1
|
In situ gelling microemulsion for topical ocular delivery of moxifloxacin and betamethasone. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
2
|
Besifloxacin liposomes with positively charged additives for an improved topical ocular delivery. Sci Rep 2020; 10:19285. [PMID: 33159142 PMCID: PMC7648625 DOI: 10.1038/s41598-020-76381-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/22/2020] [Indexed: 02/08/2023] Open
Abstract
Topical ophthalmic antibiotics show low efficacy due to the well-known physiological defense mechanisms of the eye, which prevents the penetration of exogenous substances. Here, we aimed to incorporate besifloxacin into liposomes containing amines as positively charged additives and to evaluate the influence of this charge on drug delivery in two situations: (i) iontophoretic and (ii) passive treatments. Hypothesis are (i) charge might enhance the electromigration component upon current application improving penetration efficiency for a burst drug delivery, and (ii) positive charge might prolong formulation residence time, hence drug penetration. Liposomes elaborated with phosphatidylcholine (LP PC) or phosphatidylcholine and spermine (LP PC: SPM) were stable under storage at 6 ºC for 30 days, showed mucoadhesive characteristics, and were non-irritant, according to HET-CAM tests. Electron paramagnetic resonance spectroscopy measurements showed that neither the drug nor spermine incorporations produced evident alterations in the fluidity of the liposome's membranes, which retained their structural stability even under iontophoretic conditions. Mean diameter and zeta potential were 177.2 ± 2.7 nm and − 5.7 ± 0.3 mV, respectively, for LP PC; and 175.4 ± 1.9 nm and + 19.5 ± 1.0 mV, respectively, for LP PC:SPM. The minimal inhibitory concentration (MIC) and the minimal bactericide concentration (MBC) of the liposomes for P. aeruginosa showed values lower than the commercial formulation (Besivance). Nevertheless, both formulations presented a similar increase in permeability upon the electric current application. Hence, liposome charge incorporation did not prove to be additionally advantageous for iontophoretic therapy. Passive drug penetration was evaluated through a novel in vitro ocular model that simulates the lacrimal flow and challenges the formulation resistance in the passive delivery situation. As expected, LP PC: SPM showed higher permeation than the control (Besivance). In conclusion, besifloxacin incorporation into positively charged liposomes improved passive topical delivery and can be a good strategy to improve topical ophthalmic treatments.
Collapse
|
3
|
Singh M, Bharadwaj S, Lee KE, Kang SG. Therapeutic nanoemulsions in ophthalmic drug administration: Concept in formulations and characterization techniques for ocular drug delivery. J Control Release 2020; 328:895-916. [PMID: 33069743 DOI: 10.1016/j.jconrel.2020.10.025] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 12/29/2022]
Abstract
The eye is the specialized part of the body and is comprised of numerous physiological ocular barriers that limit the drug absorption at the action site. Regardless of various efforts, efficient topical ophthalmic drug delivery remains unsolved, and thus, it is extremely necessary to advance the contemporary treatments of ocular disorders affecting the anterior and posterior cavities. Nowadays, the advent of nanotechnology-based multicomponent nanoemulsions for ophthalmic drug delivery has gained popularity due to the enhancement of ocular penetrability, improve bioavailability, increase solubility, and stability of lipophilic drugs. Nanoemulsions offer the sustained/controlled drug release and increase residence time which depend on viscosity, compositions, and stabilization process, etc.; hence, decrease the instillation frequency and improve patient compliance. Further, due to the nanosized of nanoemulsions, the sterilization process is easy as conventional solutions and cause no blur vision. The review aims to summarizes the various ocular barriers, manufacturing techniques, possible mechanisms to the retention and deep penetration into the eye, and appropriate excipients with their under-lying selection principles to prevent destabilization of nanoemulsions. This review also discusses the characterization parameters of ocular drug delivery to spike the interest of those contemplating a foray in this field. Here, in short, nanoemulsions are abridged with concepts to design clinically advantageous ocular drug delivery.
