1
|
Wang P, Feng X, Lv Z, Liu J, Teng Q, Chen T, Liu Q. Temporal dynamics of lignin degradation in Quercus acutissima sawdust during Ganoderma lucidum cultivation. Int J Biol Macromol 2024; 268:131686. [PMID: 38643923 DOI: 10.1016/j.ijbiomac.2024.131686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 04/07/2024] [Accepted: 04/17/2024] [Indexed: 04/23/2024]
Abstract
Despite a fair amount of lignin conversion during mycelial growth, previous structural analyses have not yet revealed how lignin changes continuously and what the relationship is between lignin and ligninolytic enzymes. To clarify these aspects, Quercus acutissima sawdust attaching Ganoderma lucidum mycelium collected from different growth stage was subjected to analysis of lignin structure and ligninolytic enzyme activity. Two key periods of lignin degradation are found during the cultivation of G. lucidum: hypha rapid growth period and primordium formation period. In the first stage, laccase activity is associated with the opening of structures such as methoxyls, β-O-4' substructures and guaiacyl units in lignin, as well as the shortening of lignin chains. Manganese peroxidases and lignin peroxidases are more suitable for degrading short chain lignin. The structure of phenylcoumarans and syringyl changes greatly in the second stage. The results from sawdust attaching mycelium provide new insights to help improve the cultivation substrate formulation of G. lucidum and understand biomass valorization better.
Collapse
Affiliation(s)
- Peng Wang
- Department of Vegetables, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xiaobin Feng
- Cangzhou Academy of Agriculture and Forestry Sciences, Hebei 061000, China
| | - Ziwen Lv
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Jia Liu
- Department of Vegetables, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Qian Teng
- Department of Vegetables, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Tong Chen
- Department of Vegetables, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Qinghong Liu
- Department of Vegetables, College of Horticulture, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Ahmad MF, A. Alsayegh A, Ahmad FA, Akhtar MS, Alavudeen SS, Bantun F, Wahab S, Ahmed A, Ali M, Elbendary EY, Raposo A, Kambal N, H. Abdelrahman M. Ganoderma lucidum: Insight into antimicrobial and antioxidant properties with development of secondary metabolites. Heliyon 2024; 10:e25607. [PMID: 38356540 PMCID: PMC10865332 DOI: 10.1016/j.heliyon.2024.e25607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 12/15/2023] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
Ganoderma lucidum is a versatile mushroom. Polysaccharides and triterpenoids are the major bioactive compounds and have been used as traditional medicinal mushrooms since ancient times. They are currently used as nutraceuticals and functional foods. G. lucidum extracts and their bioactive compounds have been used as an alternative to antioxidants and antimicrobial agents. Secondary metabolites with many medicinal properties make it a possible substitute that could be applied as immunomodulatory, anticancer, antimicrobial, anti-oxidant, anti-inflammatory, and anti-diabetic. The miraculous properties of secondary metabolites fascinate researchers for their development and production. Recent studies have paid close attention to the different physical, genetic, biochemical, and nutritional parameters that potentiate the production of secondary metabolites. This review is an effort to collect biologically active constituents from G. lucidum that reveal potential actions against diseases with the latest improvement in a novel technique to get maximum production of secondary metabolites. Studies are going ahead to determine the efficacy of numerous compounds and assess the valuable properties achieved by G. lucidum in favor of antimicrobial and antioxidant outcomes.
