1
|
Lee SH, Seo D, Lee KH, Park SJ, Park S, Kim H, Kim T, Joo IH, Park JM, Kang YH, Lim GH, Kim DH, Yang JY. Biometabolites of Citrus unshiu Peel Enhance Intestinal Permeability and Alter Gut Commensal Bacteria. Nutrients 2023; 15:nu15020319. [PMID: 36678190 PMCID: PMC9862503 DOI: 10.3390/nu15020319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Flavanones in Citrus unshiu peel (CUP) have been used as therapeutic agents to reduce intestinal inflammation; however, the anti-inflammatory effects of their biometabolites remain ambiguous. Here, we identified aglycone-type flavanones, such as hesperetin and naringenin, which were more abundant in the bioconversion of the CUP than in the ethanol extracts of the CUP. We found that the bioconversion of the CUP induced the canonical nuclear factor-κB pathway via degradation of IκB in Caco-2 cells. To check the immune suppressive capacity of the aglycones of the CUP in vivo, we orally administered the bioconversion of the CUP (500 mg/kg) to mice for two weeks prior to the 3% dextran sulfate sodium treatment. The CUP-pretreated group showed improved body weight loss, colon length shortage, and intestinal inflammation than the control mice. We also found a significant decrease in the population of lamina propria Th17 cells in the CUP-pretreated group following dextran sodium sulfate (DSS) treatment and an increase in mRNA levels of occludin in CUP-treated Caco-2 cells. Pyrosequencing analysis revealed a decreased abundance of Alistipes putredinis and an increased abundance of Muribaculum intestinale in the feces of the CUP-pretreated mice compared to those of the control mice. Overall, these findings suggest that the pre-administration of CUP biometabolites may inhibit the development of murine colitis by modulating intestinal permeability and the gut microbiome.
Collapse
Affiliation(s)
- Se-Hui Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Dongju Seo
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Kang-Hee Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - So-Jung Park
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Sun Park
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Hyeyun Kim
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Taekyung Kim
- Department of Biology Education, Pusan National University, Busan 46241, Republic of Korea
| | - In Hwan Joo
- Department of Pathology, College of Korean Medicine, Daejeon University, Daejeon 34520, Republic of Korea
| | - Jong-Min Park
- Department of Pathology, College of Korean Medicine, Daejeon University, Daejeon 34520, Republic of Korea
| | - Yun-Hwan Kang
- Department of Industry Promotion, National Institute for Korean Medicine Development, Geongsan 38540, Republic of Korea
| | - Gah-Hyun Lim
- Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Dong Hee Kim
- Department of Pathology, College of Korean Medicine, Daejeon University, Daejeon 34520, Republic of Korea
| | - Jin-Young Yang
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
- Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea
- Correspondence: ; Tel.: +82-51-510-2286; Fax: +82-51-581-2962
| |
Collapse
|
2
|
Dwita LP, Iwo MI, Mauludin R, Elfahmi. Neuroprotective potential of lignan-rich fraction of Piper cubeba L. by improving antioxidant capacity in the rat's brain. BRAZ J BIOL 2023; 82:e266573. [PMID: 36629543 DOI: 10.1590/1519-6984.266573] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/24/2022] [Indexed: 01/11/2023] Open
Abstract
Piper cubeba contains various types of lignans. These compounds have been found to have potential pharmacological activities, one being a neuroprotector through an antioxidant mechanism, especially in the brain. This study examined the antioxidant activity of the lignan-rich fraction of P. cubeba (LF) in rat brains. The rats were given LF (200 and 400 mg/kg), Vitamin C (200 mg/kg), and a carrier as the control group for one-week p.o. The following day, rat brains were collected for antioxidant tests, including examining lipid peroxide inhibition, superoxide dismutase and catalase activity, and determination of nitric oxide (NO) concentration. The phytochemical compounds were analyzed with thin-layer chromatography (TLC), ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS), and gas chromatography-mass spectrometry (GC-MS). Test results show that the LF of both doses of 200 and 400 mg/kg could significantly increase antioxidant activity in the brain by inhibiting lipid peroxidation. LF could also increase catalase, despite the decrease in superoxide dismutase activity. Reduction in NO only occurred in the LF-200 group, while LF-400 showed insignificant results compared to the control group. In conclusion, LF showed potential as an antioxidant in the brain and could be beneficial for treating neurological diseases.
