1
|
Kohan A, Keshtmand Z. Ameliorating effects of Lactobacillus probiotics on cadmium-induced hepatotoxicity, inflammation, and oxidative stress in Wistar rats. COMPARATIVE CLINICAL PATHOLOGY 2024; 33:653-664. [DOI: 10.1007/s00580-024-03583-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/04/2024] [Indexed: 01/06/2025]
|
2
|
Ceramella J, De Maio AC, Basile G, Facente A, Scali E, Andreu I, Sinicropi MS, Iacopetta D, Catalano A. Phytochemicals Involved in Mitigating Silent Toxicity Induced by Heavy Metals. Foods 2024; 13:978. [PMID: 38611284 PMCID: PMC11012104 DOI: 10.3390/foods13070978] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/30/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
Heavy metals (HMs) are natural elements present in the Earth's crust, characterised by a high atomic mass and a density more than five times higher than water. Despite their origin from natural sources, extensive usage and processing of raw materials and their presence as silent poisons in our daily products and diets have drastically altered their biochemical balance, making them a threat to the environment and human health. Particularly, the food chain polluted with toxic metals represents a crucial route of human exposure. Therefore, the impact of HMs on human health has become a matter of concern because of the severe chronic effects induced by their excessive levels in the human body. Chelation therapy is an approved valid treatment for HM poisoning; however, despite the efficacy demonstrated by chelating agents, various dramatic side effects may occur. Numerous data demonstrate that dietary components and phytoantioxidants play a significant role in preventing or reducing the damage induced by HMs. This review summarises the role of various phytochemicals, plant and herbal extracts or probiotics in promoting human health by mitigating the toxic effects of different HMs.
Collapse
Affiliation(s)
- Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Cosenza, Italy; (J.C.); (A.C.D.M.); (G.B.); (A.F.); (D.I.)
| | - Azzurra Chiara De Maio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Cosenza, Italy; (J.C.); (A.C.D.M.); (G.B.); (A.F.); (D.I.)
| | - Giovanna Basile
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Cosenza, Italy; (J.C.); (A.C.D.M.); (G.B.); (A.F.); (D.I.)
| | - Anastasia Facente
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Cosenza, Italy; (J.C.); (A.C.D.M.); (G.B.); (A.F.); (D.I.)
| | - Elisabetta Scali
- Unit of Dermatology, Spoke Hospital, Locri, 89044 Reggio Calabria, Italy;
| | - Inmaculada Andreu
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
- Unidad Mixta de Investigación UPV-IIS La Fe, Hospital Universitari i Politècnic La Fe, Avenida de Fernando, Abril Martorell 106, 46026 Valencia, Spain
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Cosenza, Italy; (J.C.); (A.C.D.M.); (G.B.); (A.F.); (D.I.)
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Cosenza, Italy; (J.C.); (A.C.D.M.); (G.B.); (A.F.); (D.I.)
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy;
| |
Collapse
|
3
|
Zhang W, Jia Q, Han M, Zhang X, Guo L, Sun S, Yin W, Bo C, Han R, Sai L. Bifidobacteria in disease: from head to toe. Folia Microbiol (Praha) 2024; 69:1-15. [PMID: 37644256 DOI: 10.1007/s12223-023-01087-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Bifidobacteria as a strictly anaerobic gram-positive bacteria, is widely distributed in the intestine, vagina and oral cavity, and is one of the first gut flora to colonize the early stages of life. Intestinal flora is closely related to health, and dysbiosis of intestinal flora, especially Bifidobacteria, has been found in a variety of diseases. Numerous studies have shown that in addition to maintaining intestinal homeostasis, Bifidobacteria may be involved in diseases covering all parts of the body, including the nervous system, respiratory system, genitourinary system and so on. This review collects evidence for the variation of Bifidobacteria in typical diseases among various systems, provides mild and effective therapeutic options for those diseases that are difficult to cure, and moves Bifidobacteria from basic research to further clinical applications.
Collapse
Affiliation(s)
- Weiliang Zhang
- Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong, China
| | - Qiang Jia
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Mingming Han
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xin Zhang
- Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong, China
| | - Limin Guo
- Rongcheng Municipal Hospital of Traditional Chinese Medicine, Rongcheng, Shandong, China
| | - Shichao Sun
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong University of Traditional Chinese Medicine Doctoral candidate Class of 2022, Jinan, Shandong, China
| | - Wenhui Yin
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Cunxiang Bo
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ru Han
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Linlin Sai
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
4
|
Duan Y, Zhang Y, Wang T, Sun J, Ali W, Ma Y, Yuan Y, Gu J, Bian J, Liu Z, Zou H. Interactive mechanism between connexin43 and Cd-induced autophagic flux blockage and gap junctional intercellular communication dysfunction in rat hepatocytes. Heliyon 2023; 9:e21052. [PMID: 37876489 PMCID: PMC10590978 DOI: 10.1016/j.heliyon.2023.e21052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/04/2023] [Accepted: 10/13/2023] [Indexed: 10/26/2023] Open
Abstract
Cadmium (Cd) is a significant environmental contaminant known for its potential hepatotoxic effects. However, the precise mechanisms underlying Cd-induced hepatotoxicity have yet to be fully understood. Therefore, the purpose of this study was to investigate the dynamic role of connexin 43 (Cx43) in response to Cd exposure, particularly its impact on gap junctional intercellular communication (GJIC) and autophagy in hepatocytes. To establish an in vitro model of Cd-induced hepatocyte injury, the Buffalo rat liver 3A cell line (BRL3A) was utilized.In order to elucidate the mechanism by which Cx43 influences Cd-induced hepatocyte toxic injury, inhibitors of Cx43 (Dynasore) and P-Cx43 (Ro318220) were employed in the model. The findings revealed that inhibiting Cx43 and its phosphorylation further compromised GJIC function, exacerbating the impairment, while also intensifying the blockage of autophagic flux. To gain further insight into the role of Cx43, siRNA was utilized to knock down Cx43 expression, yielding similar results. The down-regulation of Cx43 expression was found to worsen the morphological damage induced by cadmium exposure, diminish the cell proliferation capacity of BRL3A cells, and exacerbate the disruption of GJIC and autophagic flow caused by Cd.These findings suggest that Cx43 may serve as a potential therapeutic target for the treatment of liver damage resulting from Cd exposure. By targeting Cx43, it may be possible to mitigate the adverse effects of Cd on hepatocytes.