Collapse
Affiliation(s)
- Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Science, Jazan University, Jazan, 45142, Saudi Arabia
| | - Abdulrahman A. Alsayegh
- Department of Clinical Nutrition, College of Applied Medical Science, Jazan University, Jazan, 45142, Saudi Arabia
| | - Fakhruddin Ali Ahmad
- Department of Basic and Applied Science, School of Engineering and Science, G.D Goenka University, Gru Gram, 122103, Haryana, India
| | - Md Sayeed Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, AlFara, Abha, 62223, Saudi Arabia
| | - Sirajudeen S. Alavudeen
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, AlFara, Abha, 62223, Saudi Arabia
| | - Farkad Bantun
- Department of Microbiology and Parasitology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Awais Ahmed
- Department of Management, Shri JJT University, Rajasthan, Post code; 333010, India
| | - M. Ali
- Department of Pharmacognosy, CBS College of Pharmacy & Technology (Pt. B. D. Sharma University of Health Sciences), Chandpur, Faridabad, Haryana, 121101, India
| | - Ehab Y. Elbendary
- Department of Clinical Nutrition, College of Applied Medical Science, Jazan University, Jazan, 45142, Saudi Arabia
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades Tecnologias, Campo Grande 376, 1749-024, Lisboa, Portugal
| | - Nahla Kambal
- Department of Clinical Nutrition, College of Applied Medical Science, Jazan University, Jazan, 45142, Saudi Arabia
| | - Mohamed H. Abdelrahman
- College of Applied Medical Sciences, Medical Laboratory Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| |
Collapse
|
3
|
Cadar E, Negreanu-Pirjol T, Pascale C, Sirbu R, Prasacu I, Negreanu-Pirjol BS, Tomescu CL, Ionescu AM. Natural Bio-Compounds from Ganoderma lucidum and Their Beneficial Biological Actions for Anticancer Application: A Review. Antioxidants (Basel) 2023; 12:1907. [PMID: 38001761 PMCID: PMC10669212 DOI: 10.3390/antiox12111907] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Ganoderma lucidum (G. lucidum) has been known for many centuries in Asian countries under different names, varying depending on the country. The objective of this review is to investigate the scientific research on the natural active bio-compounds in extracts obtained from G. lucidum with significant biological actions in the treatment of cancer. This review presents the classes of bio-compounds existing in G. lucidum that have been reported over time in the main databases and have shown important biological actions in the treatment of cancer. The results highlight the fact that G. lucidum possesses important bioactive compounds such as polysaccharides, triterpenoids, sterols, proteins, nucleotides, fatty acids, vitamins, and minerals, which have been demonstrated to exhibit multiple anticancer effects, namely immunomodulatory, anti-proliferative, cytotoxic, and antioxidant action. The potential health benefits of G. lucidum are systematized based on biological actions. The findings present evidence regarding the lack of certainty about the effects of G. lucidum bio-compounds in treating different forms of cancer, which may be due to the use of different types of Ganoderma formulations, differences in the study populations, or due to drug-disease interactions. In the future, larger clinical trials are needed to clarify the potential benefits of pharmaceutical preparations of G. lucidum, standardized by the known active components in the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Emin Cadar
- Faculty of Pharmacy, “Ovidius” University of Constanta, Capitan Aviator Al. Serbanescu Street, No. 6, Campus, Building C, 900470 Constanta, Romania; (E.C.); (B.-S.N.-P.)
| | - Ticuta Negreanu-Pirjol
- Faculty of Pharmacy, “Ovidius” University of Constanta, Capitan Aviator Al. Serbanescu Street, No. 6, Campus, Building C, 900470 Constanta, Romania; (E.C.); (B.-S.N.-P.)
- Academy of Romanian Scientists, Ilfov Street, No. 3, 050044 Bucharest, Romania
| | - Carolina Pascale
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania;
| | - Rodica Sirbu
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania;
| | - Irina Prasacu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy of Bucharest, Traian Vuia Street, No. 6, Sector 2, 020956 Bucharest, Romania;
| | - Bogdan-Stefan Negreanu-Pirjol
- Faculty of Pharmacy, “Ovidius” University of Constanta, Capitan Aviator Al. Serbanescu Street, No. 6, Campus, Building C, 900470 Constanta, Romania; (E.C.); (B.-S.N.-P.)
| | - Cezar Laurentiu Tomescu
- Faculty of Medicine, “Ovidius” University of Constanta, University Alley, No. 1, Campus, Building B, 900470 Constanta, Romania; (C.L.T.); (A.-M.I.)
- “Sf. Ap. Andrei” County Clinical Emergency Hospital, Tomis Bvd., No. 145, 900591 Constanta, Romania
| | - Ana-Maria Ionescu
- Faculty of Medicine, “Ovidius” University of Constanta, University Alley, No. 1, Campus, Building B, 900470 Constanta, Romania; (C.L.T.); (A.-M.I.)