Collapse
Affiliation(s)
- L P Dwita
- Institut Teknologi Bandung, School of Pharmacy, Jawa Barat, Indonesia.,Universitas Muhammadiyah Prof. DR. HAMKA, Faculty of Pharmacy and Science, Jakarta, Indonesia
| | - M I Iwo
- Institut Teknologi Bandung, School of Pharmacy, Jawa Barat, Indonesia
| | - R Mauludin
- Institut Teknologi Bandung, School of Pharmacy, Jawa Barat, Indonesia
| | - Elfahmi
- Institut Teknologi Bandung, School of Pharmacy, Jawa Barat, Indonesia
| |
Collapse
|
3
|
Drissi B, Mahdi I, Yassir M, Ben Bakrim W, Bouissane L, Sobeh M. Cubeb ( Piper cubeba L.f.): A comprehensive review of its botany, phytochemistry, traditional uses, and pharmacological properties. Front Nutr 2022; 9:1048520. [PMID: 36483927 PMCID: PMC9725028 DOI: 10.3389/fnut.2022.1048520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/01/2022] [Indexed: 06/21/2024] Open
Abstract
Piper cubeba L.f. (Piperaceae), known as cubeb, is a popular traditional herbal medicine used for the treatment of many diseases, especially digestive and respiratory disorders. The plant is rich in essential oil, found mainly in fruits, and this makes it economically important. Many traditional utilizations have been also validated from the plant and its isolated compounds owing to their antioxidant, antibacterial, anti-inflammatory and anticancer effects. These biological activities are attributed to the phytochemicals (phenolic compounds, lignans and alkaloids) and the essential oil of the plant. The present work aims to provide an up-to-date review on the traditional uses, phytochemistry and pharmacology of the plant and discusses the future perspectives to promote its valorization for nutritional- and health-promoting effects.
Collapse
Affiliation(s)
- Badreddine Drissi
- AgroBioSciences, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| | - Ismail Mahdi
- AgroBioSciences, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| | - Mouna Yassir
- AgroBioSciences, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| | - Widad Ben Bakrim
- AgroBioSciences, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University, Laayoune, Morocco
| | - Latifa Bouissane
- Molecular Chemistry, Materials and Catalysis Laboratory, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, Beni-Mellal, Morocco
| | - Mansour Sobeh
- AgroBioSciences, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| |
Collapse
|
4
|
Beloucif A, Kechrid Z, Bekada AMA. Effect of Zinc Deficiency on Blood Glucose, Lipid Profile, and Antioxidant Status in Streptozotocin Diabetic Rats and the Potential Role of Sesame Oil. Biol Trace Elem Res 2022; 200:3236-3247. [PMID: 34613584 DOI: 10.1007/s12011-021-02934-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/20/2021] [Indexed: 02/08/2023]
Abstract
Zinc is recognized to have a crucial function in insulin production. As a result, its absence may have a deleterious impact on the progression of diabetes and associated consequences. So, this study was undertaken to evaluate the effect of sesame oil on biochemical parameters, zinc status, and oxidative stress biomarkers in streptozotocin (STZ)-induced diabetic rats fed zinc-deficient diet. Rats were divided into four groups. The first group consisted of non-diabetic rats that were fed in a sufficient zinc diet, whereas the second was a diabetic group which received also sufficient zinc diet, while the third and fourth groups were diabetic rats fed in a deficient zinc diet, one was non-treated and the other was treated with sesame oil 6% diet for 27 days. Zinc deficiency has affected the weight of the diabetic animals. It was also noticed that inadequate dietary zinc intake increased concentrations of glucose, cholesterol, triglycerides, malondialdehyde, and transaminases activities. Furthermore, zinc deficiency feed provoked a decrease in zinc level in tissues (femur, liver, and pancreas); glutathione concentration; and lactic dehydrogenase, amylase, catalase, superoxide dismutase, and glutathione-S-transferase activities. However, sesame oil treatment ameliorated all the previous parameters approximately to their normal values. It was found out that sesame oil supplementation is a potent factor in mitigating the oxidative severity of zinc deficiency in diabetes through its effective antioxidant potential.
