1
|
Biswas A, Choudhury AD, Mishra A, Verma SK, Bisen AC, Sanap SN, Agrawal S, Kumar M, Kumar S, Bhatta RS. Pharmacokinetic Analysis of Gatifloxacin and Dexamethasone in Rabbit Ocular Biofluid Using a Sensitive and Selective LC-MS/MS Method. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5088. [PMID: 39351617 DOI: 10.1002/jms.5088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/21/2024] [Indexed: 12/29/2024]
Abstract
Bacterial keratitis (BK) is an infection that causes inflammation of the cornea and, if severe, can result in blindness. Topical fluoroquinolones combined with corticosteroids have been shown to be useful in the treatment of BK. A rapid, selective, and sensitive bioanalytical method for simultaneous quantification of Gatifloxacin (GAT) and Dexamethasone (DEX) has been developed and validated using tandem mass spectrometry (LC-MS/MS). Optimal separation was accomplished in under 5 min using an Agilent Zorbax C18 column (100 mm × 4.6 mm, 3.5 μm). The mobile phase was composed of a blend of 0.2% formic acid in triple distilled water and methanol with a flow rate of 0.65 mL/min in isocratic mode. GAT and DEX were detected in positive electrospray ionization multiple reaction monitoring mode (MRM), and the retention time was found to be at 1.64 and 2.93 min, respectively. The linearity of GAT and DEX was found to be in the range of 1.56-400 ng mL-1 with good precision and accuracy. The method was validated according to USFDA regulatory guidelines. The validated method was effectively utilized for preclinical pharmacokinetic analysis of GAT and DEX in rabbit tear fluid following the topical application of a commercial formulation.
Collapse
Affiliation(s)
- Arpon Biswas
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Pharmaceutics and Pharmacokinetics Division of CSIR-Central Drug Research Institute, Jawaharlal Nehru University, New Delhi, India
| | - Abhijit Deb Choudhury
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Pharmaceutics and Pharmacokinetics Division of CSIR-Central Drug Research Institute, Jawaharlal Nehru University, New Delhi, India
| | - Anjali Mishra
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sarvesh Kumar Verma
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Pharmaceutics and Pharmacokinetics Division of CSIR-Central Drug Research Institute, Jawaharlal Nehru University, New Delhi, India
| | - Amol Chhatrapati Bisen
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sachin Nashik Sanap
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sristi Agrawal
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Mukesh Kumar
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Pharmaceutics and Pharmacokinetics Division of CSIR-Central Drug Research Institute, Jawaharlal Nehru University, New Delhi, India
| | - Shivansh Kumar
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Rabi Sankar Bhatta
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
2
|
Biswas A, Kumar S, Choudhury AD, Bisen AC, Sanap SN, Agrawal S, Mishra A, Verma SK, Kumar M, Bhatta RS. Polymers and their engineered analogues for ocular drug delivery: Enhancing therapeutic precision. Biopolymers 2024; 115:e23578. [PMID: 38577865 DOI: 10.1002/bip.23578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 04/06/2024]
Abstract
Ocular drug delivery is constrained by anatomical and physiological barriers, necessitating innovative solutions for effective therapy. Natural polymers like hyaluronic acid, chitosan, and gelatin, alongside synthetic counterparts such as PLGA and PEG, have gained prominence for their biocompatibility and controlled release profiles. Recent strides in polymer conjugation strategies have enabled targeted delivery through ligand integration, facilitating tissue specificity and cellular uptake. This versatility accommodates combined drug delivery, addressing diverse anterior (e.g., glaucoma, dry eye) and posterior segment (e.g., macular degeneration, diabetic retinopathy) afflictions. The review encompasses an in-depth exploration of each natural and synthetic polymer, detailing their individual advantages and disadvantages for ocular drug delivery. By transcending ocular barriers and refining therapeutic precision, these innovations promise to reshape the management of anterior and posterior segment eye diseases.