Collapse
Affiliation(s)
- Yuntian Duan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yi Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri−Product Safety of the Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Co−Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Tao Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri−Product Safety of the Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Co−Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jian Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri−Product Safety of the Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Co−Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Waseem Ali
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri−Product Safety of the Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Co−Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri−Product Safety of the Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Co−Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri−Product Safety of the Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Co−Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri−Product Safety of the Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Co−Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri−Product Safety of the Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Co−Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri−Product Safety of the Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Co−Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri−Product Safety of the Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Co−Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
5
|
KORKMAZ Y, GUNGOR H, DEMIRBAS A, DIK B. Pomegranate peel extract, N-Acetylcysteine and their combination with Ornipural alleviate Cadmium-induced toxicity in rats. J Vet Med Sci 2023; 85:990-997. [PMID: 37495528 PMCID: PMC10539821 DOI: 10.1292/jvms.22-0375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023] Open
Abstract
Cadmium is a major environmental pollutant and a highly toxic metal. It was aimed to determine the effects of pomegranate peel extract (PPE), N-acetylcysteine (NAC) alone and along with Ornipural on cadmium-induced toxicity. Forty-six Wistar Albino male rats were divided into 6 groups and the groups were formed into healthy control, Cadmium group (5 mg/kg/day, oral), Cadmium + Pomegranate peel extract (500 mg/kg, oral), Cadmium + N-acetylcysteine (100 mg/kg, oral), Cadmium + Pomegranate peel extract (500 mg/kg, oral) + Ornipural (1 mL/kg, subcutaneous) and Cadmium + N-acetylcysteine (100 mg/kg, oral) + Ornipural (1 mL/kg, subcutaneous). Cadmium accumulated heavily in both liver and kidney tissue. The administration of N-acetylcysteine and pomegranate peel extract alone reduced cadmium levels in both tissues. N-acetylcysteine treatment prevented the increase in ALT and MDA levels by cadmium damage. N-acetylcysteine + Ornipural treatment inhibited the increase in liver 8-OHdG level in the liver. N-acetylcysteine and N-acetylcysteine + Ornipural treatments prevented the reduced serum MMP2 level. N-acetylcysteine and Pomegranate peel extract + Ornipural treatments significantly reduced the increased liver iNOS level in the liver. In conclusion, NAC therapy may be a successful treatment option for cadmium toxicity. However, further research is needed on the effects of PPE and Ornipural combinations for the treatment of cadmium toxicity. In future studies, various doses of these treatment options (with chelators) should be investigated for cadmium toxicity.
Collapse
Affiliation(s)
- Yasemin KORKMAZ
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| | - Hüseyin GUNGOR
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Ahmet DEMIRBAS
- Department of Plant and Animal Production, Sivas Vocational School, Sivas Cumhuriyet University, Sivas, Turkey
| | - Burak DIK
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| |
Collapse
|
6
|
Marini HR, Bellone F, Catalano A, Squadrito G, Micali A, Puzzolo D, Freni J, Pallio G, Minutoli L. Nutraceuticals as Alternative Approach against Cadmium-Induced Kidney Damage: A Narrative Review. Metabolites 2023; 13:722. [PMID: 37367879 DOI: 10.3390/metabo13060722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/08/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
Cadmium (Cd) represents a public health risk due to its non-biodegradability and long biological half-life. The main target of Cd is the kidney, where it accumulates. In the present narrative review, we assessed experimental and clinical data dealing with the mechanisms of kidney morphological and functional damage caused by Cd and the state of the art about possible therapeutic managements. Intriguingly, skeleton fragility related to Cd exposure has been demonstrated to be induced both by a direct Cd toxic effect on bone mineralization and by renal failure. Our team and other research groups studied the possible pathophysiological molecular pathways induced by Cd, such as lipid peroxidation, inflammation, programmed cell death, and hormonal kidney discrepancy, that, through further molecular crosstalk, trigger serious glomerular and tubular injury, leading to chronic kidney disease (CKD). Moreover, CKD is associated with the presence of dysbiosis, and the results of recent studies have confirmed the altered composition and functions of the gut microbial communities in CKD. Therefore, as recent knowledge demonstrates a strong connection between diet, food components, and CKD management, and also taking into account that gut microbiota are very sensitive to these biological factors and environmental pollutants, nutraceuticals, mainly present in foods typical of the Mediterranean diet, can be considered a safe therapeutic strategy in Cd-induced kidney damage and, accordingly, could help in the prevention and treatment of CKD.
Collapse
Affiliation(s)
- Herbert Ryan Marini
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Federica Bellone
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Antonino Catalano
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Giovanni Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Antonio Micali
- Department of Human Pathology of Adult and Childhood, University of Messina, 98125 Messina, Italy
| | - Domenico Puzzolo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
| | - José Freni
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
| | - Giovanni Pallio
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| |
Collapse
|
7
|
Chang Z, Qiu J, Wang K, Liu X, Fan L, Liu X, Zhao Y, Zhang Y. The relationship between co-exposure to multiple heavy metals and liver damage. J Trace Elem Med Biol 2023; 77:127128. [PMID: 36630760 DOI: 10.1016/j.jtemb.2023.127128] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/15/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
BACKGROUND The impact of heavy metal exposure on human health has attracted widespread attention of researchers, and the impact of heavy metal exposure on liver function has also been confirmed, however, more attention is paid to the impact of single or two heavy metal exposures, and most epidemiological studies focus on heavy metal pollution areas. In this study, rural residents in non-heavy metal-contaminated areas in Northwest China were selected as the research objects to explore the comprehensive effects of co-exposure to multiple heavy metals on the liver, which can provide certain reference and support for related research. OBJECTIVES This study used a Bayesian nuclear machine model (BKMR) to evaluate the relationship between exposure to heavy metal mixtures and indicators of liver function in a population in rural Northwest China. RESULTS Exposure to higher concentrations of metal mixtures was positively correlated with total bilirubin, direct bilirubin, and aspartate aminotransferase, and negatively correlated with alanine aminotransferase, with Pb contributing the most to indicators of liver function. We also observed a possible interaction of Cd with other heavy metals in the effect of heavy metal mixtures on DB levels. CONCLUSIONS Concurrent exposure to higher concentrations of heavy metal mixtures (Cr, Co, Cd, and Pb) in rural China was associated with indicators representing poor liver function, of which the effect of lead on liver function should be focused. More prospective epidemiological studies and animal experiments need to be carried out to determine this relationship and possible mechanism.
Collapse
Affiliation(s)
- Zhenqi Chang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, PR China
| | - Jiangwei Qiu
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, PR China
| | - Kai Wang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, PR China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, PR China
| | - Xiaowei Liu
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, PR China
| | - Ling Fan
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, PR China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, PR China
| | - Xiuying Liu
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, PR China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, PR China
| | - Yi Zhao
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, PR China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, PR China.
| | - Yuhong Zhang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, PR China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, PR China.