Collapse
Affiliation(s)
- Afaf Beloucif
- Laboratory of Applied Biochemistry and Microbiology, Department of Biochemistry, Faculty of Sciences, University of Annaba, Annaba, Algeria
| | - Zine Kechrid
- Laboratory of Applied Biochemistry and Microbiology, Department of Biochemistry, Faculty of Sciences, University of Annaba, Annaba, Algeria.
| | - Ahmed Mohamed Ali Bekada
- Laboratory of Food Technology and Nutrition, Department of Biology, Faculty of Sciences, University of Mostaganem, Mostaganem, Algeria
| |
Collapse
|
5
|
Differential Nutrition-Health Properties of Ocimum basilicum Leaf and Stem Extracts. Foods 2022; 11:foods11121699. [PMID: 35741897 PMCID: PMC9222536 DOI: 10.3390/foods11121699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 02/05/2023] Open
Abstract
(1) Background: Ocimum basilicum L. is an aromatic medicinal plant of the Lamiaceae family known as sweet basil. It is used in traditional medicine for its beneficial effects on gastrointestinal disorders, inflammation, immune system, pyrexia or cancer among others. Ocimum basilicum (OB) leaf extracts contain many phytochemicals bearing the plant health effects but no reports is available on the potential bioactivity of stem extracts. Our investigation aimed at assessing the differential biological activity between basil leaf and stem to promote this co-product valorization. (2) Method: For this purpose we explored phytochemical composition of both parts of the plant. Antioxidant activity was evaluated through total polyphenol content measure, DPPH and ORAC tests. Anti-inflammatory markers on stimulated macrophages, including NO (nitric oxide), TNFa (tumor necrosis factor alpha), IL-6 (interleukin 6), MCP1 (monocyte attractant protein 1) and PGE-2 (prostaglandin E2), were evaluated. In addition, we investigated OB effects on jejunum smooth muscle contractility. (3) Results: OB extracts from leaves and stems demonstrated a different biological activity profile at the level of both antioxidant, anti-inflammatory and smooth muscle relaxation effects. (4) Conclusion: Taken together our results suggest that Ocimum basilicum extracts from co-product stems, in addition to leaves, may be of interest at the nutrition-health level with specific therapeutic potential.
Collapse
|
6
|
Aluganti Narasimhulu C, Parthasarathy S. Preparation of LDL , Oxidation , Methods of Detection, and Applications in Atherosclerosis Research. Methods Mol Biol 2022; 2419:213-246. [PMID: 35237967 DOI: 10.1007/978-1-0716-1924-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The concept of lipid peroxidation has been known for a long time. It is now well established that LDL plays a major role in atherosclerosis. Oxidized low-density lipoprotein (Ox-LDL) has been studied for over 35 years. Numerous pro- and anti-atherogenic properties have been attributed to Ox-LDL. Component composition of Ox-LDL is complex due to the influence of various factors, including the source, method of preparation, storage and use. Hence, it is very difficult to clearly define and characterize Ox-LDL. It contains unoxidized and oxidized fatty acid derivatives both in the ester and free forms, their decomposition products, cholesterol and its oxidized products, proteins with oxidized amino acids and cross-links, polypeptides with varying extents of covalent modification with lipid oxidation products and many others. The measurement of lipid oxidation has been a great boon, not only to the understanding of the process but also in providing numerous serendipitous discoveries and methodologies. In this chapter, we outline the methodologies for the preparation and testing of various lipoproteins for oxidation studies.