Collapse
Affiliation(s)
- Mahendra Singh
- Molecular Genetics Laboratory, Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Shiv Bharadwaj
- Molecular Genetics Laboratory, Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Kyung Eun Lee
- Molecular Genetics Laboratory, Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Stemforce, 313 Institute of Industrial Technology, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Sang Gu Kang
- Molecular Genetics Laboratory, Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
4
|
Kim H, Kim BR, Shin YJ, Cho S, Lee J. Controlled formation of polylysinized inner pores in injectable microspheres of low molecular weight poly(lactide-co-glycolide) designed for efficient loading of therapeutic cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S233-S246. [DOI: 10.1080/21691401.2018.1491475] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Hyeongmin Kim
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Ba Reum Kim
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Young Joo Shin
- Department of Ophthalmology, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Sayeon Cho
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Jaehwi Lee
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Li J, Tian S, Tao Q, Zhao Y, Gui R, Yang F, Zang L, Chen Y, Ping Q, Hou D. Montmorillonite/chitosan nanoparticles as a novel controlled-release topical ophthalmic delivery system for the treatment of glaucoma. Int J Nanomedicine 2018; 13:3975-3987. [PMID: 30022821 PMCID: PMC6045908 DOI: 10.2147/ijn.s162306] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background To date, the rapid clearance from ocular surface has been a huge obstacle for using eye drops to treat glaucoma, since it has led to the short preocular residence time and low bioavailability. Methods The novel nanoparticles (NPs) were designed for topical ophthalmic controlled drug delivery system through intercalating the BH into the interlayer gallery of Na-montmorillonite (Na+Mt) and then further enchasing chitosan nanoparticles. The resulting nanoparticles had a positive charge (+29±0.18 mV) with an average diameter of 460±0.6 nm. Results In vitro study of drug release profiles suggested controlled release pattern. The irritation experiment analysis on both human immortalized cornea epithelial cell (iHCEC) and chorioallantoic membrane-trypan blue staining (CAM-TBS) showed good tolerance for ocular tissues. It was interestingly found that the nanoparticles could enter into iHCEC from the result of cellular uptake experiment measured by confocal layer scan microscopy (CLSM). Meanwhile, multilayered iHCEC was used to simulate the barrier of corneal epithelial cells for in vivo preocular retention capacity study, which suggested that BH-Mt/CS NPs could prolong the retention time in comparison with BH solution. The ocular pharmacokinetics studied by microdialysis sampling technique showed that AUC0-t and MRT0-t of BH-Mt/CS NPs were 1.99-fold and 1.75-fold higher than those of BH solution, indicating higher bioavailability. Moreover, the study of blood drug concentration, few researchers have reported, showed that low level drug could enter into blood, suggesting lower systematic side effect. Importantly, pharmacodynamics studies suggested that BH-Mt/CS NPs could make a significant decreased intraocular pressure on glaucomatous rabbits. Conclusion Inspired by these advance of montmorillonite/chitosan nanoparticles, we envision that the BH-Mt/CS NPs will be a potential carrier for BH, opening up the possible applications in glaucoma therapy.
Collapse
Affiliation(s)
- Juan Li
- Department of Pharmaceutics, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China,
| | - Shuangyan Tian
- Department of Pharmaceutics, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China,
| | - Qi Tao
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Yawen Zhao
- Department of Pharmaceutics, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China,
| | - Ruyi Gui
- Department of Pharmaceutics, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China,
| | - Fan Yang
- Department of Pharmaceutics, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China,
| | - Lingquan Zang
- Department of Pharmacology, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Yanzhong Chen
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Qineng Ping
- College of Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Dongzhi Hou
- Department of Pharmaceutics, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China,
| |
Collapse
|
6
|
Huang Y, Tao Q, Hou D, Hu S, Tian S, Chen Y, Gui R, Yang L, Wang Y. A novel ion-exchange carrier based upon liposome-encapsulated montmorillonite for ophthalmic delivery of betaxolol hydrochloride. Int J Nanomedicine 2017; 12:1731-1745. [PMID: 28280338 PMCID: PMC5340245 DOI: 10.2147/ijn.s122747] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
As a novel ion-exchange carrier with high surface area and excellent exchangeability, montmorillonite (Mt) was intercalated with betaxolol hydrochloride (BH) to form a nanocomposite and then encapsulated by liposomes (Mt-BH-LPs) for an ophthalmic drug-delivery system. The Mt-BH and Mt-BH-LPs were prepared by an acidification process and ethanol injection combined with ammonium sulfate gradient methods. The successful formation of Mt-BH and Mt-BH-LPs was verified by thermogravimetric analysis, X-ray diffraction, Fourier-transform infrared spectra, and transmission electron microscopy. Mt-BH-LPs possessed the favorable physical characteristics of encapsulation efficiency, drug loading, mean particle size, and ζ-potential. In vitro release studies indicated Mt-BH-LPs effectively maintained a relatively sustained slow release. Immortalized human corneal epithelial cell cytotoxicity, in vivo rabbit eye-irritation tests, and chorioallantoic membrane–trypan blue staining all revealed that Mt-BH-LPs had no obvious irritation on ocular tissues. A new in vitro tear-turnover model, including inserts containing human corneal epithelial cells, was designed to evaluate the precorneal retention time of Mt-BH-LPs. The results showed that Mt-BH-LPs maintained a certain BH concentration in tear fluid for a longer period than the BH solution. In vivo precorneal retention studies also indicated Mt-BH-LPs prolonged drug retention on the ocular surface more than the BH solution. Furthermore, pharmacodynamic studies showed that Mt-BH-LPs had a prolonged effect on decreasing intraocular optical pressure in rabbits. Our results demonstrated that Mt-BH-LPs have potential as an ophthalmic delivery system.