| |
Collapse
|
8
|
Brdarić E, Popović D, Soković Bajić S, Tucović D, Mutić J, Čakić-Milošević M, Đurđić S, Tolinački M, Aleksandrov AP, Golić N, Mirkov I, Živković M. Orally Administrated Lactiplantibacillus plantarum BGAN8-Derived EPS-AN8 Ameliorates Cd Hazards in Rats. Int J Mol Sci 2023; 24:ijms24032845. [PMID: 36769176 PMCID: PMC9917968 DOI: 10.3390/ijms24032845] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
Cadmium (Cd) is a highly toxic metal that is distributed worldwide. Exposure to it is correlated with a vast number of diseases and organism malfunctions. Exopolysaccharides (EPS) derived from Lactiplantibacillus plantarum BGAN8, EPS-AN8, previously showed great potential for the in vitro protection of intestinal cells from this metal. Here, we investigated the potential of food supplemented with EPS-AN8 to protect rats from the hazardous effects of Cd exposure. After thirty days of exposure to lower (5 ppm) and higher (50 ppm)-Cd doses, the administration of EPS-AN8 led to decreased Cd content in the kidneys, liver, and blood compared to only Cd-treated groups, whereas the fecal Cd content was strongly enriched. In addition, EPS-AN8 reversed Cd-provoked effects on the most significant parameters of oxidative stress (MDA, CAT, GST, and GSH) and inflammation (IL-1β, TNF-α, and IFN-γ) in the duodenum. Moreover, micrographs of the duodenum were in line with these findings. As the gut microbiota has an important role in maintaining homeostasis, we used 16S rRNA amplicon sequencing and investigated the effects of Cd and EPS-AN8 on one part of the microbiota presented in the duodenum. Although Cd decreased the growth of lactobacilli and mostly favored the blooming of opportunistic pathogen bacteria, parallel intake of EPS-AN8 reversed those changes. Therefore, our results imply that EPS-AN8 might be extremely noteworthy in combatting this toxic environmental pollutant.
Collapse
Affiliation(s)
- Emilija Brdarić
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia
| | - Dušanka Popović
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, 11062 Belgrade, Serbia
| | - Svetlana Soković Bajić
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia
| | - Dina Tucović
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, 11062 Belgrade, Serbia
| | - Jelena Mutić
- Faculty of Chemistry, University of Belgrade, 11158 Belgrade, Serbia
| | - Maja Čakić-Milošević
- Institute of Zoology, University of Belgrade-Faculty of Biology, 11158 Belgrade, Serbia
| | - Slađana Đurđić
- Faculty of Chemistry, University of Belgrade, 11158 Belgrade, Serbia
| | - Maja Tolinački
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia
| | - Aleksandra Popov Aleksandrov
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, 11062 Belgrade, Serbia
| | - Nataša Golić
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia
| | - Ivana Mirkov
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, 11062 Belgrade, Serbia
| | - Milica Živković
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia
- Correspondence:
| |
Collapse
|
9
|
Probiotic cultures as a potential protective strategy against the toxicity of environmentally relevant chemicals: State-of-the-art knowledge. Food Chem Toxicol 2023; 172:113582. [PMID: 36581092 DOI: 10.1016/j.fct.2022.113582] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/05/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
Environmentally relevant toxic substances may affect human health, provoking numerous harmful effects on central nervous, respiratory, cardiovascular, endocrine and reproductive system, and even cause various types of carcinoma. These substances, to which general population is constantly and simultaneously exposed, enter human body via food and water, but also by inhalation and dermal contact, while accumulating evidence suggests that probiotic cultures are able to efficiently adsorb and/or degrade them. Cell wall of probiotic bacteria/fungi, which contains structures such as exopolysaccharide, teichoic acid, protein and peptidoglycan components, is considered the main place of toxic substances adsorption. Moreover, probiotics are able to induce metabolism and degradation of various toxic substances, making them less toxic and more suitable for elimination. Other probable in vivo protective effects have also been suggested, including decreased intestinal absorption and increased excretion of toxic substances, prevented gut microbial dysbiosis, increase in the intestinal mucus secretion, decreased production of reactive oxygen species, reduction of inflammation, etc. Having all of this in mind, this review aims to summarize the state-of-the-art knowledge regarding the potential protective effects of different probiotic strains against environmentally relevant toxic substances (mycotoxins, polycyclic aromatic hydrocarbons, pesticides, perfluoroalkyl and polyfluoroalkyl substances, phthalates, bisphenol A and toxic metals).
Collapse
|
10
|
Duan Y, Zhao Y, Wang T, Sun J, Ali W, Ma Y, Yuan Y, Gu J, Bian J, Liu Z, Zou H. Taurine Alleviates Cadmium-Induced Hepatotoxicity by Regulating Autophagy Flux. Int J Mol Sci 2023; 24:ijms24021205. [PMID: 36674718 PMCID: PMC9861963 DOI: 10.3390/ijms24021205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 01/10/2023] Open
Abstract
Our previous studies have confirmed that cadmium (Cd) exposure causes hepatotoxicity; it also induces autophagy and blocks the autophagy flux. Therefore, we hypothesized that Cd hepatotoxicity could be alleviated through nutritional intervention. Taurine (Tau) has various biological functions such as acting as an antioxidant, acting as an anti-inflammatory, and stabilizing cell membranes. In order to explore the protective effect and internal mechanism of Tau on Cd-induced hepatotoxicity, normal rat liver cell line BRL3A cells were treated with Cd alone or in combination with Tau to detect cell injury and autophagy-related indexes in this study. We found that Tau can alleviate Cd-induced cell-proliferation decline and morphological changes in the cell. In addition, Tau activates autophagy and alleviates the blockage of Cd-induced autophagy flux. In this process, lysosome acidification and degradation were enhanced, and autophagosomes were further fused with lysosomes. Then, we found that Tau alleviated autophagic flux block by promoting the transfer of membrane fusion proteins STX17 and SNAP29 to autophagosomes and the translocation of VAMP8 to lysosomes, which in turn attenuated the hepatocyte injury induced by Cd exposure. This will further reveal the hepatotoxicity mechanism of Cd and provide the theoretical basis for the prevention and treatment of Cd poisoning.
Collapse
Affiliation(s)
- Yuntian Duan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yumeng Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Tao Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jian Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Waseem Ali
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
11
|
Mirza Alizadeh A, Hosseini H, Mollakhalili Meybodi N, Hashempour-Baltork F, Alizadeh-Sani M, Tajdar-Oranj B, Pirhadi M, Mousavi Khaneghah A. Mitigation of potentially toxic elements in food products by probiotic bacteria: A comprehensive review. Food Res Int 2022; 152:110324. [PMID: 35181105 DOI: 10.1016/j.foodres.2021.110324] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 12/17/2022]
Abstract
Potentially toxic elements (PTEs) as non-degradable elements (especially carcinogenic types for humans such as lead (Pb), cadmium (Cd), mercury (Hg), and arsenic (As)) are widely distributed in the environment. They are one of the most concerned pollutants that can be absorbed and accumulated in the human body, primarily via contaminated water and foods. Acute or chronic poisoning of humans to PTEs can pose some serious risks for human health even at low concentrations. In this context, some methods are introduced to eliminate or reduce their concentration. While the biological treatment by bacterial strains, particularly probiotic bacteria, is considered as an effective method for reducing or eliminating of them. The consumption of probiotics as nonpathogenic microorganisms at regular and adequate dose offer some beneficial health impacts, it can also be applied to remove PTEs in both alive and non-alive states. This review aimed to provide an overview regarding the efficacy of different types of probiotic bacteria for PTEs removal from various environments such as food, water, in vitro, and in vivo conditions.