- Clinical Hospital C F Constanta, 1 Mai Bvd., No. 3–5, 900123 Constanta, Romania
| |
Collapse
|
4
|
Meniqueti AB, Ruiz SP, Faria MGI, do Valle JS, Gonçalves AC, Dragunski DC, Colauto NB, Linde GA. Iron-enriched mycelia of edible and medicinal basidiomycetes. ENVIRONMENTAL TECHNOLOGY 2022; 43:1248-1254. [PMID: 32928067 DOI: 10.1080/09593330.2020.1824023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Iron bioaccumulation in basidiomycetes is an alternative to recover ferrous sulphate from titanium dioxide pigment production and to produce an iron-enriched mycelial biomass. This study aimed to evaluate iron bioaccumulation capacity in vegetative mycelium of edible and medicinal fungi grown in malt extract liquid medium with different ferrous sulphate contents. Five basidiomycetes were grown in malt extract liquid medium with different iron contents from 0.116 to 100 mg L-1 iron. The iron content of dried mycelial biomass bioaccumulated with iron was determined by flame atomic absorption spectrophotometry. All fungi grew on the iron culture media and the mycelial biomass growth ranged from 3.24 ± 0.65a mg mL-1 to 12.46 ± 0.29 mg mL-1. Iron addition to culture media increased the iron content in the mycelial biomass from 4000-13,000-fold compared with control. Pleurotus ostreatus (2181 ± 218 mg kg-1) presented the greatest iron content in the mycelial biomass, followed by Schizophyllum commune (1769 ± 131 mg kg-1), Agaricus subrufescens (1272 ± 8.84 mg kg-1), and Ganoderma lucidum (840 ± 75 mg kg-1). P. ostreatus, followed by S. commune, and G. lucidum at 90 and 100 mg L-1 iron in the culture medium are the best choices to produce iron-enriched mycelial biomass. This extensive study of several edible and medicinal basidiomycetes grown in different iron contents was effective in recovering ferrous sulphate byproduct and transferring it to mycelium to produce a new nutraceutical food of iron-enriched mycelial biomass.
Collapse
Affiliation(s)
- Adriano Borges Meniqueti
- Paranaense University, Graduate Program in Biotechnology Applied to Agriculture, Umuarama, Brazil
| | - Suelen Pereira Ruiz
- Paranaense University, Graduate Program in Biotechnology Applied to Agriculture, Umuarama, Brazil
| | | | | | - Affonso Celso Gonçalves
- West Paraná State University, Laboratory of Environmental Chemistry, Center of Agricultural Science, Marechal Cândido Rondon, Brazil
| | | | - Nelson Barros Colauto
- Paranaense University, Graduate Program in Biotechnology Applied to Agriculture, Umuarama, Brazil
| | - Giani Andrea Linde
- Paranaense University, Graduate Program in Biotechnology Applied to Agriculture, Umuarama, Brazil
| |
Collapse
|
5
|
Shah N, Marathe SJ, Croce D, Ciardi M, Longo V, Juilus A, Shamekh S. An investigation of the antioxidant potential and bioaccumulated minerals in Tuber borchii and Tuber maculatum mycelia obtained by submerged fermentation. Arch Microbiol 2021; 204:64. [DOI: 10.1007/s00203-021-02717-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 11/24/2022]
|
6
|
The importance of Cu × Pb interactions to Lentinula edodes yield, major/trace elements accumulation and antioxidants. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03833-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractDue to the use of various substrates
in the production of edible mushrooms which may contain metals, including Cu and Pb, it is important to understand the influence of mutual interactions between them in the process of their accumulation in fruit bodies. For this reason, the effects of Cu, Pb, and Cu × Pb on yield, accumulation of five major elements (Ca, K, Mg, Na and P), trace elements (Cu, Pb and Fe) and some bioactive compounds in Lentinula edodes fruit bodies were studied. Both the metals were added in doses of 0.1 and 0.5 mM (Cu0.1, Cu0.5, Pb0.1, Pb0.5 and their combinations). The addition of the metals resulted in a reduction in size, amount and finally yield of fruit bodies. Depending on the presence of Cu and or Pb and their concentration in the substrate, both antagonism and synergism may occur. The influence on the accumulation of other determining elements was also recorded. Among phenolic compounds, phenolic acids and flavonoids were detected. 2,5-Dihydroxybenzoic acid dominated in fruit bodies in the control variant, Pb0.1, Pb0.5 and all experimental variants enriched with Cu + Pb, while gallic acid was the major phenolic after Cu0.1 and Cu0.5 addition. Only protocatechuic acid content increased in all combinations. A significant decrease of all aliphatic acid contents in comparison to the control variant was observed in the Cu0.1 and Pb0.1 variants. Significant stimulation of aliphatic acid synthesis was recorded in Cu0.5 and Pb0.5 variants and in the mixture of both the metals. The additions pointed to the possible role of the determined molecules in detoxification mechanisms.