Collapse
Affiliation(s)
| | - Sampath Parthasarathy
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
7
|
Jasicka-Misiak I, Shanaida M, Hudz N, Wieczorek PP. Phytochemical and Pharmacological Evaluation of the Residue By-Product Developed from the Ocimum americanum ( Lamiaceae) Postdistillation Waste. Foods 2021; 10:foods10123063. [PMID: 34945615 PMCID: PMC8701984 DOI: 10.3390/foods10123063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 11/21/2022] Open
Abstract
The yield of essential oils in plants is not high and postdistillation wastes rich in phenolic compounds could be used to enhance the profitability of essential oil-bearing plants. The aim of the study was to evaluate polyphenols in a dry extract obtained from the postdistillation waste of the American basil (Ocimum americanum L.) herb, and to conduct the screening of its pharmacological activities. Rosmarinic acid, caffeic acid and rutin were identified in the extract using high-performance thin-layer chromatography. The high-performance liquid chromatography analysis found the presence of a plethora of polyphenols in the extract. Rosmarinic acid, luteolin-7-O-glucoside and rutin were as the main compounds. The total phenolic content in the extract was 106.31 mg GAE/g and free radical scavenging activity against 2,2-diphenyl-1-picrylhydrazyl evaluated as IC50 was 0.298 mg/mL. The tested extract dose-dependently decreased the paw edema in rats, suggesting its potent anti-inflammatory property. The acute toxicity study indicates its safety. Thus, the O. americanum hydrodistilled residue by-product is the promising source of biologically active compounds with significant antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Izabela Jasicka-Misiak
- Department of Pharmacy and Ecological Chemistry, University of Opole, 45-052 Opole, Poland; (I.J.-M.); (N.H.)
| | - Mariia Shanaida
- Department of Pharmacognosy and Medical Botany, I. Horbachevsky Ternopil National Medical University, 46-001 Ternopil, Ukraine
- Correspondence:
| | - Nataliia Hudz
- Department of Pharmacy and Ecological Chemistry, University of Opole, 45-052 Opole, Poland; (I.J.-M.); (N.H.)
- Department of Drug Technology and Biopharmacy, Danylo Halytsky Lviv National Medical University, 79-010 Lviv, Ukraine
| | | |
Collapse
|
8
|
Cong W, Schwartz E, Tello E, Simons CT, Peterson DG. Identification of non-volatile compounds that negatively impact whole wheat bread flavor liking. Food Chem 2021; 364:130362. [PMID: 34171816 DOI: 10.1016/j.foodchem.2021.130362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 11/24/2022]
Abstract
Untargeted LC-MS flavoromic analysis was utilized to identify chemical compounds that impact consumer liking of whole wheat bread. Chemical fingerprints of thirteen whole wheat breads were modeled against consumer flavor liking scores by orthogonal partial least squares (OPLS) with good fit (R2Y = 0.98) and predictive ability (Q2 = 0.95). The four most predictive features (negatively correlated) were identified as 9S,12S,13S-trihydroxy-octadec-10E-enoic acid (pinellic acid), 9S,12S,13S-trihydroxy-octadeca-10E,15Z-dienoic acid, 8R*,9R*,10S*-trihydroxy-octadec-6Z-enoic acid, and 1-(octadeca-9Z,12Z-dienoyl)-sn-glycero-3-phosphocholine. Sensory validation studies including bitter threshold determination and recombination tests confirmed the contribution of these compounds to the perceived bitterness intensity of the bread samples and the overall negative impact on flavor liking. Lipoxygenase activity of the flour was reported to have a significant impact on the formation of the three bitter compounds (trihydroxy fatty acids) in the bread samples.
