1
|
Shekoohi N, Carson BP, Fitzgerald RJ. Antioxidative, Glucose Management, and Muscle Protein Synthesis Properties of Fish Protein Hydrolysates and Peptides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21301-21317. [PMID: 39297866 PMCID: PMC11450812 DOI: 10.1021/acs.jafc.4c02920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/30/2024] [Accepted: 09/11/2024] [Indexed: 10/03/2024]
Abstract
The marine environment is an excellent source for many physiologically active compounds due to its extensive biodiversity. Among these, fish proteins stand out for their unique qualities, making them valuable in a variety of applications due to their diverse compositional and functional properties. Utilizing fish and fish coproducts for the production of protein hydrolysates and bioactive peptides not only enhances their economic value but also reduces their potential environmental harm, if left unutilized. Fish protein hydrolysates (FPHs), known for their excellent nutritional value, favorable amino acid profiles, and beneficial biological activities, have generated significant interest for their potential health benefits. These hydrolysates contain bioactive peptides which are peptide sequences known for their beneficial physiological effects. These biologically active peptides play a role in metabolic regulation/modulation and are increasingly seen as promising ingredients in functional foods, nutraceuticals and pharmaceuticals, with potential to improve human health and prevent disease. This review aims to summarize the current in vitro, cell model (in situ) and in vivo research on the antioxidant, glycaemic management and muscle health enhancement properties of FPHs and their peptides.
Collapse
Affiliation(s)
- Niloofar Shekoohi
- Department
of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland
| | - Brian P. Carson
- Department
of Physical Education and Sport Sciences, Faculty of Education and
Health Sciences, University of Limerick, V94 T9PX Limerick, Ireland
- Health
Research Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Richard J. Fitzgerald
- Department
of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland
- Health
Research Institute, University of Limerick, V94 T9PX Limerick, Ireland
| |
Collapse
|
2
|
Koizumi S, Okada Y, Miura S, Imai Y, Igase K, Ohyagi Y, Igase M. Ingestion of a collagen peptide containing high concentrations of prolyl-hydroxyproline and hydroxyprolyl-glycine reduces advanced glycation end products levels in the skin and subcutaneous blood vessel walls: a randomized, double-blind, placebo-controlled study. Biosci Biotechnol Biochem 2023; 87:883-889. [PMID: 37245058 DOI: 10.1093/bbb/zbad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/21/2023] [Indexed: 05/29/2023]
Abstract
In this randomized, double-blind, placebo-controlled study, we investigated the effects of collagen peptides (CP) containing high concentrations of prolyl-hydroxyproline and hydroxyprolyl-glycine on advanced glycation end products (AGEs) levels in the skin and subcutaneous blood vessel walls. A total of 31 individuals aged 47-87 years were randomly assigned to receive either 5 g/day of fish-derived CP or a placebo for 12 weeks. Body and blood compositions and AGEs levels were measured at the beginning and end of the study. No adverse events were observed, and both groups' blood and body compositions did not change significantly. However, the CP group had significantly lower AGEs levels and a slightly lower insulin resistance index (homeostasis model assessment ratio [HOMA-R]) than the placebo group. In addition, the percentage changes in AGEs and HOMA-R levels were positively and strongly correlated in both groups. These findings suggest that fish-derived CP may be effective in reducing AGEs levels and improving insulin resistance.
Collapse
Affiliation(s)
- Seiko Koizumi
- Research and Development Center, Nitta Gelatin Inc., Osaka, Japan
| | - Yoko Okada
- Department of Neurology and Geriatric Medicine, Ehime University Graduate School of Medicine, Toon City, Ehime, Japan
| | - Shiroh Miura
- Department of Neurology and Geriatric Medicine, Ehime University Graduate School of Medicine, Toon City, Ehime, Japan
| | - Yuuki Imai
- Department of Pathophysiology, Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University Graduate School of Medicine, Toon City, Ehime, Japan
| | - Keiji Igase
- Department of Advanced Brain Therapy, Ehime University Graduate School of Medicine, Toon City, Ehime, Japan
| | - Yasumasa Ohyagi
- Department of Neurology and Geriatric Medicine, Ehime University Graduate School of Medicine, Toon City, Ehime, Japan
| | - Michiya Igase
- Department of Anti-Aging Medicine, Ehime University Graduate School of Medicine, Toon City, Ehime, Japan
| |
Collapse
|
3
|
Munawaroh HSH, Pratiwi RN, Gumilar GG, Aisyah S, Rohilah S, Nurjanah A, Ningrum A, Susanto E, Pratiwi A, Arindita NPY, Martha L, Chew KW, Show PL. Synthesis, modification and application of fish skin gelatin-based hydrogel as sustainable and versatile bioresource of antidiabetic peptide. Int J Biol Macromol 2023; 231:123248. [PMID: 36642356 DOI: 10.1016/j.ijbiomac.2023.123248] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/24/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
Gelatin hydrogel is widely employed in various fields, however, commercially available gelatin hydrogels are mostly derived from mammalian which has many disadvantages due to the supply and ethical issues. In this study, the properties of hydrogels from fish-derived collagen fabricated with varying Glutaraldehyde (GA) determined. The antidiabetic properties of salmon gelatin (SG) and tilapia gelatin (TG) was also evaluated against α-glucosidase. Glutaraldehyde-crosslinked salmon gelatin and tilapia gelatin were used, and compared with different concentrations of GA by 0.05 %, 0.1 %, and 0.15 %. Water absorbency, swelling, porosity, pore size and water retention of the hydrogels were dependent on the degree of crosslinking. The synthesis of hydrogels was confirmed by FTIR study. Scanning electron microscope (SEM) observation showed that all hydrogels have a porous structure with irregular shapes and heterogeneous morphology. Performance tests showed that gelatin-GA 0.05 % mixture had the best performance. Antidiabetic bioactivity in vitro and in silico tests showed that the active peptides of SG and TG showed a high binding affinity to α-glucosidase enzyme. In conclusion, SG and TG cross-linked GA 0.05 % have the potential as an antidiabetic agent and as a useful option over mammalian-derived gelatin.