Collapse
|
7
|
Robinson JR, Isikhuemhen OS, Anike FN. Fungal-Metal Interactions: A Review of Toxicity and Homeostasis. J Fungi (Basel) 2021; 7:225. [PMID: 33803838 PMCID: PMC8003315 DOI: 10.3390/jof7030225] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/18/2022] Open
Abstract
Metal nanoparticles used as antifungals have increased the occurrence of fungal-metal interactions. However, there is a lack of knowledge about how these interactions cause genomic and physiological changes, which can produce fungal superbugs. Despite interest in these interactions, there is limited understanding of resistance mechanisms in most fungi studied until now. We highlight the current knowledge of fungal homeostasis of zinc, copper, iron, manganese, and silver to comprehensively examine associated mechanisms of resistance. Such mechanisms have been widely studied in Saccharomyces cerevisiae, but limited reports exist in filamentous fungi, though they are frequently the subject of nanoparticle biosynthesis and targets of antifungal metals. In most cases, microarray analyses uncovered resistance mechanisms as a response to metal exposure. In yeast, metal resistance is mainly due to the down-regulation of metal ion importers, utilization of metallothionein and metallothionein-like structures, and ion sequestration to the vacuole. In contrast, metal resistance in filamentous fungi heavily relies upon cellular ion export. However, there are instances of resistance that utilized vacuole sequestration, ion metallothionein, and chelator binding, deleting a metal ion importer, and ion storage in hyphal cell walls. In general, resistance to zinc, copper, iron, and manganese is extensively reported in yeast and partially known in filamentous fungi; and silver resistance lacks comprehensive understanding in both.
Collapse
Affiliation(s)
| | - Omoanghe S. Isikhuemhen
- Department of Natural Resources and Environmental Design, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC 27411, USA; (J.R.R.); (F.N.A.)
| | | |
Collapse
|
8
|
Albert Q, Baraud F, Leleyter L, Lemoine M, Heutte N, Rioult JP, Sage L, Garon D. Use of soil fungi in the biosorption of three trace metals (Cd, Cu, Pb): promising candidates for treatment technology? ENVIRONMENTAL TECHNOLOGY 2020; 41:3166-3177. [PMID: 30924724 DOI: 10.1080/09593330.2019.1602170] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
Trace metal contamination is a widespread and complex environmental problem. Because fungi are capable of growing in adverse environments, several fungal species could have an interesting potential in remediation technologies for metal contaminated environments. This study proposes to test the ability to tolerate and biosorb three trace metals (Cd, Cu and Pb) of 28 fungal isolates collected from different soils. First, a tolerance assay in agar medium was performed. Each isolate was grown in the presence of Cd, Cu, and Pb at different concentrations. Then, we exposed each soil fungus to 50 mg L-1 of Cd, Cu, or Pb during 3 days in liquid medium. Parameters such as biomass production, pH, and biosorption were evaluated. The results showed that responses to metal exposure are very diverse even with fungi isolated from the same soil sample, or belonging to the same genera. Several isolates could be considered as good metal biosorbents and could be used in future mycoremediation studies. Among the 28 fungi tested, Absidia cylindrospora biosorbed more than 45% of Cd and Pb, Chaetomium atrobrunneum biosorbed more than 45% of Cd, Cu, Pb, and Coprinellus micaceus biosorbed 100% of Pb.