Collapse
Affiliation(s)
- Yi Huang
- College of Pharmacy, Guangdong Pharmaceutical University
| | - Qi Tao
- Key Laboratory of Mineralogy and Metallogeny, Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Mineral Physics and Materials
| | - Dongzhi Hou
- College of Pharmacy, Guangdong Pharmaceutical University
| | - Sheng Hu
- College of Pharmacy, Guangdong Pharmaceutical University
| | - Shuangyan Tian
- College of Pharmacy, Guangdong Pharmaceutical University
| | - Yanzhong Chen
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou
| | - Ruyi Gui
- College of Pharmacy, Guangdong Pharmaceutical University
| | - Lingling Yang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences
| | - Yao Wang
- Qingdao Eye Hospital, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| |
Collapse
|
7
|
Chu Y, Chen N, Yu H, Mu H, He B, Hua H, Wang A, Sun K. Topical ocular delivery to laser-induced choroidal neovascularization by dual internalizing RGD and TAT peptide-modified nanoparticles. Int J Nanomedicine 2017; 12:1353-1368. [PMID: 28260884 PMCID: PMC5325139 DOI: 10.2147/ijn.s126865] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A nanoparticle (NP) was developed to target choroidal neovascularization (CNV) via topical ocular administration. The NPs were prepared through conjugation of internalizing arginine-glycine-aspartic acid RGD (iRGD; Ac-CCRGDKGPDC) and transactivated transcription (TAT) (RKKRRQRRRC) peptide to polymerized ethylene glycol and lactic-co-glycolic acid. The iRGD sequence can specifically bind with integrin αvβ3, while TAT facilitates penetration through the ocular barrier. 1H nuclear magnetic resonance and high-performance liquid chromatography demonstrated that up to 80% of iRGD and TAT were conjugated to poly(ethylene glycol)– poly(lactic-co-glycolic acid). The resulting particle size was 67.0±1.7 nm, and the zeta potential of the particles was −6.63±0.43 mV. The corneal permeation of iRGD and TAT NPs increased by 5.50- and 4.56-fold compared to that of bare and iRGD-modified NPs, respectively. Cellular uptake showed that the red fluorescence intensity of iRGD and TAT NPs was highest among primary NPs and iRGD- or TAT-modified NPs. CNV was fully formed 14 days after photocoagulation in Brown Norway (BN) rats as shown by optical coherence tomography and fundus fluorescein angiography analyses. Choroidal flat mounts in BN rats showed that the red fluorescence intensity of NPs followed the order of iRGD and TAT NPs > TAT-modified NPs > iRGD-modified NPs > primary NPs. iRGD and TAT dual-modified NPs thus displayed significant targeting and penetration ability both in vitro and in vivo, indicating that it is a promising drug delivery system for managing CNV via topical ocular administration.