Collapse
Affiliation(s)
- Heli Siti Halimatul Munawaroh
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi 229, Bandung 40154, Indonesia.
| | - Riska Nur Pratiwi
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi 229, Bandung 40154, Indonesia
| | - Gun Gun Gumilar
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi 229, Bandung 40154, Indonesia
| | - Siti Aisyah
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi 229, Bandung 40154, Indonesia
| | - Siti Rohilah
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi 229, Bandung 40154, Indonesia
| | - Anisa Nurjanah
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi 229, Bandung 40154, Indonesia
| | - Andriati Ningrum
- Department of Food Science and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 5528, Indonesia
| | - Eko Susanto
- Faculty of Fisheries and Marine Science, Universitas Diponegoro, Jalan Prof. Jacub Rais Tembalang, Semarang 50275, Indonesia
| | - Amelinda Pratiwi
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi 229, Bandung 40154, Indonesia
| | - Ni Putu Yunika Arindita
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi 229, Bandung 40154, Indonesia
| | - Larasati Martha
- Laboratory of Biopharmaceutics, Department of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki City, Gunma prefecture 370-0033, Japan
| | - Kit Wayne Chew
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Pau-Loke Show
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Chemical Engineering, Khalifa University, Shakhbout Bin Sultan St - Zone 1 - Abu Dhabi - United Arab Emirates; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India; Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Jalan Broga 43500, Selangor, Malaysia.
| |
Collapse
|
4
|
Munawaroh HSH, Gumilar GG, Berliana JD, Aisyah S, Nuraini VA, Ningrum A, Susanto E, Martha L, Kurniawan I, Hidayati NA, Koyande AK, Show PL. In silico proteolysis and molecular interaction of tilapia (Oreochromis niloticus) skin collagen-derived peptides for environmental remediation. ENVIRONMENTAL RESEARCH 2022; 212:113002. [PMID: 35305983 DOI: 10.1016/j.envres.2022.113002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/24/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Fish skin collagen hydrolyzate has demonstrated the potent inhibition of dipeptidyl peptidase-IV (DPP-IV), one of the treatments for type-2 diabetes mellitus (type-2 DM), but the precise mechanism is still unclear. This study used in silico method to evaluate the potential of the active peptides from tilapia skin collagen (Oreochromis niloticus) for DPP-IV inhibitor. The methodology includes collagen hydrolysis using BIOPEP, which is the database of bioactive peptides; active peptide selection; toxicity, allergenicity, sensory analysis of active peptides; and binding of active peptides to DPP-IV compared with linagliptin. The result indicated that in silico enzymatic hydrolysis of collagen produced active peptides with better prediction of biological activity than intact collagen. There are 13 active peptides were predicted as non-toxic and non-allergenic, some of which have a bitter, salty, and undetectable taste. Docking simulations showed all active peptides interacted with DPP-IV through hydrogen bonds, van der Waals force, hydrophobic interaction, electrostatic force, π-sulfur, and unfavorable interaction, where WF (Trp-Phe), VW (Val-Trp), WY (Trp-Tyr), and WG (Trp-Gly) displayed higher binding affinities of 0.8; 0.5; 0.4; and 0.3 kcal/mol compared with linagliptin. In this study, we successfully demonstrated antidiabetic type-2 DM potential of the active peptides from tilapia skin collagen. The obtained data provided preliminary data for further research in the utilization of fish skin waste as a functional compound to treat the type-2 DM patients. Alternatively, this treatment can be synergistically combined with the available antidiabetic drugs to improve the insulin secretion of the type-2 DM patients.
Collapse
Affiliation(s)
- Heli Siti Halimatul Munawaroh
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi 229, Bandung, 40154, Indonesia
| | - Gun Gun Gumilar
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi 229, Bandung, 40154, Indonesia
| | - Jerlita Dea Berliana
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi 229, Bandung, 40154, Indonesia
| | - Siti Aisyah
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi 229, Bandung, 40154, Indonesia
| | - Vidia Afina Nuraini
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi 229, Bandung, 40154, Indonesia
| | - Andriati Ningrum
- Department of Food Science and Agricultural Product Technology, Faculty of Agricultural Technology, Gadjah Mada University, Yogyakarta, 5528, Indonesia
| | - Eko Susanto
- Faculty of Fisheries and Marine Science, Universitas Diponegoro, Jalan Prof. Soedarto, SH Tembalang, Semarang, 50275, Indonesia
| | - Larasati Martha
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi City, Gunma, 371-8514, Japan
| | - Isman Kurniawan
- School of Computing, Telkom University, Jalan Terusan Buah Batu, Bandung, 40257, Indonesia
| | - Nur Akmalia Hidayati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung, 40132, Indonesia
| | - Apurav Krishna Koyande
- Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Selangor, Malaysia
| | - Pau-Loke Show
- Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Selangor, Malaysia.