Collapse
Affiliation(s)
- Adel Mirza Alizadeh
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Neda Mollakhalili Meybodi
- Department of Food Sciences and Technology, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fataneh Hashempour-Baltork
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmood Alizadeh-Sani
- Division of Food Safety and Hygiene, Environmental Health Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Behrouz Tajdar-Oranj
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohadeseh Pirhadi
- Division of Food Safety and Hygiene, Environmental Health Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, State University of Campinas (UNICAMP), 13083-862 Campinas, São Paulo, Brazil
| |
Collapse
|
12
|
Forero-Rodríguez LJ, Josephs-Spaulding J, Flor S, Pinzón A, Kaleta C. Parkinson's Disease and the Metal-Microbiome-Gut-Brain Axis: A Systems Toxicology Approach. Antioxidants (Basel) 2021; 11:71. [PMID: 35052575 PMCID: PMC8773335 DOI: 10.3390/antiox11010071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/02/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022] Open
Abstract
Parkinson's Disease (PD) is a neurodegenerative disease, leading to motor and non-motor complications. Autonomic alterations, including gastrointestinal symptoms, precede motor defects and act as early warning signs. Chronic exposure to dietary, environmental heavy metals impacts the gastrointestinal system and host-associated microbiome, eventually affecting the central nervous system. The correlation between dysbiosis and PD suggests a functional and bidirectional communication between the gut and the brain. The bioaccumulation of metals promotes stress mechanisms by increasing reactive oxygen species, likely altering the bidirectional gut-brain link. To better understand the differing molecular mechanisms underlying PD, integrative modeling approaches are necessary to connect multifactorial perturbations in this heterogeneous disorder. By exploring the effects of gut microbiota modulation on dietary heavy metal exposure in relation to PD onset, the modification of the host-associated microbiome to mitigate neurological stress may be a future treatment option against neurodegeneration through bioremediation. The progressive movement towards a systems toxicology framework for precision medicine can uncover molecular mechanisms underlying PD onset such as metal regulation and microbial community interactions by developing predictive models to better understand PD etiology to identify options for novel treatments and beyond. Several methodologies recently addressed the complexity of this interaction from different perspectives; however, to date, a comprehensive review of these approaches is still lacking. Therefore, our main aim through this manuscript is to fill this gap in the scientific literature by reviewing recently published papers to address the surrounding questions regarding the underlying molecular mechanisms between metals, microbiota, and the gut-brain-axis, as well as the regulation of this system to prevent neurodegeneration.
Collapse
Affiliation(s)
- Lady Johanna Forero-Rodríguez
- Research Group Bioinformatics and Systems Biology, Instituto de Genetica, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (L.J.F.-R.); (A.P.)
- Research Group Medical Systems Biology, Christian-Albrechts-Universität Kiel, Brunswiker Straße 10, 24105 Kiel, Germany; (S.F.); (C.K.)
| | - Jonathan Josephs-Spaulding
- Research Group Medical Systems Biology, Christian-Albrechts-Universität Kiel, Brunswiker Straße 10, 24105 Kiel, Germany; (S.F.); (C.K.)
| | - Stefano Flor
- Research Group Medical Systems Biology, Christian-Albrechts-Universität Kiel, Brunswiker Straße 10, 24105 Kiel, Germany; (S.F.); (C.K.)
| | - Andrés Pinzón
- Research Group Bioinformatics and Systems Biology, Instituto de Genetica, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (L.J.F.-R.); (A.P.)
| | - Christoph Kaleta
- Research Group Medical Systems Biology, Christian-Albrechts-Universität Kiel, Brunswiker Straße 10, 24105 Kiel, Germany; (S.F.); (C.K.)
| |
Collapse
|
13
|
Arun KB, Madhavan A, Sindhu R, Emmanual S, Binod P, Pugazhendhi A, Sirohi R, Reshmy R, Awasthi MK, Gnansounou E, Pandey A. Probiotics and gut microbiome - Prospects and challenges in remediating heavy metal toxicity. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126676. [PMID: 34329091 DOI: 10.1016/j.jhazmat.2021.126676] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/02/2021] [Accepted: 07/15/2021] [Indexed: 05/26/2023]
Abstract
The gut microbiome, often referred to as "super organ", comprises up to a hundred trillion microorganisms, and the species diversity may vary from person to person. They perform a decisive role in diverse biological functions related to metabolism, immunity and neurological responses. However, the microbiome is sensitive to environmental pollutants, especially heavy metals. There is continuous interaction between heavy metals and the microbiome. Heavy metal exposure retards the growth and changes the structure of the phyla involved in the gut microbiome. Meanwhile, the gut microbiome tries to detoxify the heavy metals by altering the physiological conditions, intestinal permeability, enhancing enzymes for metabolizing heavy metals. This review summarizes the effect of heavy metals in altering the gut microbiome, the mechanism by which gut microbiota detoxifies heavy metals, diseases developed due to heavy metal-induced dysbiosis of the gut microbiome, and the usage of probiotics along with advancements in developing improved recombinant probiotic strains for the remediation of heavy metal toxicity.
Collapse
Affiliation(s)
- K B Arun
- Rajiv Gandhi Centre for Biotechnology, Trivandrum 695014, Kerala, India
| | - Aravind Madhavan
- Rajiv Gandhi Centre for Biotechnology, Trivandrum 695014, Kerala, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695019, Kerala, India
| | - Shibitha Emmanual
- Department of Zoology, St. Joseph's College, Thrissur 680121, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695019, Kerala, India
| | - Arivalagan Pugazhendhi
- School of Renewable Energy, Maejo University, Chiang Mai 50290, Thailand; College of Medical and Health Science, Asia University, Taichung, Taiwan ROC
| | - Ranjna Sirohi
- Department of Chemical & Biological Engineering, Korea University, Seoul 136713, Republic of Korea; Centre for Energy and Environmental Sustainability, Lucknow 226029, Uttar Pradesh, India
| | - R Reshmy
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara 690110, Kerala, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, North West A & F University, Yangling, Shaanxi 712100, China
| | - Edgard Gnansounou
- Ecole Polytechnique Federale de Lausanne, ENAC GR-GN, CH-1015 Lausanne, Switzerland
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR, Indian Institute for Toxicology Research, Lucknow 226001, Uttar Pradesh, India; Centre for Energy and Environmental Sustainability, Lucknow 226029, Uttar Pradesh, India.