Collapse
Affiliation(s)
- Yongchao Chu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, Shandong, People's Republic of China
| | - Ning Chen
- Department of Ophthalmology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, People's Republic of China
| | - Huajun Yu
- Department of Ophthalmology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, People's Republic of China
| | - Hongjie Mu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, Shandong, People's Republic of China
| | - Bin He
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, Shandong, People's Republic of China
| | - Hongchen Hua
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, Shandong, People's Republic of China
| | - Aiping Wang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, Shandong, People's Republic of China
| | - Kaoxiang Sun
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, Shandong, People's Republic of China
| |
Collapse
|
8
|
Dua K, Malipeddi VR, Madan J, Gupta G, Chakravarthi S, Awasthi R, Kikuchi IS, De Jesus Andreoli Pinto T. Norfloxacin and metronidazole topical formulations for effective treatment of bacterial infections and burn wounds. Interv Med Appl Sci 2016; 8:68-76. [PMID: 28386462 PMCID: PMC5370353 DOI: 10.1556/1646.8.2016.2.4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/18/2016] [Accepted: 04/22/2016] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Our various previous findings have shown the suitability of norfloxacin in the treatment of bacterial infections and burn wounds in alone as well as in combination with Curcuma longa in various topical (ointments, gels, and creams) and transdermal drug delivery systems. AIMS AND METHODS Keeping these facts in consideration, we have made an another attempt to prepare semisolid formulations containing 1% w/w of norfloxacin and metronidazole with different bases like Carbopol, polyethylene glycol, and hydroxypropylmethyl cellulose for effective treatment of bacterial infections and burn wounds. The prepared formulations were evaluated for physicochemical parameters, in vitro drug release, antimicrobial activity, and burn wound healing properties. RESULTS The prepared formulations were compared with Silver Sulfadiazine cream 1%, USP. Antimicrobial activity of norfloxacin semisolid formulations was found to be equally effective against both aerobic and anaerobic bacteria in comparison to a marketed formulation of Silver Sulfadiazine 1% cream, USP. Based on the burn wound healing property, the prepared norfloxacin semisolid formulation was found to be in good agreement with marketed Silver Sulfadiazine 1% cream, USP. CONCLUSIONS These findings suggest formulations containing norfloxacin and metronidazole may also prove as an effective alternative for existing remedies in the treatment of bacterial infections and burn wounds.
Collapse
Affiliation(s)
- Kamal Dua
- School of Pharmacy and Biomedical Sciences, The University of Newcastle, Newcastle, Callaghan, Australia
| | | | - Jyotsna Madan
- Department of Pharmaceutics, Sinhgad Technical Education Society, Smt. Kashibai Navale College of Pharmacy, Pune, Maharashtra, India
| | - Gaurav Gupta
- School of Medicine, The University of Newcastle, Newcastle, Callaghan, Australia
| | | | | | - Irene Satiko Kikuchi
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
9
|
Moosa RM, Choonara YE, du Toit LC, Kumar P, Tomar LK, Tyagi C, Carmichael TR, Pillay V. In vitropharmaceutical characterization and statistical optimization of a novel topically applied instantly-soluble solid eye drop matrix. Pharm Dev Technol 2014; 20:854-862. [DOI: 10.3109/10837450.2014.930488] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
In vivo evaluation and in-depth pharmaceutical characterization of a rapidly dissolving solid ocular matrix for the topical delivery of timolol maleate in the rabbit eye model. Int J Pharm 2014; 466:296-306. [DOI: 10.1016/j.ijpharm.2014.02.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 02/12/2014] [Accepted: 02/15/2014] [Indexed: 11/19/2022]
|
11
|
Pawar P, Katara R, Mishra S, Majumdar DK. Topical ocular delivery of fluoroquinolones. Expert Opin Drug Deliv 2013; 10:691-711. [DOI: 10.1517/17425247.2013.772977] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
12
|
Reichl S, Kölln C, Hahne M, Verstraelen J. In vitro cell culture models to study the corneal drug absorption. Expert Opin Drug Metab Toxicol 2011; 7:559-78. [PMID: 21381983 DOI: 10.1517/17425255.2011.562195] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Many diseases of the anterior eye segment are treated using topically applied ophthalmic drugs. For these drugs, the cornea is the main barrier to reaching the interior of the eye. In vitro studies regarding transcorneal drug absorption are commonly performed using excised corneas from experimental animals. Due to several disadvantages and limitations of these animal experiments, establishing corneal cell culture models has been attempted as an alternative. AREAS COVERED This review summarizes the development of in vitro models based on corneal cell cultures for permeation studies during the last 20 years, starting with simple epithelial models and moving toward complex organotypical 3D corneal equivalents. EXPERT OPINION Current human 3D corneal cell culture models have the potential to replace excised animal corneas in drug absorption studies. However, for widespread use, the contemporary validation of existent systems is required.
Collapse
Affiliation(s)
- Stephan Reichl
- Technische Universita¨t Braunschweig, Institut fu¨r Pharmazeutische Technologie, Braunschweig, Germany.
| | | | | | | |
Collapse
|
13
|
Giuffrida S, Troia R, Schiraldi C, D’Agostino A, De Rosa M, Cordone L. MbCO Embedded in Trehalosyldextrin Matrices: Thermal Effects and Protein–Matrix Coupling. FOOD BIOPHYS 2010. [DOI: 10.1007/s11483-010-9197-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|