| |
Collapse
|
5
|
Abachi S, Pilon G, Marette A, Bazinet L, Beaulieu L. Beneficial effects of fish and fish peptides on main metabolic syndrome associated risk factors: Diabetes, obesity and lipemia. Crit Rev Food Sci Nutr 2022; 63:7896-7944. [PMID: 35297701 DOI: 10.1080/10408398.2022.2052261] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The definition of metabolic syndrome (MetS) fairly varies from one to another guideline and health organization. Per description of world health organization, occurrence of hyperinsulinemia or hyperglycemia in addition to two or more factors of dyslipidemia, hypoalphalipoproteinemia, hypertension and or large waist circumference factors would be defined as MetS. Conventional therapies and drugs, commonly with adverse effects, are used to treat these conditions and diseases. Nonetheless, in the recent decades scientific community has focused on the discovery of natural compounds to diminish the side effects of these medications. Among many available bioactives, biologically active peptides have notable beneficial effects on the management of diabetes, obesity, hypercholesterolemia, and hypertension. Marine inclusive of fish peptides have exerted significant bioactivities in different experimental in-vitro, in-vivo and clinical settings. This review exclusively focuses on studies from the recent decade investigating hypoglycemic, hypolipidemic, hypercholesterolemic and anti-obesogenic fish and fish peptides. Related extraction, isolation, and purification methodologies of anti-MetS fish biopeptides are reviewed herein for comparison purposes only. Moreover, performance of biopeptides in simulated gastrointestinal environment and structure-activity relationship along with absorption, distribution, metabolism, and excretion properties of selected oligopeptides have been discussed, in brief, to broaden the knowledge of readers on the design and discovery trends of anti-MetS compounds.Supplemental data for this article is available online at https://doi.org/10.1080/10408398.2022.2052261 .
Collapse
Affiliation(s)
- Soheila Abachi
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada
- Department of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec, Quebec, Canada
| | - Geneviève Pilon
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Quebec Heart and Lung Institute, Quebec, Quebec, Canada
| | - André Marette
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Quebec Heart and Lung Institute, Quebec, Quebec, Canada
| | - Laurent Bazinet
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada
- Department of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec, Quebec, Canada
- Laboratory of Food Processing and ElectroMembrane Processes (LTAPEM), Université Laval, Quebec, Quebec, Canada
| | - Lucie Beaulieu
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada
- Department of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec, Quebec, Canada
| |
Collapse
|
6
|
Xing L, Wang Z, Hao Y, Zhang W. Marine Products As a Promising Resource of Bioactive Peptides: Update of Extraction Strategies and Their Physiological Regulatory Effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3081-3095. [PMID: 35235313 DOI: 10.1021/acs.jafc.1c07868] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Marine products are a rich source of nutritional components and play important roles in promoting human health. Fish, mollusks, shellfish, as well as seaweeds are the major components of marine products with high-quality proteins. During the last several decades, bioactive peptides from marine products have gained much attention due to their diverse biological properties including antioxidant, antihypertensive, antimicrobial, antidiabetic, immunoregulation, and antifatigue. The structural characteristics of marine bioactive peptides largely determine the differences in signaling pathways that can be involved, which is also an internal mechanism to exert various physiological regulatory activities. In addition, the marine bioactive peptides may be used as ingredients in food or nutritional supplements with the function of treating or alleviating chronic diseases. This review presents an update of marine bioactive peptides with the highlights on the novel producing technologies, the physiological effects, as well as their regulation mechanisms. Challenges and problems are also discussed in this review to provide some potential directions for future research.
Collapse
Affiliation(s)
- Lujuan Xing
- Key Laboratory of Meat Processing and Quality Control, MOE, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Zixu Wang
- Key Laboratory of Meat Processing and Quality Control, MOE, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Yuejing Hao
- Key Laboratory of Meat Processing and Quality Control, MOE, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Wangang Zhang
- Key Laboratory of Meat Processing and Quality Control, MOE, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, Nanjing Agricultural University, Nanjing 210095, P. R. China
| |
Collapse
|
7
|
Nirmal NP, Santivarangkna C, Rajput MS, Benjakul S, Maqsood S. Valorization of fish byproducts: Sources to end-product applications of bioactive protein hydrolysate. Compr Rev Food Sci Food Saf 2022; 21:1803-1842. [PMID: 35150206 DOI: 10.1111/1541-4337.12917] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/16/2021] [Accepted: 01/05/2022] [Indexed: 12/17/2022]
Abstract
Fish processing industries result in an ample number of protein-rich byproducts, which have been used to produce protein hydrolysate (PH) for human consumption. Chemical, microbial, and enzymatic hydrolysis processes have been implemented for the production of fish PH (FPH) from diverse types of fish processing byproducts. FPH has been reported to possess bioactive active peptides known to exhibit various biological activities such as antioxidant, antimicrobial, angiotensin-I converting enzyme inhibition, calcium-binding ability, dipeptidyl peptidase-IV inhibition, immunomodulation, and antiproliferative activity, which are discussed comprehensively in this review. Appropriate conditions for the hydrolysis process (e.g., type and concentration of enzymes, time, and temperature) play an important role in achieving the desired level of hydrolysis, thus affecting the functional and bioactive properties and stability of FPH. This review provides an in-depth and comprehensive discussion on the sources, process parameters, purification as well as functional and bioactive properties of FPHs. The most recent research findings on the impact of production parameters, bitterness of peptide, storage, and food processing conditions on functional properties and stability of FPH were also reported. More importantly, the recent studies on biological activities of FPH and in vivo health benefits were discussed with the possible mechanism of action. Furthermore, FPH-polyphenol conjugate, encapsulation, and digestive stability of FPH were discussed in terms of their potential to be utilized as a nutraceutical ingredient. Last but not the least, various industrial applications of FPH and the fate of FPH in terms of limitations, hurdles, future research directions, and challenges have been addressed.