Collapse
Affiliation(s)
- Quentin Albert
- Centre F. Baclesse, Normandie Univ, UNICAEN, Caen, France
| | | | - Lydia Leleyter
- Centre F. Baclesse, Normandie Univ, UNICAEN, Caen, France
| | | | | | | | - Lucile Sage
- Laboratoire d'Ecologie Alpine, Université Grenoble Alpes, Cedex, France
| | - David Garon
- Centre F. Baclesse, Normandie Univ, UNICAEN, Caen, France
| |
Collapse
|
9
|
Umeo SH, Faria MGI, Dragunski DC, Valle JSDO, Colauto NB, Linde GA. Iron Or Zinc Bioaccumulated In Mycelial Biomass Of Edible Basidiomycetes. AN ACAD BRAS CIENC 2020; 92 Suppl 2:e20191350. [PMID: 32813769 DOI: 10.1590/0001-3765202020191350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/06/2020] [Indexed: 02/07/2023] Open
Abstract
Iron and zinc bioaccumulation in mycelial biomass of different medicinal basidiomycetes was evaluated in order to produce metal-enriched mycelial biomass as an alternative functional food from non-animal sources and based on biotechnology processes. Pleurotus ostreatus strain U2-9, U2-11, U6-8, and U6-9, Pleurotus eryngii strain U8-11, Schizophyllum commune strain U6-7, and Lentinula edodes strain U6-11 and U6-12 were grown in malt extract agar with or without addition of 50 mg/L iron or 7.5 mg/L zinc. The mycelial biomass was separated and iron and zinc concentrations were determined in a flame atomic absorption spectrophotometer. Basidiomycete strains presented different growth rates with the presence of iron and zinc; there was no dependence between the metal bioaccumulation and the fungal growth. The fungi presented greater capacity to bioaccumulate iron than zinc. P. ostreatus (U2-9) has greater iron bioaccumulation (3197.7 mg/kg) while P. ostreatus (U6-8) greater zinc bioaccumulation (440.4 mg/kg) in mycelial biomass. P. ostreatus (U2-9), P. ostreatus (U2-11), and S. commune (U6-7) had the highest metal translocation rates from the culture medium to mycelial biomass. The mycelial biomass enriched with iron or zinc is an alternative to a new functional food from non-animal sources.
Collapse
Affiliation(s)
- Suzana H Umeo
- Laboratório de Biologia Molecular, Universidade Paranaense, Umuarama, PR, Brazil
| | | | - Douglas C Dragunski
- Centro de Engenharias e Ciências Exatas, Universidade Estadual do Oeste do Paraná, Toledo, PR, Brazil
| | - Juliana S DO Valle
- Laboratório de Biologia Molecular, Universidade Paranaense, Umuarama, PR, Brazil
| | - Nelson B Colauto
- Laboratório de Biologia Molecular, Universidade Paranaense, Umuarama, PR, Brazil
| | - Giani Andrea Linde
- Laboratório de Biologia Molecular, Universidade Paranaense, Umuarama, PR, Brazil
| |
Collapse
|
10
|
Sarikurkcu C, Akata I, Guven G, Tepe B. Metal concentration and health risk assessment of wild mushrooms collected from the Black Sea region of Turkey. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:26419-26441. [PMID: 32363460 DOI: 10.1007/s11356-020-09025-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Mushrooms are rich sources of organic nutrients (especially proteins). However, they can excessively accumulate metals in their fruiting bodies that pose a risk to human health. The aim of this study was the determination of Cd, Co, Cu, Fe, Mn, Ni, Pb, and Zn contents, daily intake, and health risk index values of some mushroom species collected from the eastern Black Sea region of Turkey (Arsin, Trabzon). The samples were collected from hazelnut gardens that are free from industrial pollution and have a low population density. As a result of elemental analysis, it was determined that the concentration ranges of Cd, Co, Cu, Fe, Mn, Ni, Pb, and Zn in the mushrooms were as follows: 0.29-9.11, 0.04-3.70, 0.01-8.29, 0.18-20.82, 3.1-79.8, 5.2-673.0, 14.9-752.0, 63.0-7769.0 mg/kg dry weight. Daily intakes of all the elements were found to be below the reference dose in Fistulina hepatica, Hydnum repandum, Macrolepiota procera, and Tapinella atrotomentosa. Amanita caesarea, Agrocybe praecox, Amanita vaginata, Cantharellus cibarius, Craterellus cornucopioides, Daedalea quercina, Gymnopus dryophilus, Ganoderma lucidum, and Infundibulicybe gibba were found to have high risk index values especially with respect to Cd, Co, and Pb. According to Pearson correlation analysis, the correlations between Fe-Mn (0.840, p < 0.01) and Pb-Ni (0.7540, p < 0.01) couples are significant.