| |
Collapse
|
14
|
Kar I, Patra AK. Tissue Bioaccumulation and Toxicopathological Effects of Cadmium and Its Dietary Amelioration in Poultry-a Review. Biol Trace Elem Res 2021; 199:3846-3868. [PMID: 33405085 DOI: 10.1007/s12011-020-02503-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022]
Abstract
Cadmium (Cd) has been recognized as one of the most toxic heavy metals, which is continuously discharged into environments through anthropogenic (industrial activities, fertilizer production, and waste disposal) and natural sources with anthropogenic sources contributing greater than the natural sources. Therefore, Cd concentration sometimes increases in feeds, fodders, water bodies, and tissues of livestock including poultry in the vicinity of the industrial areas, which causes metabolic, structural, and functional changes of different organs of all animals. In poultry, bioaccumulation of Cd occurs in several organs mainly in the liver, kidney, lung, and reproductive organs due to its continuous exposure. Intake of Cd reduces growth and egg laying performance and feed conversion efficiency in poultry. Chronic exposure of Cd at low doses can also alter the microscopic structures of tissues, particularly in the liver, kidney, brain, pancreas, intestine, and reproductive organs due to increased content of Cd in these tissues. Continuous Cd exposure causes increased oxidative stress at cellular levels due to over-production of reactive oxygen species, exhausting antioxidant defense mechanisms. This leads to disruption of biologically relevant molecules, particularly nucleic acid, protein and lipid, and subsequently apoptosis, cell damage, and necrotic cell death. The histopatholocal changes in the liver, kidneys, and other organs are adversely reflected in hemogram and serum biochemical and enzyme activities. The present review discusses about Cd bioaccumulation and histopathological alterations in different tissues, pathogenesis of Cd toxicity, blood-biochemical changes, and its different ameliorative measures in poultry.
Collapse
Affiliation(s)
- Indrajit Kar
- Department of Avian Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, 700037, India
| | - Amlan Kumar Patra
- Department of Animal Nutrition, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, 700037, India.
| |
Collapse
|
15
|
Kumar A, Siddiqi NJ, Alrashood ST, Khan HA, Dubey A, Sharma B. Protective effect of eugenol on hepatic inflammation and oxidative stress induced by cadmium in male rats. Biomed Pharmacother 2021; 139:111588. [PMID: 33862491 DOI: 10.1016/j.biopha.2021.111588] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Cadmium is one of the most toxic heavy metals. The prolonged exposure of it can lead to severe alterations and damage in different tissues including blood, liver, kidney and brain. Eugenol, a phenolic compound, is present in various aromatic plants. It acts as a natural antioxidant and anti-inflammatory agent. The aim of this study was to investigate whether the treatment of eugenol is beneficial against the hepatic oxidative stress and inflammation induced by Cd. METHODS To study the effect of eugenol in reversal of Cd toxicity, 24 albino rats were equally divided into four different groups: G1 Control (saline), G2 Eugenol (3 mg kg-1), G3 CdCl2 (5 mg kg-1) and G4 CdCl2 + Eugenol (5 mg kg-1 + 3 mg kg-1). All the groups were treated with gavage orally for the period of 21 days. After this treatment period, rats were sacrificed and liver tissues were removed. The hepatic antioxidant status was evaluated by measuring the activities of SOD, Catalase and GST enzymes. The reduced glutathione, lipid peroxidation, protein carbonyl oxidation (PCO) and thiol contents were measured in hepatic tissues. The activities of liver marker enzymes such as ALT, AST, GGT, ALP, TP, albumin, Bilirubin content and LDH were determined to assess the hepatic damage in different groups. Cd induced hepatic inflammation was determined by evaluating the levels of TNF-a, IL-6 and NO. RESULTS Oral intoxication of Cd for 21 days significantly elevated the level of hepatic markers including activities of LDH, GGT, ALP, ALT, AST and Bilirubin level. The albumin content, reduced GSH level, and activities of antioxidant enzymes were significantly reduced in Cd treated group. The levels of inflammatory markers were significantly elevated in Cd treated group. The eugenol treatment was very effective and it significantly reversed the Cd induced biochemical alterations almost similar to that of control. CONCLUSION The results demonstrated that the eugenol possessed very strong anti-oxidative and anti-inflammatory potential. The co-treatment of eugenol with Cd exhibited protective potential of eugenol against Cd induced toxicity. Eugenol was able to improve the cellular redox system in rats treated with Cd.
Collapse
Affiliation(s)
- Abhishek Kumar
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India
| | - Nikhat J Siddiqi
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
| | - Sara T Alrashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Haseeb A Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
| | - Anchal Dubey
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India
| | - Bechan Sharma
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India.
| |
Collapse
|
16
|
George F, Mahieux S, Daniel C, Titécat M, Beauval N, Houcke I, Neut C, Allorge D, Borges F, Jan G, Foligné B, Garat A. Assessment of Pb(II), Cd(II), and Al(III) Removal Capacity of Bacteria from Food and Gut Ecological Niches: Insights into Biodiversity to Limit Intestinal Biodisponibility of Toxic Metals. Microorganisms 2021; 9:microorganisms9020456. [PMID: 33671764 PMCID: PMC7926695 DOI: 10.3390/microorganisms9020456] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 12/14/2022] Open
Abstract
Toxic metals (such as lead, cadmium, and, to a lesser extent, aluminum) are detrimental to health when ingested in food or water or when inhaled. By interacting with heavy metals, gut and food-derived microbes can actively and/or passively modulate (by adsorption and/or sequestration) the bioavailability of these toxins inside the gut. This “intestinal bioremediation” involves the selection of safe microbes specifically able to immobilize metals. We used inductively coupled plasma mass spectrometry to investigate the in vitro ability of 225 bacteria to remove the potentially harmful trace elements lead, cadmium, and aluminum. Interspecies and intraspecies comparisons were performed among the Firmicutes (mostly lactic acid bacteria, including Lactobacillus spp., with some Lactococcus, Pediococcus, and Carnobacterium representatives), Actinobacteria, and Proteobacteria. The removal of a mixture of lead and cadmium was also investigated. Although the objective of the study was not to elucidate the mechanisms of heavy metal removal for each strain and each metal, we nevertheless identified promising candidate bacteria as probiotics for the intestinal bioremediation of Pb(II) and Cd(II).
Collapse
Affiliation(s)
- Fanny George
- U1286–INFINITE-Institute for Translational Research in Inflammation, Institut Pasteur de Lille, CHU Lille, Université de Lille, F-59000 Lille, France; (F.G.); (S.M.); (M.T.); (I.H.); (C.N.)
| | - Séverine Mahieux
- U1286–INFINITE-Institute for Translational Research in Inflammation, Institut Pasteur de Lille, CHU Lille, Université de Lille, F-59000 Lille, France; (F.G.); (S.M.); (M.T.); (I.H.); (C.N.)
| | - Catherine Daniel
- U1019-UMR 9017–Center for Infection and Immunity of Lille, Institut Pasteur de Lille, CHU Lille, Université de Lille, F-59000 Lille, France;
| | - Marie Titécat
- U1286–INFINITE-Institute for Translational Research in Inflammation, Institut Pasteur de Lille, CHU Lille, Université de Lille, F-59000 Lille, France; (F.G.); (S.M.); (M.T.); (I.H.); (C.N.)
| | - Nicolas Beauval
- ULR 4483-IMPECS-IMPact de l’Environnement Chimique sur la Santé humaine, Institut Pasteur de Lille, CHU Lille, Université de Lille, F-59000 Lille, France; (N.B.); (D.A.); (A.G.)