Collapse
Affiliation(s)
- Arpon Biswas
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Shivansh Kumar
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Abhijit Deb Choudhury
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Amol Chhatrapati Bisen
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sachin Nashik Sanap
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sristi Agrawal
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Anjali Mishra
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sarvesh Kumar Verma
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Mukesh Kumar
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Rabi Sankar Bhatta
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
3
|
Bisen AC, Dubey A, Agrawal S, Biswas A, Rawat KS, Srivastava S, Bhatta RS. Recent updates on ocular disease management with ophthalmic ointments. Ther Deliv 2024; 15:463-480. [PMID: 38888757 DOI: 10.1080/20415990.2024.2346047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/18/2024] [Indexed: 06/20/2024] Open
Abstract
Ophthalmic diseases can result in permanent vision loss and blindness. Convenient topical and systemic treatments are preferred to address these sight-threatening conditions. However, the unique anatomy of the eye presents challenges for drug delivery. Various ophthalmic ointment formulations have been developed to enhance bioavailability in the eye to prolong residence time and improve corneal permeability. This article explores a wide range of ocular diseases affecting individuals globally and how ointments are used to manage them. From eye to ocular barriers, this review focuses on published scientific research and formulation strategies for severe ocular complications using conventional topical ointments. Additionally, it delves through patented technologies and marketed formulations supporting the use of ointments in ocular drug delivery.
Collapse
Affiliation(s)
- Amol Chhatrapati Bisen
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
- Sophisticated Analytical Instrument Facility and Research, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Ayush Dubey
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
- School of Pharmaceutical Sciences, CSJM University, Kanpur, 208024, Uttar Pradesh, India
| | - Sristi Agrawal
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Arpon Biswas
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Kundan Singh Rawat
- Prof. Rajendra Singh Nanoscience & Chemistry D.S.B. Campus, Kumaun University, Nainital, 263001, Uttarakhand, India
| | - Saurabh Srivastava
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
- School of Pharmaceutical Sciences, CSJM University, Kanpur, 208024, Uttar Pradesh, India
| | - Rabi Sankar Bhatta
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| |
Collapse
|
4
|
Bisen AC, Srivastava S, Mishra A, Sanap SN, Biswas A, Choudhury AD, Dubey A, Gupta NM, Yadav KS, Mugale MN, Bhatta RS. Pharmaceutical Emulsions: A Viable Approach for Ocular Drug Delivery. J Ocul Pharmacol Ther 2024; 40:261-280. [PMID: 38654153 DOI: 10.1089/jop.2023.0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Affiliation(s)
- Amol Chhatrapati Bisen
- Pharmaceutics and Pharmacokinetics Division, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Saurabh Srivastava
- Pharmaceutics and Pharmacokinetics Division, Lucknow, Uttar Pradesh, India
| | - Anjali Mishra
- Pharmaceutics and Pharmacokinetics Division, Lucknow, Uttar Pradesh, India
| | - Sachin Nashik Sanap
- Pharmaceutics and Pharmacokinetics Division, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Arpon Biswas
- Pharmaceutics and Pharmacokinetics Division, Lucknow, Uttar Pradesh, India
| | | | - Ayush Dubey
- Pharmaceutics and Pharmacokinetics Division, Lucknow, Uttar Pradesh, India
| | - Neeraj Mohan Gupta
- Department of Chemistry, Government P. G. College, Guna, Madhya Pradesh, India
| | - Karan Singh Yadav
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
- Division of Toxicology and Experimental Medicine; CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Madhav Nilakanth Mugale
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
- Division of Toxicology and Experimental Medicine; CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Rabi Sankar Bhatta
- Pharmaceutics and Pharmacokinetics Division, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
5
|
Tiwari P, Yadav K, Shukla RP, Bakshi AK, Panwar D, Das S, Mishra PR. Extracellular vesicles-powered immunotherapy: Unleashing the potential for safer and more effective cancer treatment. Arch Biochem Biophys 2024; 756:110022. [PMID: 38697343 DOI: 10.1016/j.abb.2024.110022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/04/2024]
Abstract
Cancer treatment has seen significant advancements with the introduction of Onco-immunotherapies (OIMTs). Although some of these therapies have received approval for use, others are either undergoing testing or are still in the early stages of development. Challenges persist in making immunotherapy widely applicable to cancer treatment. To maximize the benefits of immunotherapy and minimize potential side effects, it's essential to improve response rates across different immunotherapy methods. A promising development in this area is the use of extracellular vesicles (EVs) as novel delivery systems. These small vesicles can effectively deliver immunotherapies, enhancing their effectiveness and reducing harmful side effects. This article discusses the importance of integrating nanomedicines into OIMTs, highlighting the challenges with current anti-OIMT methods. It also explores key considerations for designing nanomedicines tailored for OIMTs, aiming to improve upon existing immunotherapy techniques. Additionally, the article looks into innovative approaches like biomimicry and the use of natural biomaterial-based nanocarriers (NCs). These advancements have the potential to transform the delivery of immunotherapy. Lastly, the article addresses the challenges of moving OIMTs from theory to clinical practice, providing insights into the future of using advanced nanotechnology in cancer treatment.