Collapse
Affiliation(s)
| | | | - Mithun Singh Rajput
- Department of Pharmacology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), Gujarat, India
| | - Soottawat Benjakul
- The International Center of Excellence in Seafood Science and Innovation, Prince of Songkla University, Songkhla, Thailand
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
8
|
Study on the Mechanism of the Blood-Glucose-Lowering Effect of Collagen Peptides from Sturgeon By-Products. Mar Drugs 2021; 19:md19100584. [PMID: 34677483 PMCID: PMC8541525 DOI: 10.3390/md19100584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 12/25/2022] Open
Abstract
In a previous study, we found that the collagen peptides prepared from the by-products of Bester sturgeon had an inhibitory effect on elevated blood glucose levels in a glucose tolerance test with ICR mice. In the present study, we examine the mechanism of the effect of sturgeon collagen peptides (SCPs) in detail. When glucose was orally administered to mice along with the SCPs, it was found that the glucose remained in the stomach for a longer time. In the above tests, the amount of glucose excreted in the feces of mice also increased. On the contrary, it was revealed that the SCPs have a dipeptidyl-peptidase-IV (DPP-IV) inhibitory ability in an in vitro test. In subsequent oral and intravenous glucose administration tests, glucagon-like peptide-1 (GLP-1) and insulin levels in the blood of mice were maintained at high levels. These results suggested the following three mechanisms: SCPs slow the rate of transportation of glucose from the stomach into the small intestine, resulting in delayed glucose absorption; SCPs suppress the absorption of glucose in the small intestine and excrete it from the body; SCPs inhibit DPP-IV in the blood and maintain a high GLP-1 level in blood, which in turn stimulates insulin secretion.
Collapse
|
9
|
Anti-diabetic properties of bioactive components from fish and milk. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
10
|
Bio/multi-functional peptides derived from fish gelatin hydrolysates: Technological and functional properties. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102152] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Watanabe R, Yamaguchi M, Watanabe K, Shimizu M, Azusa T, Sone H, Kamiyama S. Effects of Collagen Peptide Administration on Visceral Fat Content in High-Fat Diet-Induced Obese Mice. J Nutr Sci Vitaminol (Tokyo) 2021; 67:57-62. [PMID: 33642465 DOI: 10.3177/jnsv.67.57] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Collagen peptides (CPs) are bioactive molecules that have beneficial effects on bone metabolism and against joint disorders. In the present study, we investigated the effect of CP supplementation on visceral fat mass and plasma lipid concentrations in high-fat diet (HFD)-induced obese mice. Male ddY mice were fed a normal diet or HFD for 3 wk, and assigned to N or NCP groups and to F or FCP groups, respectively. The NCP and FCP group mice were administered experimental diets containing 25 mg/g CPs for 3 wk further. During the experimental period, CP supplementation affected neither the food consumption nor the body weight of the mice. No significant differences in the plasma triglyceride, non-esterified fatty acid, and cholesterol concentrations were observed among all the groups. In contrast, the weight of testicular fat mass was significantly decreased in the FCP group as compared with that in the F group. The expression levels of leptin and tumor necrosis factor (TNF)-α genes in the adipose tissue correlated with the visceral fat mass, although these differences were not significant. These findings indicate that CPs may have a reducing effect on visceral fat content but are less effective in reducing body weight.
Collapse
Affiliation(s)
- Ran Watanabe
- Department of Health and Nutrition, Faculty of Human Life Studies, University of Niigata Prefecture
| | - Mana Yamaguchi
- Department of Health and Nutrition, Faculty of Human Life Studies, University of Niigata Prefecture
| | - Kyosuke Watanabe
- Department of Health and Nutrition, Faculty of Human Life Studies, University of Niigata Prefecture
| | - Muneshige Shimizu
- Department of Fisheries, Faculty of Marine Science and Technology, Tokai University
| | - Takahashi Azusa
- Department of Health and Nutrition, Faculty of Human Life Studies, University of Niigata Prefecture
| | - Hideyuki Sone
- Department of Health and Nutrition, Faculty of Human Life Studies, University of Niigata Prefecture
| | - Shin Kamiyama
- Department of Health and Nutrition, Faculty of Human Life Studies, University of Niigata Prefecture
| |
Collapse
|
12
|
Rui F, Jiawei K, Yuntao H, Xinran L, Jiani H, Ruixue M, Rui L, Na Z, Meihong X, Yong L. Undenatured type II collagen prevents and treats osteoarthritis and motor function degradation in T2DM patients and db/db mice. Food Funct 2021; 12:4373-4391. [PMID: 33890588 DOI: 10.1039/d0fo03011b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Osteoarthritis (OA) has been scarcely researched among patients with diabetes mellitus. This study aims to confirm the preventive and therapeutic effects of undenatured type II collagen (UC II) on OA in aging db/db mice and in patients with T2DM. Firstly, aging db/db mice were randomly assigned to three groups: the UC II intervention (UC II) group, old model (OM) group and positive control group. Meanwhile db/m mice and young db/db mice were used as the normal control and young control groups, respectively. Secondly, fifty-five T2DM patients diagnosed with knee OA were randomly assigned to two groups: UC-II and placebo control groups. After a three-month intervention in both mice and T2DM patients, the subjects' gait and physical activities were assessed and the serum biomarkers including inflammatory cytokines, oxidative stress factors and