Collapse
Affiliation(s)
- Wen Cong
- Department of Food Science and Technology, 317 Parker Food Science & Technology Building, The Ohio State University, 2015 Fyffe Rd., Columbus, OH 43210, United States
| | - Eric Schwartz
- Department of Food Science and Technology, 317 Parker Food Science & Technology Building, The Ohio State University, 2015 Fyffe Rd., Columbus, OH 43210, United States
| | - Edisson Tello
- Department of Food Science and Technology, 317 Parker Food Science & Technology Building, The Ohio State University, 2015 Fyffe Rd., Columbus, OH 43210, United States
| | - Christopher T Simons
- Department of Food Science and Technology, 317 Parker Food Science & Technology Building, The Ohio State University, 2015 Fyffe Rd., Columbus, OH 43210, United States
| | - Devin G Peterson
- Department of Food Science and Technology, 317 Parker Food Science & Technology Building, The Ohio State University, 2015 Fyffe Rd., Columbus, OH 43210, United States.
| |
Collapse
|
9
|
Rusu LC, Ardelean LC, Jitariu AA, Miu CA, Streian CG. An Insight into the Structural Diversity and Clinical Applicability of Polyurethanes in Biomedicine. Polymers (Basel) 2020; 12:E1197. [PMID: 32456335 PMCID: PMC7285236 DOI: 10.3390/polym12051197] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/13/2020] [Accepted: 05/22/2020] [Indexed: 01/16/2023] Open
Abstract
Due to their mechanical properties, ranging from flexible to hard materials, polyurethanes (PUs) have been widely used in many industrial and biomedical applications. PUs' characteristics, along with their biocompatibility, make them successful biomaterials for short and medium-duration applications. The morphology of PUs includes two structural phases: hard and soft segments. Their high mechanical resistance featuresare determined by the hard segment, while the elastomeric behaviour is established by the soft segment. The most important biomedical applications of PUs include antibacterial surfaces and catheters, blood oxygenators, dialysis devices, stents, cardiac valves, vascular prostheses, bioadhesives/surgical dressings/pressure-sensitive adhesives, drug delivery systems, tissue engineering scaffolds and electrospinning, nerve generation, pacemaker lead insulation and coatings for breast implants. The diversity of polyurethane properties, due to the ease of bulk and surface modification, plays a vital role in their applications.
Collapse
Affiliation(s)
- Laura-Cristina Rusu
- Department of Oral Pathology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu sq, 300041 Timisoara, Romania;
| | - Lavinia Cosmina Ardelean
- Department of Technology of Materials and Devices in Dental Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu sq, 300041 Timisoara, Romania
| | - Adriana-Andreea Jitariu
- Department of Microscopic Morphology/Histology and Angiogenesis Research Center Timisoara, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu sq, 300041 Timisoara, Romania;
| | - Catalin Adrian Miu
- 3rd Department of Orthopaedics-Traumatology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu sq, 300041 Timisoara, Romania;
| | - Caius Glad Streian
- Department of Cardiac Surgery, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu sq, 300041 Timisoara, Romania;
| |
Collapse
|
10
|
Premkumar J, Sampath P, Sanjay R, Chandrakala A, Rajagopal D. Synthetic Guaiacol Derivatives as Promising Myeloperoxidase Inhibitors Targeting Atherosclerotic Cardiovascular Disease. ChemMedChem 2020; 15:1187-1199. [DOI: 10.1002/cmdc.202000084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/03/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Jayaraj Premkumar
- Department of ChemistrySchool of Advanced ScienceVellore Institute of Technology-Vellore Tamilnadu 632014 India
| | - Parthasarathy Sampath
- Burnett School of Biomedical SciencesCollege of MedicineUniversity of Central Florida Orlando FL 32832 USA
| | - Rajagopalan Sanjay
- Division of Cardiovascular MedicineHarrington Heart and Vascular Institute Cleveland 44106 Ohio USA
- Cardiovascular Research InstituteSchool of MedicineCase Western Reserve University Cleveland Ohio 44106 USA
| | - Aluganti Chandrakala
- Burnett School of Biomedical SciencesCollege of MedicineUniversity of Central Florida Orlando FL 32832 USA
| | - Desikan Rajagopal
- Department of ChemistrySchool of Advanced ScienceVellore Institute of Technology-Vellore Tamilnadu 632014 India
- Burnett School of Biomedical SciencesCollege of MedicineUniversity of Central Florida Orlando FL 32832 USA
| |
Collapse
|