Collapse
Affiliation(s)
- Pratiksha Tiwari
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India; Jawaharlal Nehru University, New Delhi, India
| | - Krishna Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India
| | - Ravi Prakash Shukla
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India
| | - Avijit Kumar Bakshi
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India
| | - Dilip Panwar
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India
| | - Sweety Das
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India
| | - Prabhat Ranjan Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, U.P., India.
| |
Collapse
|
6
|
Tiwari P, Shukla RP, Yadav K, Panwar D, Agarwal N, Kumar A, Singh N, Bakshi AK, Marwaha D, Gautam S, Rai N, Mishra PR. Exploring nanocarriers as innovative materials for advanced drug delivery strategies in onco-immunotherapies. J Mol Graph Model 2024; 128:108702. [PMID: 38219505 DOI: 10.1016/j.jmgm.2024.108702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/16/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024]
Abstract
In recent years, Onco-immunotherapies (OIMTs) have been shown to be a potential therapy option for cancer. Several immunotherapies have received regulatory approval, while many others are now undergoing clinical testing or are in the early stages of development. Despite this progress, a large number of challenges to the broad use of immunotherapies to treat cancer persists. To make immunotherapy more useful as a treatment while reducing its potentially harmful side effects, we need to know more about how to improve response rates to different types of immunotherapies. Nanocarriers (NCs) have the potential to harness immunotherapies efficiently, enhance the efficiency of these treatments, and reduce the severe adverse reactions that are associated with them. This article discusses the necessity to incorporate nanomedicines in OIMTs and the challenges we confront with current anti-OIMT approaches. In addition, it examines the most important considerations for building nanomedicines for OIMT, which may improve upon current immunotherapy methods. Finally, it highlights the applications and future scenarios of using nanotechnology.
Collapse
Affiliation(s)
- Pratiksha Tiwari
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India; Jawaharlal Nehru University, New Delhi, India
| | - Ravi Prakash Shukla
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India
| | - Krishna Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India
| | - Dilip Panwar
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India
| | - Neha Agarwal
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India
| | - Ankit Kumar
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India
| | - Neha Singh
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India
| | - Avijit Kumar Bakshi
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India
| | - Disha Marwaha
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India
| | - Shalini Gautam
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India
| | - Nikhil Rai
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India
| | - Prabhat Ranjan Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, U.P., India.
| |
Collapse
|
7
|
Bisen AC, Agrawal S, Rayiti R, Sanap SN, Biswas A, Mishra A, Gupta NM, Bhatta RS. Pirfenidone: A Promising Drug in Ocular Therapeutics. Chem Biodivers 2024; 21:e202301389. [PMID: 38299764 DOI: 10.1002/cbdv.202301389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/02/2024]
Abstract
Pirfenidone, initially indicated for lung fibrosis, has gone beyond its original purpose, and shown promise in eye care. This detailed review tracks its evolution from lung treatment to aiding eye healing as evidenced by published literature. Pirfenidone's multifaceted attributes extend to mitigating corneal fibrosis, inflammation, and trauma. Through rigorous investigations, its efficacy emerges in diabetic retinopathy, macular degeneration, and postoperative glaucoma interventions. As an unheralded protagonist, pirfenidone reshapes ocular care paradigms, inviting renewed research opportunities.