matrix metalloproteinases (MMPs) were measured. Compared with the OM group mice, those in the UC II group showed a significantly greater superiority in terms of motor functions including the movement trajectories area (163.25 ± 20.3 vs. 78.52 ± 20.14 cm2), the tremor index (0.42 vs. 1.23), standing time (left hind: 0.089 ± 0.03 vs. 0.136 ± 0.04 s), swing (right front: 0.12 ± 0.02 vs. 0.216 ± 0.02 s), stride length (right hind: 7.2 ± 0.9 vs. 5.7 ± 1.1 cm), step cycle (right hind: 0.252 ± 0.05 vs. 0.478 ± 0.11 s) and cadence (14.12 ± 2.7 vs. 7.35 ± 4.4 steps per s). In addition, the levels of IL-4, IL-10, CTX- II and TGF-β in the UC II group were 1.74, 2.23, 1.67 and 1.84 times higher than those in the OM group, respectively, while the levels of MMP-3 and MMP-13 in the UC II group were half those in the OM group. Correspondingly, UC II intervention significantly decreased the scores of pain, stiffness and physical function (p < 0.05), whereas the 6 MWT and total MET distances in the UC II group increased remarkably (p < 0.05). After a three-month period of intervention, the varus angle significantly decreased from 4.6 ± 2.0° to 3.0 ± 1.4° and the knee flexion range obviously increased from 57.9 ± 14.0° to 66.9 ± 10.4°. Importantly, the declining trend in the levels of hs-CRP and MDA and the incremental trend in the SOD level were consistent in the db/db mice and OA patients following UC II administration.
Collapse
Affiliation(s)
- Fan Rui
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Sharkey SJ, Harnedy-Rothwell PA, Allsopp PJ, Hollywood LE, FitzGerald RJ, O'Harte FPM. A Narrative Review of the Anti-Hyperglycemic and Satiating Effects of Fish Protein Hydrolysates and Their Bioactive Peptides. Mol Nutr Food Res 2020; 64:e2000403. [PMID: 32939966 DOI: 10.1002/mnfr.202000403] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Prevalence of type 2 diabetes and overweight/obesity are increasing globally. Food supplementation as a preventative option has become an attractive option in comparison to increased pharmacotherapy dependency. Hydrolysates of fish processing waste and by-products have become particularly interesting in a climate of increased food wastage awareness and are rapidly gaining traction in food research. This review summarizes the available research so far on the potential effect of these hydrolysates on diabetes and appetite suppression. Scopus and Web of Science are searched using eight keywords (fish, hydrolysate, peptides, satiating, insulinotropic, incretin, anti-obesity, DPP-4 [dipeptidylpeptidase-4/IV]) returning a total of 2549 results. Following exclusion criteria (repeated appearances, non-fish marine sources [e.g., macroalgae], and irrelevant bioactivities [e.g., immunomodulatory, anti-thrombotic]), 44 relevant publications are included in this review. Stimulation of hormone secretion, regulation of glucose uptake, anorexigenic potential, identified mechanisms of action, and research conducted on the most potent bioactive peptides identified within these hydrolysates are all specifically addressed. Results of this review conclude that despite wide methodological variation between studies, there is significant potential for the application of fish protein hydrolysates in the management of bodyweight and hyperglycemia.
Collapse
Affiliation(s)
- Shaun J Sharkey
- School of Biomedical Sciences, Ulster University, Cromore Road, Co. Derry, Northern Ireland, Coleraine, BT52 1SA, UK
| | | | - Philip J Allsopp
- School of Biomedical Sciences, Ulster University, Cromore Road, Co. Derry, Northern Ireland, Coleraine, BT52 1SA, UK
| | - Lynsey E Hollywood
- Department of Hospitality and Tourism Management, Ulster University Business School, Ulster University, Co. Derry, Northern Ireland, Coleraine, BT52 1SA, UK
| | - Richard J FitzGerald
- Department of Biological Sciences, University of Limerick, Castletroy, Limerick, V94 T9PX, Ireland
| | - Finbarr P M O'Harte
- School of Biomedical Sciences, Ulster University, Cromore Road, Co. Derry, Northern Ireland, Coleraine, BT52 1SA, UK
| |
Collapse
|
14
|
Food-Derived Collagen Peptides, Prolyl-Hydroxyproline (Pro-Hyp), and Hydroxyprolyl-Glycine (Hyp-Gly) Enhance Growth of Primary Cultured Mouse Skin Fibroblast Using Fetal Bovine Serum Free from Hydroxyprolyl Peptide. Int J Mol Sci 2019; 21:ijms21010229. [PMID: 31905705 PMCID: PMC6982277 DOI: 10.3390/ijms21010229] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/25/2019] [Accepted: 12/26/2019] [Indexed: 02/07/2023] Open
Abstract
Prolyl-hydroxyproline (Pro-Hyp) and hydroxyprolyl-glycine (Hyp-Gly) appear in human blood after ingestion of collagen hydrolysate and trigger growth of fibroblasts attached on collagen gel, which has been associated with beneficial effects upon ingestion of collagen hydrolysate, such as improvement of skin and joint conditions. In the present study, inconsistent results were obtained by using different lots of fetal bovine serum (FBS). Fibroblasts proliferated in collagen gel without adding Pro-Hyp and Hyp-Gly and did not respond to addition of Pro-Hyp and Hyp-Gly, which raises doubts about conclusions from prior research. Unexpectedly high levels of hydroxyprolyl peptides, including Pro-Hyp, however, were present in the FBS (approximately 100 µM), and also in other commercially available forms of FBS (70-80 µM). After removal of low molecular weight (LMW, < 6000 Da) compounds from the FBS by size exclusion chromatography, Pro-Hyp and Hyp-Gly again triggered growth of fibroblasts attached on collagen and increased the number of fibroblasts migrated from mouse skin. These results indicate the presence of bioactive hydroxyprolyl peptides in commercially available FBS, which can mask effects of Pro-Hyp and Hyp-Gly supplementation; our work confirms that Pro-Hyp and Hyp-Gly do play crucial roles in proliferation of fibroblasts.