- Unité fonctionnelle de Toxicologie, Institut Pasteur de Lille, CHU Lille, Université de Lille, F-59000 Lille, France
| | - Isabelle Houcke
- U1286–INFINITE-Institute for Translational Research in Inflammation, Institut Pasteur de Lille, CHU Lille, Université de Lille, F-59000 Lille, France; (F.G.); (S.M.); (M.T.); (I.H.); (C.N.)
| | - Christel Neut
- U1286–INFINITE-Institute for Translational Research in Inflammation, Institut Pasteur de Lille, CHU Lille, Université de Lille, F-59000 Lille, France; (F.G.); (S.M.); (M.T.); (I.H.); (C.N.)
| | - Delphine Allorge
- ULR 4483-IMPECS-IMPact de l’Environnement Chimique sur la Santé humaine, Institut Pasteur de Lille, CHU Lille, Université de Lille, F-59000 Lille, France; (N.B.); (D.A.); (A.G.)
- Unité fonctionnelle de Toxicologie, Institut Pasteur de Lille, CHU Lille, Université de Lille, F-59000 Lille, France
| | | | - Gwénaël Jan
- STLO, INRAE, Agrocampus Ouest, Institut Agro, Science & Technologie du Lait & de l’Œuf, F-35042 Rennes, France;
| | - Benoît Foligné
- U1286–INFINITE-Institute for Translational Research in Inflammation, Institut Pasteur de Lille, CHU Lille, Université de Lille, F-59000 Lille, France; (F.G.); (S.M.); (M.T.); (I.H.); (C.N.)
- Correspondence: ; Tel.: +33-621741015
| | - Anne Garat
- ULR 4483-IMPECS-IMPact de l’Environnement Chimique sur la Santé humaine, Institut Pasteur de Lille, CHU Lille, Université de Lille, F-59000 Lille, France; (N.B.); (D.A.); (A.G.)
- Unité fonctionnelle de Toxicologie, Institut Pasteur de Lille, CHU Lille, Université de Lille, F-59000 Lille, France
| |
Collapse
|
17
|
Wang M, Chen Z, Song W, Hong D, Huang L, Li Y. A review on Cadmium Exposure in the Population and Intervention Strategies Against Cadmium Toxicity. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 106:65-74. [PMID: 33486543 DOI: 10.1007/s00128-020-03088-1] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
The rapid industrial development has led to serious cadmium (Cd) pollution. Cd is a toxic heavy metal placing severe health threat to human. Cd can enter the body through the atmosphere, water, soil and food, and has a long half-life (10-30 years), it largely accumulates in kidneys, liver, bone and other organs and causes irreversible damage to the target organs. Cd pollution has also further caused certain carcinogenic and non-carcinogenic health risk. This study summarizes the current situation of Cd pollution, the toxicity of specific target organs, carcinogenic risk and non-carcinogenic risk in the general population, as well as dietary supplements to prevent and mitigate Cd toxication, which aims to focus on the adverse effects of Cd to human from both individual and population perspectives, hoping that not only the health risk of Cd poisoning can be reduced, but also the accurate prevention and control of Cd poisoning can be achieved in the future.
Collapse
Affiliation(s)
- Mei Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210000, Jiangsu, China
| | - Zhaofang Chen
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Wei Song
- Centers for Disease Control and Prevention, Nanjing, 210093, Jiangsu, China
| | - Dezi Hong
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210000, Jiangsu, China
| | - Lei Huang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Yunhui Li
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210000, Jiangsu, China.
| |
Collapse
|
18
|
Bhattacharya S. The Role of Probiotics in the Amelioration of Cadmium Toxicity. Biol Trace Elem Res 2020; 197:440-444. [PMID: 31933279 DOI: 10.1007/s12011-020-02025-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/01/2020] [Indexed: 10/25/2022]
Abstract
Cadmium is extremely toxic heavy metal, and there is no specific, safe, and efficacious therapeutic management of cadmium toxicity. Scientific literature reveals several probiotic microorganisms which alleviate experimentally induced cadmium toxicity in animals. The present review attempts to collate the experimental studies on probiotics and probiotic-derived natural products with cadmium toxicity ameliorative effects. Literature survey revealed that seven (7) types of probiotic microorganisms exhibited significant protection from cadmium toxicity in experimental pre-clinical studies. Clinical study with significant outcome was not found in literature. From the outcomes of the pre-clinical studies, it appears that probiotics have the prospect for alleviation and treatment of cadmium toxicity.
Collapse
Affiliation(s)
- Sanjib Bhattacharya
- West Bengal Medical Services Corporation Ltd., GN 29, Sector V, Salt Lake City, Kolkata, West Bengal, 700091, India.
| |
Collapse
|
19
|
Liu T, Liang X, Lei C, Huang Q, Song W, Fang R, Li C, Li X, Mo H, Sun N, Lv H, Liu Z. High-Fat Diet Affects Heavy Metal Accumulation and Toxicity to Mice Liver and Kidney Probably via Gut Microbiota. Front Microbiol 2020; 11:1604. [PMID: 32849333 PMCID: PMC7399142 DOI: 10.3389/fmicb.2020.01604] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 06/18/2020] [Indexed: 11/13/2022] Open
Abstract
Previous studies proved that heavy metals could increase the risk of disease by acting on the gut microbiota. Meanwhile, gut microbiota played important roles in detoxifying heavy metals. However, the response of gut microbiota to heavy metals and which microbes dominated this detoxification processes are still unclear. This study investigated the difference of high-fat-diet (HFD) and normal-diet (ND) gut microbiota and their response to and detoxification effects on arsenic (As), cadmium (Cd), and lead (Pb) exposure. Results showed that gut microbiota of ND and HFD was significantly different and responded to As, Pb, and Cd exposure differently, too. When exposed to 100 ppm As, Cd, or Pb, HFD-fed mice accumulated more heavy metals in the liver and kidney along with more severe functional damage than ND-fed mice, indicated by a more dramatic increase of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities and urinary total protein (TPU), urinary uric acid (UUA), and urinary creatinine (Ucrea) content. Among ND gut microbiota, relative abundance of Bacteroides, Lactobacillus, Butyricimonas, and Dorea was significantly increased by arsenic (As) exposure; relative abundance of Faecoccus and Lactobacillus was significantly increased by Cd exposure; relative abundance of Desulfovibrio, Plasmodium, and Roseburia were significantly increased by Pb exposure. However, among HFD gut microbiota, those microbes were not significantly changed. Bivariate association analysis found weak positive correlations between content of fecal excreted heavy metals and richness of total fecal microbiota as well as abundance of some of the heavy metal-enriched microbes. Our study concluded that HFD increased disease risk of heavy metal exposure probably via its gut microbiota which excreted less heavy metal through feces.
