663 DOI: 10.1155/2021/5567046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/26/2021] [Accepted: 04/09/2021] [Indexed: 12/23/2022]
Abstract
Stroke is the main cause of acquired epilepsy in elderly people. Poststroke epilepsy (PSE) not only affects functional recovery after stroke but also brings considerable social consequences. While some factors such as cortical involvement, hemorrhagic transformation, and stroke severity are associated with increased seizure risk, so far that remains controversial. In recent years, there are an increasing number of studies on potential biomarkers of PSE as tools for diagnosing and predicting epileptic seizures. Biomarkers such as interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), glutamate, and S100 calcium-binding protein B (S100B) in blood are associated with the occurrence of PSE. This review is aimed at summarizing the progress on potential biomarkers of PSE.
Collapse
|