Collapse
|
15
|
Koizumi S, Inoue N, Sugihara F, Igase M. Effects of Collagen Hydrolysates on Human Brain Structure and Cognitive Function: A Pilot Clinical Study. Nutrients 2019; 12:E50. [PMID: 31878021 PMCID: PMC7019356 DOI: 10.3390/nu12010050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/22/2022] Open
Abstract
This study investigated the effects of collagen hydrolysates (CH) on language cognitive function and brain structure. In this open-label study, 5 g CH was administered once a day for 4 weeks to 30 healthy participants aged 49-63 years. The primary outcome measures were the brain healthcare quotients based on gray matter volume (GM-BHQ) and fractional anisotropy (FA-BHQ). The secondary outcome measures were changes in scores between week 0 and week 4 for word list memory (WLM) and standard verbal paired associate learning (S-PA) tests as well as changes in the physical, mental, and role/social component summary scores of the Short Form-36(SF-36) quality of life instrument. CH ingestion resulted in significant improvements in FA-BHQ (p = 0.0095), a measure of brain structure, as well in scores for the WLM (p = 0.0046) and S-PA (p = 0.0007) tests, which measure cognitive function. There were moderate correlations between the change in WLM score and the change in GM-BHQ (r = 0.4448; Spearman's rank correlation) and between the change in S-PA score and the change in FA-BHQ (r = 0.4645). Daily ingestion of CH changed brain structure and improved language cognitive function.
Collapse
Affiliation(s)
- Seiko Koizumi
- Nitta Gelatin Inc., Osaka 581-0024, Japan; (N.I.); (F.S.)
| | - Naoki Inoue
- Nitta Gelatin Inc., Osaka 581-0024, Japan; (N.I.); (F.S.)
| | | | - Michiya Igase
- Department of Anti-aging Medicine, Ehime University Graduate School of Medicine, Ehime 791-0295, Japan;
| |
Collapse
|
16
|
Zheng L, Xu Q, Lin L, Zeng XA, Sun B, Zhao M. In Vitro Metabolic Stability of a Casein-Derived Dipeptidyl Peptidase-IV (DPP-IV) Inhibitory Peptide VPYPQ and Its Controlled Release from Casein by Enzymatic Hydrolysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10604-10613. [PMID: 31466448 DOI: 10.1021/acs.jafc.9b03164] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The aim of this study was to investigate the dipeptidyl peptidase-IV (DPP-IV) inhibition and metabolic stability of a casein-derived peptide Val-Pro-Tyr-Pro-Gln (VPYPQ) and its fragments as well as their release from casein following hydrolysis. Results showed that VPYPQ was the most potent DPP-IV inhibitory peptide among them with an IC50 value of 41.45 μM. This might be due to its two internal Pro residues at positions 2 and 4. Moreover, VPYPQ was resistant to hydrolysis by gastrointestinal enzymes and was relatively more stable to hydrolysis by DPP-IV and peptidases in plasma compared with its fragments. Additionally, oral administration of VPYPQ at a dose of 90 μmol/kg body weight could reduce the postprandial blood glucose levels in mice. More importantly, VPYPQ could be released efficiently from casein following hydrolysis by a combination of papain and in vitro digestion, reaching up to 3211.15 μg/g. Therefore, VPYPQ was a promising casein-derived DPP-IV inhibitor.
Collapse
Affiliation(s)
- Lin Zheng
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Qiongyao Xu
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center , Guangzhou 510650 , China
| | - Lianzhu Lin
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center , Guangzhou 510650 , China
| | - Xin-An Zeng
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health , Beijing Technology & Business University , Beijing 100048 , China
| | - Mouming Zhao
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center , Guangzhou 510650 , China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health , Beijing Technology & Business University , Beijing 100048 , China
| |
Collapse
|
17
|
Lee HJ, Jang HL, Ahn DK, Kim HJ, Jeon HY, Seo DB, Lee JH, Choi JK, Kang SS. Orally administered collagen peptide protects against UVB-induced skin aging through the absorption of dipeptide forms, Gly-Pro and Pro-Hyp. Biosci Biotechnol Biochem 2019; 83:1146-1156. [PMID: 30739561 DOI: 10.1080/09168451.2019.1580559] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Collagen hydrolysate is a well-known nutritional supplement for the improvement of healthy skin. Here, collagen peptide NS (CPNS) from fish scale was prepared, and its physicochemical properties were investigated. Gly-Pro was revealed as a representative low molecular weight peptide of CPNS, by performing prep-HPLC and LC-MS/MS. CPNS treatment attenuated matrix metalloproteinase-1 production and increased the synthesis of type 1 procollagen in HDF cells. After orally administering CPNS to rats, the plasma concentrations of Gly-Pro and Pro-Hyp increased dramatically. To examine the protective effects of CPNS against ultraviolet B (UVB)-induced photoaging in vivo, the dorsal skins of hairless mice were exposed to UVB and supplemented with CPNS for 12 weeks. The CPNS consumption significantly attenuated UVB-induced wrinkle formation, transepidermal water loss, and epidermis thickness, and increased skin hydration. Collectively, these results suggest that bioactive peptides of CPNS, Gly-Pro and Pro-Hyp, exert beneficial effects on skin health.