Collapse
Affiliation(s)
- Ting Liu
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xue Liang
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chao Lei
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qinhong Huang
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weiqi Song
- Department of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Rong Fang
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chen Li
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaomei Li
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hui Mo
- The Public Laboratory, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Ning Sun
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Research Institute of Chinese Medicine Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Haoran Lv
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhihua Liu
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
20
|
Lemoine MM, Engl T, Kaltenpoth M. Microbial symbionts expanding or constraining abiotic niche space in insects. CURRENT OPINION IN INSECT SCIENCE 2020; 39:14-20. [PMID: 32086000 DOI: 10.1016/j.cois.2020.01.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/07/2020] [Accepted: 01/13/2020] [Indexed: 05/06/2023]
Abstract
In addition to their well-studied contributions to their host's nutrition, digestion, and defense, microbial symbionts of insects are increasingly found to affect their host's response toward abiotic stressors. In particular, symbiotic microbes can reduce or enhance tolerance to temperature extremes, improve desiccation resistance by aiding cuticle biosynthesis and sclerotization, and detoxify heavy metals. As such, individual symbionts or microbial communities can expand or constrain the abiotic niche space of their host and determine its adaptability to fluctuating environments. In light of the increasing impact of humans on climate and environment, a better understanding of host-microbe interactions is necessary to predict how different insect species will respond to changes in abiotic conditions.
Collapse
Affiliation(s)
- Marion M Lemoine
- Department of Evolutionary Ecology, Institute for Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Tobias Engl
- Department of Evolutionary Ecology, Institute for Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Martin Kaltenpoth
- Department of Evolutionary Ecology, Institute for Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany.
| |
Collapse
|
21
|
Feng P, Ye Z, Kakade A, Virk AK, Li X, Liu P. A Review on Gut Remediation of Selected Environmental Contaminants: Possible Roles of Probiotics and Gut Microbiota. Nutrients 2018; 11:nu11010022. [PMID: 30577661 PMCID: PMC6357009 DOI: 10.3390/nu11010022] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/09/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023] Open
Abstract
Various environmental contaminants including heavy metals, pesticides and antibiotics can contaminate food and water, leading to adverse effects on human health, such as inflammation, oxidative stress and intestinal disorder. Therefore, remediation of the toxicity of foodborne contaminants in human has become a primary concern. Some probiotic bacteria, mainly Lactobacilli, have received a great attention due to their ability to reduce the toxicity of several contaminants. For instance, Lactobacilli can reduce the accumulation and toxicity of selective heavy metals and pesticides in animal tissues by inhibiting intestinal absorption of contaminants and enhancing intestinal barrier function. Probiotics have also shown to decrease the risk of antibiotic-associated diarrhea possibly via competing and producing antagonistic compounds against pathogenic bacteria. Furthermore, probiotics can improve immune function by enhancing the gut microbiota mediated anti-inflammation. Thus, these probiotic bacteria are promising candidates for protecting body against foodborne contaminants-induced toxicity. Study on the mechanism of these beneficial bacterial strains during remediation processes and particularly their interaction with host gut microbiota is an active field of research. This review summarizes the current understanding of the remediation mechanisms of some probiotics and the combined effects of probiotics and gut microbiota on remediation of foodborne contaminants in vivo.
Collapse
Affiliation(s)
- Pengya Feng
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China.
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China.
| | - Ze Ye
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China.
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China.
| | - Apurva Kakade
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China.
| | - Amanpreet Kaur Virk
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China.
| | - Xiangkai Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China.
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China.
| | - Pu Liu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China.
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China.
| |
Collapse
|
22
|
Yin J, Li Y, Han H, Chen S, Gao J, Liu G, Wu X, Deng J, Yu Q, Huang X, Fang R, Li T, Reiter RJ, Zhang D, Zhu C, Zhu G, Ren W, Yin Y. Melatonin reprogramming of gut microbiota improves lipid dysmetabolism in high-fat diet-fed mice. J Pineal Res 2018; 65:e12524. [PMID: 30230594 DOI: 10.1111/jpi.12524] [Citation(s) in RCA: 290] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/17/2018] [Accepted: 09/13/2018] [Indexed: 12/13/2022]
Abstract
Melatonin has been shown to improve lipid metabolism and gut microbiota communities in animals and humans; however, it remains to know whether melatonin prevents obesity through gut microbiota. Here, we found that high-fat diet promoted the lipid accumulation and intestinal microbiota dysbiosis in mice, while oral melatonin supplementation alleviated the lipid accumulation and reversed gut microbiota dysbiosis, including the diversity of intestinal microbiota, relative abundances of Bacteroides and Alistipes, and functional profiling of microbial communities, such as energy metabolism, lipid metabolism, and carbohydrate metabolism. Interestingly, melatonin failed to alleviate the high-fat-induced lipid accumulation in antibiotic-treated mice; however, microbiota transplantation from melatonin-treated mice alleviated high-fat diet-induced lipid metabolic disorders. Notably, short-chain fatty acids were decreased in high-fat diet-fed mice, while melatonin treatment improved the production of acetic acid. Correlation analysis found a marked correlation between production of acetic acid and relative abundances of Bacteroides and Alistipes. Importantly, sodium acetate treatment also alleviated high-fat diet-induced lipid metabolic disorders. Taken together, our results suggest that melatonin improves lipid metabolism in high-fat diet-fed mice, and the potential mechanisms may be associated with reprogramming gut microbiota, especially, Bacteroides and Alistipes-mediated acetic acid production. Future studies are needed for patients with metabolic syndrome to fully understand melatonin's effects on body weight and lipid profiles and the potential mechanism of gut microbiota.
Collapse
Affiliation(s)
- Jie Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, China
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuying Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui Han
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuai Chen
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Gao
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Gang Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, China
| | - Xin Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, China
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qifang Yu
- Department of Animal science, Hunan Agriculture University, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Xingguo Huang
- Department of Animal science, Hunan Agriculture University, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Rejun Fang
- Department of Animal science, Hunan Agriculture University, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Tiejun Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX
| | - Dong Zhang
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Congrui Zhu
- College of Veterinary Medicine, Kansas State University, Manhattan, KS
| | - Guoqiang Zhu
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Wenkai Ren
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, China
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
23
|
Hu S, Cao X, Wu Y, Mei X, Xu H, Wang Y, Zhang X, Gong L, Li W. Effects of Probiotic Bacillus as an Alternative of Antibiotics on Digestive Enzymes Activity and Intestinal Integrity of Piglets. Front Microbiol 2018; 9:2427. [PMID: 30405544 PMCID: PMC6204369 DOI: 10.3389/fmicb.2018.02427] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/21/2018] [Indexed: 12/22/2022] Open
Abstract
The previous study in our team found that supplementation of probiotic Bacillus amyloliquefaciens (Ba) instead of antibiotics promote growth performance of piglets. Hence, the present study was carried out to further demonstrate the effect of Ba replacement of antibiotics on digestive and absorption enzyme activity and intestinal microbiota population of piglets. A total of 90 piglets were selected and divided into three groups: G1 group was fed with basal diet supplemented with 150 mg/Kg aureomycin, G2 group was fed with 1 × 108 cfu/Kg Ba and half dose of aureomycin, G3 group was used the diet with 2 × 108cfu/Kg Ba replaced aureomycin. Each treatment had three replications of 10 pigs per pen. Results indicated that Ba replacement significantly increased the activities of amylase, disaccharides and Na+/K+-ATPase. And chymotrypsin activity in different section of intestine was dramatically enhanced in half replacement of aureomycin with Ba. Moreover, Ba replacement maintained the intestinal integrity with the significantly decreased activity of DAO compared with aureomycin group. Besides, supplementation with Ba increased the β-diversity of intestinal microbiota. Taken together, the current study indicated that diet supplementation with Ba instead of aureomycin increased the growth performance of piglets by improving the digestive and absorb enzyme activities, enhancing the intestinal integrity and regulating the population of intestinal micrbiota.