Collapse
Affiliation(s)
- Cengiz Sarikurkcu
- Faculty of Pharmacy, Department of Analytical Chemistry, Afyonkarahisar Health Sciences University, 03100, Afyonkarahisar, Turkey.
| | - Ilgaz Akata
- Faculty of Science, Department of Biology, Ankara University, 06100, Ankara, Turkey
| | - Gulsen Guven
- Faculty of Science and Literature, Department of Chemistry, Adnan Menderes University, 09100, Aydin, Turkey
| | - Bektas Tepe
- Faculty of Science and Literature, Department of Molecular Biology and Genetics, Kilis 7 Aralik University, 79000, Kilis, Turkey
| |
Collapse
|
11
|
Parisi OI, Ruffo M, Amone F, Malivindi R, Gorgoglione D, De Biasio F, Scrivano L, Pezzi V, Puoci F. PDO Rotonda’s Red Eggplant Extract: In vitro Determination of Biological Properties and Minerals Bioaccessibility. CURRENT NUTRITION & FOOD SCIENCE 2020. [DOI: 10.2174/1573401314666180622110952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The Rotonda’s Red Eggplant belongs to the family of Solanum aethiopicum
and it is cultivated in a specific area of Potenza (Basilicata, South of Italy) including villages of Rotonda,
Viggianello, Castelluccio Superiore and Castelluccio Inferiore. The Red Eggplant cultivated in
this area has gained the PDO, “Protected Designation of Origin”.
Objective:
The aim of this research was to evaluate the use of PDO Rotonda’s Red Eggplant extract
as a possible nutraceutical supplement. The antioxidant, antihypertensive, hypoglycemic, and hypolipidemic
properties were in vitro evaluated.
Methods:
The antioxidant activity was investigated by evaluating the scavenging properties against
2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-Azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)
(ABTS) radicals and by performing the Ammonium Molybdate and Folin-Ciocalteu assay. The hypoglycemic
and antihypertensive activity was studied by evaluating the α-Amylase, α-Glucosidase
and Angiotensin Converting Enzyme, respectively, inhibiting activity. In order to evaluate the hypolipidemic
activity, the pancreatic lipase inhibiting property was determined and Oil Red O staining
assay was performed. Finally, to evaluate the possible use of this extract as a minerals supplement,
Selenium, Potassium and Chrome bioaccessibility was studied.
Results:
The obtained results underline the good antioxidant, hypoglycemic, antihypertensive and
hypolipidemic in vitro properties of the PDO Rotonda’s Red Eggplant extract. Moreover, the obtained
data show a higher minerals bioaccessibility and this higher value could be ascribable to the
natural phytocomplex of PDO Rotonda’s Red Eggplant, which increases the minerals bioaccessibility
if compare it with a control sample.
Conclusion:
The obtained results show that PDO Rotonda’s Red Eggplant extract, might be used as
a possible nutraceutical supplement, along with traditional therapies, both for its biological properties
and for its minerals bioaccessibility value.