Collapse
Affiliation(s)
- Hyun-Jun Lee
- a Research & Development Center , Nong Shim Co., Ltd ., Seoul , Republic of Korea
| | - Hye-Lim Jang
- a Research & Development Center , Nong Shim Co., Ltd ., Seoul , Republic of Korea
| | - Dong-Kyu Ahn
- a Research & Development Center , Nong Shim Co., Ltd ., Seoul , Republic of Korea
| | - Hun-Jung Kim
- a Research & Development Center , Nong Shim Co., Ltd ., Seoul , Republic of Korea
| | - Hee Young Jeon
- b Vital Beautie Research Institute , Amorepacific Corporation R&D Center , Yongin-si , Republic of Korea
| | - Dae Bang Seo
- b Vital Beautie Research Institute , Amorepacific Corporation R&D Center , Yongin-si , Republic of Korea
| | - Ji-Hae Lee
- b Vital Beautie Research Institute , Amorepacific Corporation R&D Center , Yongin-si , Republic of Korea
| | - Jin Kyu Choi
- c Medical Beauty QA Team , Aestura Corporation , Anseong-si , Republic of Korea
| | - Seok-Seong Kang
- d Department of Food Science and Biotechnology , College of Life Science and Biotechnology, Dongguk University-Seoul , Goyang , Republic of Korea
| |
Collapse
|
18
|
Parthsarathy V, McLaughlin CM, Harnedy PA, Allsopp PJ, Crowe W, McSorley EM, FitzGerald RJ, O'Harte FPM. Boarfish (Capros aper
) protein hydrolysate has potent insulinotropic and GLP-1 secretory activity in vitro
and acute glucose lowering effects in mice. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13975] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Vadivel Parthsarathy
- School of Biomedical Sciences; Ulster University; Cromore Road Coleraine BT52 1SA Co. Derry Northern Ireland UK
| | - Christopher M. McLaughlin
- School of Biomedical Sciences; Ulster University; Cromore Road Coleraine BT52 1SA Co. Derry Northern Ireland UK
| | - Padraigin A. Harnedy
- Department of Biological Sciences; University of Limerick; Castletroy Limerick Ireland
| | - Philip J. Allsopp
- School of Biomedical Sciences; Ulster University; Cromore Road Coleraine BT52 1SA Co. Derry Northern Ireland UK
| | - William Crowe
- School of Biomedical Sciences; Ulster University; Cromore Road Coleraine BT52 1SA Co. Derry Northern Ireland UK
| | - Emeir M. McSorley
- School of Biomedical Sciences; Ulster University; Cromore Road Coleraine BT52 1SA Co. Derry Northern Ireland UK
| | - Richard J. FitzGerald
- Department of Biological Sciences; University of Limerick; Castletroy Limerick Ireland
| | - Finbarr P. M. O'Harte
- School of Biomedical Sciences; Ulster University; Cromore Road Coleraine BT52 1SA Co. Derry Northern Ireland UK
| |
Collapse
|
19
|
König D, Oesser S, Scharla S, Zdzieblik D, Gollhofer A. Specific Collagen Peptides Improve Bone Mineral Density and Bone Markers in Postmenopausal Women-A Randomized Controlled Study. Nutrients 2018; 10:E97. [PMID: 29337906 PMCID: PMC5793325 DOI: 10.3390/nu10010097] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/09/2018] [Accepted: 01/09/2018] [Indexed: 12/29/2022] Open
Abstract
Introduction: Investigations in rodents as well as in vitro experiments have suggested an anabolic influence of specific collagen peptides (SCP) on bone formation and bone mineral density (BMD). The goal of the study was to investigate the effect of 12-month daily oral administration of 5 g SCP vs. placebo (CG: control group) on BMD in postmenopausal women with primary, age-related reduction in BMD. Methods: 131 women were enrolled in this randomized, placebo-controlled double-blinded investigation. The primary endpoint was the change in BMD of the femoral neck and the spine after 12 months. In addition, plasma levels of bone markers-amino-terminal propeptide of type I collagen (P1NP) and C-telopeptide of type I collagen (CTX 1)-were analysed. Results: A total of 102 women completed the study, but all subjects were included in the intention-to-treat (ITT) analysis (age 64.3 ± 7.2 years; Body Mass Index, BMI 23.6 ± 3.6 kg/m²; T-score spine -2.4 ± 0.6; T-score femoral neck -1.4 ± 0.5). In the SCP group (n = 66), BMD of the spine and of the femoral neck increased significantly compared to the control group (n = 65) (T-score spine: SCP +0.1 ± 0.26; CG -0.03 ± 0.18; ANCOVA p = 0.030; T-score femoral neck: SCP +0.09 ± 0.24; CG -0.01 ± 0.19; ANCOVA p = 0.003). P1NP increased significantly in the SCP group (p = 0.007), whereas CTX 1 increased significantly in the control group (p = 0.011). Conclusions: These data demonstrate that the intake of SCP increased BMD in postmenopausal women with primary, age-related reduction of BMD. In addition, SCP supplementation was associated with a favorable shift in bone markers, indicating increased bone formation and reduced bone degradation.