Collapse
Affiliation(s)
- Shenglan Hu
- Key Laboratory of Molecular Animal Nutrition and Feed Sciences, College of Animal Science, Zhejiang University, Hangzhou, China.,State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xuefang Cao
- Key Laboratory of Molecular Animal Nutrition and Feed Sciences, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yanping Wu
- Key Laboratory of Molecular Animal Nutrition and Feed Sciences, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Xiaoqiang Mei
- Key Laboratory of Molecular Animal Nutrition and Feed Sciences, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Han Xu
- Key Laboratory of Molecular Animal Nutrition and Feed Sciences, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yang Wang
- Key Laboratory of Molecular Animal Nutrition and Feed Sciences, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Xiaoping Zhang
- Key Laboratory of Resources and Utilization of Bamboo of State Forestry Administration, China National Bamboo Research Center, Hangzhou, China
| | - Li Gong
- Key Laboratory of Molecular Animal Nutrition and Feed Sciences, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Weifen Li
- Key Laboratory of Molecular Animal Nutrition and Feed Sciences, College of Animal Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Tinkov AA, Gritsenko VA, Skalnaya MG, Cherkasov SV, Aaseth J, Skalny AV. Gut as a target for cadmium toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:429-434. [PMID: 29310086 DOI: 10.1016/j.envpol.2017.12.114] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 12/26/2017] [Accepted: 12/28/2017] [Indexed: 05/23/2023]
Abstract
The primary objective of the present study was to review the impact of Cd exposure on gut microbiota and intestinal physiology, as well as to estimate whether gut may be considered as the target for Cd toxicity. The review is based on literature search in available databases. The existing data demonstrate that the impact of Cd on gut physiology is two-sided. First, Cd exposure induces a significant alteration of bacterial populations and their relative abundance in gut (increased Bacteroidetes-to-Firmicutes ratio), accompanied by increased lipopolysaccharide (LPS) production, reflecting changed metabolic activity of the intestinal microbiome. Second, in intestinal wall Cd exposure induces inflammatory response and cell damage including disruption of tight junctions, ultimately leading to increased gut permeability. Together with increased LPS production, impaired barrier function causes endotoxinemia and systemic inflammation. Hypothetically, Cd-induced increase gut permeability may also result in increased bacterial translocation. On the one hand, bacteriolysis may be associated with aggravation of endotoxemia. At the same time, together with Cd-induced impairment of macrophage inflammatory response, increased bacterial translocation may result in increased susceptibility to infections. Such a supposition is generally in agreement with the finding of higher susceptibility of Cd-exposed mice to infections. The changed microbiome metabolic activity and LPS-induced systemic inflammation may have a significant impact on target organs. The efficiency of probiotics in at least partial prevention of the local (intestinal) and systemic toxic effects of cadmium confirms the role of altered gut physiology in Cd toxicity. Therefore, probiotic treatment may be considered as the one of the strategies for prevention of Cd toxicity in parallel with chelation, antioxidant, and anti-inflammatory therapy.
Collapse
Affiliation(s)
- Alexey A Tinkov
- Yaroslavl State University, Sovetskaya St., 14, Yaroslavl 150000, Russia; Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St., 10/2, Moscow 117198, Russia; Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, 460008, Russia.
| | - Viktor A Gritsenko
- Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, 460008, Russia
| | - Margarita G Skalnaya
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St., 10/2, Moscow 117198, Russia
| | - Sergey V Cherkasov
- Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, 460008, Russia
| | - Jan Aaseth
- Innlandet Hospital Trust, 2226 Kongsvinger, Norway; Inland Norway University of Applied Sciences, Terningen Arena, 2411 Elverum, Norway
| | - Anatoly V Skalny
- Yaroslavl State University, Sovetskaya St., 14, Yaroslavl 150000, Russia; Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St., 10/2, Moscow 117198, Russia; Orenburg State University, Pobedy Ave., 13, Orenburg 460018, Russia
| |
Collapse
|
25
|
Wang X, Bao R, Fu J. The Antagonistic Effect of Selenium on Cadmium-Induced Damage and mRNA Levels of Selenoprotein Genes and Inflammatory Factors in Chicken Kidney Tissue. Biol Trace Elem Res 2018; 181:331-339. [PMID: 28510033 DOI: 10.1007/s12011-017-1041-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 04/28/2017] [Indexed: 01/15/2023]
Abstract
Selenium (Se) is a necessary trace mineral in the diet of humans and animals. Cadmium (Cd) is a toxic heavy metal that can damage animal organs, especially the kidneys. Antagonistic interactions between Se and Cd have been reported in previous studies. However, little is known about the effects of Se against Cd toxicity and on the mRNA levels of 25 selenoprotein genes and inflammatory factors in chicken kidneys. In the current study, we fed chickens with a Se-treated, Cd-treated, or Se/Cd treated diet for 90 days. We then analyzed the mRNA expression of inflammatory factors (including prostaglandin E synthase (PTGES), nuclear factor-kappa B (NF-κB), tumor necrosis factor-α (TNF-α), and cyclooxygenase-2 (COX-2)) and 25 selenoprotein genes (Gpx1, Gpx2, Gpx3, Gpx4, Txnrd1, Txnrd2, Txnrd3, Dio1, Dio2, Dio3, SPS2, Sepp1, SelPb, Sep15, Selh, Seli, Selm, Selo, Sels, Sepx1, Selu, Selk, Selw, Seln, Selt). The results demonstrated that Cd exposure increased the Cd content in the chicken kidneys, renal tubular epithelial cells underwent denaturation and necrosis, and the tubules became narrow or disappeared. However, Se supplementation reduced the Cd content in chicken kidneys and induced normal development of renal tubular epithelial cells. In addition, we also observed that Se alleviated the Cd-induced increase in the mRNA levels of inflammatory factors and ameliorated the Cd-induced downtrend in the mRNA levels of 25 selenoprotein genes in chicken kidneys.
Collapse
Affiliation(s)
- Xinyue Wang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Rongkun Bao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jing Fu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|