Collapse
Affiliation(s)
- Ortensia Ilaria Parisi
- Macrofarm s.r.l., c/o Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy
| | - Mariarosa Ruffo
- Macrofarm s.r.l., c/o Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy
| | - Fabio Amone
- Macrofarm s.r.l., c/o Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy
| | - Rocco Malivindi
- Macrofarm s.r.l., c/o Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy
| | | | | | - Luca Scrivano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy
| | - Vincenzo Pezzi
- Macrofarm s.r.l., c/o Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy
| | - Francesco Puoci
- Macrofarm s.r.l., c/o Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy
| |
Collapse
|
12
|
Siwulski M, Budzyńska S, Rzymski P, Gąsecka M, Niedzielski P, Kalač P, Mleczek M. The effects of germanium and selenium on growth, metalloid accumulation and ergosterol content in mushrooms: experimental study in Pleurotus ostreatus and Ganoderma lucidum. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03299-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Antitumour, Antimicrobial, Antioxidant and Antiacetylcholinesterase Effect of Ganoderma Lucidum Terpenoids and Polysaccharides: A Review. Molecules 2018. [PMID: 29534044 PMCID: PMC6017764 DOI: 10.3390/molecules23030649] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Ganoderma lucidum (Reishi) is a popular medicinal mushroom and has been used in oriental medicine because of its promoting effects on health and life expectancy. G. lucidum contains various compounds with a high grade of biological activty, which increase the immunity and show antitumour, antimicrobial, anti-inflammatory, antioxidant and acetylcholinesterase inhibitory activity. Several of these substances belong to the triterpenoids and polysaccharides classes. Proteins, lipids, phenols, sterols, etc. are also present. In the present review, an extensive overview of the presence of antitumour, antimicrobial, antioxidant and antiacetylcholinesterase compounds in G. lucidum extracts will be given, along with an evaluation of their therapeutic effects.
Collapse
|
14
|
Rzymski P, Mleczek M, Niedzielski P, Siwulski M, Gąsecka M. Potential of Cultivated
Ganoderma lucidum
Mushrooms for the Production of Supplements Enriched with Essential Elements. J Food Sci 2016; 81:C587-92. [DOI: 10.1111/1750-3841.13212] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/12/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Piotr Rzymski
- Dept. of Environmental MedicinePoznan Univ. of Medical Sciences Poznań Poland
| | | | | | - Marek Siwulski
- Dept. of Vegetable CropsPoznan Univ. of Life Sciences Poznań Poland
| | - Monika Gąsecka
- Dept. of ChemistryPoznan Univ. of Life Sciences Poznań Poland
| |
Collapse
|
15
|
Improvement of zinc bioaccumulation and biomass yield in the mycelia and fruiting bodies of Pleurotus florida cultured on liquid media. Appl Biochem Biotechnol 2015; 175:3387-96. [PMID: 25686560 DOI: 10.1007/s12010-015-1510-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 01/21/2015] [Indexed: 10/24/2022]
Abstract
The effect of different concentrations of zinc on the bioaccumulation of zinc and biomass yield in both mycelium and fruiting body of Pleurotus florida cultivated in liquid medium was studied. The results showed that the optimum yield of mycelia (11.33 ± 0.44 g/L) and fruiting bodies (7.70 ± 0.19 g/L) dry biomass was obtained in a liquid medium containing 100 mg/L of zinc. At a zinc concentration of 200 mg/L, the highest concentration of zinc in the mycelia and fruiting bodies reached 1.869 ± 0.115 and 0.151 ± 0.008 mg/g dry weight, respectively. The addition of zinc to the culture media significantly reduced zinc bioaccumulation factor in mycelia (from 24.64 ± 0.52 to 3.35 ± 0.24) and fruiting bodies (from 36.71 ± 0.30 to 0.49 ± 0.02) dry weight. Our findings indicated that the ability of zinc bioaccumulation in the mycelia is much higher than in the fruiting bodies. The fundamental information obtained in this study will be useful for the improvement of zinc bioaccumulation and biomass yield in mycelia and fruiting bodies of P. florida cultivated in liquid media to obtain maximum zinc-enriched biomass.
Collapse
|