Collapse
Affiliation(s)
- Daniel König
- Department for Nutrition, Institute for Sports and Sports Science, University of Freiburg, Schwarzwaldstr. 175, 79117 Freiburg, Germany.
| | - Steffen Oesser
- CRI, Collagen Research Institute GmbH, Schauenburgerstr. 116, 24118 Kiel, Germany.
| | - Stephan Scharla
- Independent Reasercher, Salinenstr. 8, 83435 Bad Reichenhall, Germany.
| | - Denise Zdzieblik
- Department for Nutrition, Institute for Sports and Sports Science, University of Freiburg, Schwarzwaldstr. 175, 79117 Freiburg, Germany.
| | - Albert Gollhofer
- Department for Nutrition, Institute for Sports and Sports Science, University of Freiburg, Schwarzwaldstr. 175, 79117 Freiburg, Germany.
| |
Collapse
|
20
|
Sasaoka Y, Kishimura H, Adachi S, Takagi Y. Collagen peptides derived from the triple helical region of sturgeon collagen improve glucose tolerance in normal mice. J Food Biochem 2017. [DOI: 10.1111/jfbc.12478] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Yukiho Sasaoka
- Graduate School of Fisheries Sciences; Hokkaido University, 3-1-1, Minato-cho; Hakodate Hokkaido 041-8611 Japan
| | - Hideki Kishimura
- Faculty of Fisheries Sciences; Hokkaido University, 3-1-1, Minato-cho; Hakodate Hokkaido 041-8611 Japan
| | - Shinji Adachi
- Faculty of Fisheries Sciences; Hokkaido University, 3-1-1, Minato-cho; Hakodate Hokkaido 041-8611 Japan
| | - Yasuaki Takagi
- Faculty of Fisheries Sciences; Hokkaido University, 3-1-1, Minato-cho; Hakodate Hokkaido 041-8611 Japan
| |
Collapse
|
21
|
Serrano J, Casanova-Martí À, Blay MT, Terra X, Pinent M, Ardévol A. Strategy for limiting food intake using food components aimed at multiple targets in the gastrointestinal tract. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
22
|
Yazaki M, Ito Y, Yamada M, Goulas S, Teramoto S, Nakaya MA, Ohno S, Yamaguchi K. Oral Ingestion of Collagen Hydrolysate Leads to the Transportation of Highly Concentrated Gly-Pro-Hyp and Its Hydrolyzed Form of Pro-Hyp into the Bloodstream and Skin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2315-2322. [PMID: 28244315 DOI: 10.1021/acs.jafc.6b05679] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Collagen hydrolysate is a well-known dietary supplement for the treatment of skin aging; however, its mode of action remains unknown. Previous studies have shown that the oral ingestion of collagen hydrolysate leads to elevated levels of collagen-derived peptides in the blood, but whether these peptides reach the skin remains unclear. Here, we analyzed the plasma concentration of collagen-derived peptides after ingestion of high tripeptide containing collagen hydrolysate in humans. We identified 17 types of collagen-derived peptides transiently, with a particular enrichment in Gly-Pro-Hyp. This was also observed using an in vivo mouse model in the plasma and skin, albeit with a higher enrichment of Pro-Hyp in the skin. Interestingly, this Pro-Hyp enrichment in the skin was derived from Gly-Pro-Hyp hydrolysis, as the administration of pure Gly-Pro-Hyp peptide led to similar results. Therefore, we propose that functional peptides can be transferred to the skin by dietary supplements of collagen.
Collapse
Affiliation(s)
- Misato Yazaki
- Research Institute, FANCL Corporation , 12-13 Kamishinano, Totsukaku, Yokohama, Kanagawa 244-0806, Japan
- Department of Molecular Biology, Graduate School of Medical Science, Yokohama City University , 3-9 Fuku-ura, Kanazawaku, Yokohama 236-0004, Japan
| | - Yukihiko Ito
- Research Institute, FANCL Corporation , 12-13 Kamishinano, Totsukaku, Yokohama, Kanagawa 244-0806, Japan
| | - Masayoshi Yamada
- Research Institute, FANCL Corporation , 12-13 Kamishinano, Totsukaku, Yokohama, Kanagawa 244-0806, Japan
| | - Spyros Goulas
- Department of Molecular Biology, Graduate School of Medical Science, Yokohama City University , 3-9 Fuku-ura, Kanazawaku, Yokohama 236-0004, Japan
| | - Sachiyuki Teramoto
- Research Institute, FANCL Corporation , 12-13 Kamishinano, Totsukaku, Yokohama, Kanagawa 244-0806, Japan
| | - Masa-Aki Nakaya
- Department of Molecular Biology, Graduate School of Medical Science, Yokohama City University , 3-9 Fuku-ura, Kanazawaku, Yokohama 236-0004, Japan
| | - Shigeo Ohno
- Department of Molecular Biology, Graduate School of Medical Science, Yokohama City University , 3-9 Fuku-ura, Kanazawaku, Yokohama 236-0004, Japan
| | - Kohji Yamaguchi
- Research Institute, FANCL Corporation , 12-13 Kamishinano, Totsukaku, Yokohama, Kanagawa 244-0806, Japan
| |
Collapse
|