Collapse
Affiliation(s)
- Amol Chhatrapati Bisen
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Sristi Agrawal
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Ramakrishna Rayiti
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Sachin Nashik Sanap
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Arpon Biswas
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Anjali Mishra
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Neeraj Mohan Gupta
- Department of Chemistry, Government P. G. College, Guna, Madhya Pradesh, 473001, India
| | - Rabi Sankar Bhatta
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
8
|
Mishra A, Choudhury AD, Biswas A, Singh V, Verma S, Bisen AC, Kumar M, Bhatta RS. Concurrent determination of anti-microbial and anti-inflammatory drugs in lachrymal fluid and tissue by LC-MS/MS: A potential treatment for microbial keratitis and its PK-PD evaluation. J Pharm Biomed Anal 2024; 239:115920. [PMID: 38113826 DOI: 10.1016/j.jpba.2023.115920] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
Unforeseen surfacing of microbial keratitis (MKT) over the years has led to a requisite for promising treatment strategy involving combination of antifungal and antibacterial agents. Subsequently, symptoms associated with MKT including inflammation and watery eyes require treatment with anti-inflammatory agents. Thus, a requirement of functional clinical treatment strategy involving combination of anti-inflammatory corticosteroids (Betamethasone) with antifungal polyene (Amphotericin B, AmB) and antibacterials macrolide (Azithromycin, AZT) and aminoglycoside (Neomycin, NEO). In the ensuing pursuit, a sensitive and fast simultaneous LC-MS/MS method of four drastically different analytes in rabbit tear fluid and cornea was developed and validated as per US-FDA guidelines. The gradient LC set-up was used with C18 column and flow rate of 0.55 mL/min along with short run time of 7 min. The calibration curves showed good linearity over the concentration range of 0.07-300 ng/mL, 1.00-400 ng/mL, 3.00-600 ng/mL and 8.00-900 ng/mL for AZT, AmB, NEO and BEM respectively. The bioanalytical method requires only 10 µL of ocular sample and analytes were extracted with fast protein precipitation with acidic methanol. Finally, the developed method was validated for selectivity, linearity (r2 > 0.99), precision, accuracy, matrix effects, and stability. PK-PD indices and dosing frequency was predicted using Phoenix WinNonlin Software, based on single dose ocular pharmacokinetics and MIC values of AmB, AZT and NEO. According to the PK-PD simulation, S. aureus and E. coli required 6 and 12 instillations of AZT per 24 h, respectively whereas 12 instillation of NEO requires per 24 h for S. aureus. The result suggests that to minimize antimicrobial resistance; drug, dose and dosing schedule depend upon the pathogen as well as the strain.
Collapse
Affiliation(s)
- Anjali Mishra
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Abhijit Deb Choudhury
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Jawaharlal Nehru University, New Delhi 110067, India
| | - Arpon Biswas
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Jawaharlal Nehru University, New Delhi 110067, India
| | - Vaishali Singh
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Sarvesh Verma
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Jawaharlal Nehru University, New Delhi 110067, India
| | - Amol Chhatrapati Bisen
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Mukesh Kumar
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Jawaharlal Nehru University, New Delhi 110067, India
| | - Rabi Sankar Bhatta
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| |
Collapse
|
9
|
Bisen AC, Bhatta RS. Ocular bioanalysis of moxifloxacin and ketorolac tromethamine in rabbit lacrimal matrix using liquid chromatography-tandem mass spectrometry. Bioanalysis 2024; 16:219-232. [PMID: 38197429 DOI: 10.4155/bio-2023-0233] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
Aim: The fixed-dose combination of moxifloxacin (MOXI) and ketorolac tromethamine (KTR) is widely used for the treatment of bacterial keratitis. Thus, a new LC-MS/MS method was developed to determine MOXI and KTR in lacrimal fluid. Methods: Bioanalysis was performed using a Shimadzu 8050 LC-MS/MS in electrospray ionization-positive mode and the method was validated per US FDA guidelines. Isocratic separation was performed with a Waters Symmetry C18 column using methanol and 0.1% formic acid containing deionized water (85:15, v/v). Results & conclusion: An easy, quick and selective method was established and applied to assess the ocular pharmacokinetic profile of a commercially available formulation containing MOXI and KTR. Based on the pharmacokinetic data, this work describes pharmacokinetics-based dosage regimen calculations and their clinical significance.
Collapse
Affiliation(s)
- Amol Chhatrapati Bisen
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh, 201002, India
| | - Rabi Sankar Bhatta
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
10
|
Biswas A, Choudhury AD, Bisen AC, Agrawal S, Sanap SN, Verma SK, Mishra A, Kumar S, Bhatta RS. Trends in Formulation Approaches for Sustained Drug Delivery to the Posterior Segment of the Eye. AAPS PharmSciTech 2023; 24:217. [PMID: 37891392 DOI: 10.1208/s12249-023-02673-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
The eye, an intricate organ comprising physical and physiological barriers, poses a significant challenge for ophthalmic physicians seeking to treat serious ocular diseases affecting the posterior segment, such as age-related macular degeneration (AMD) and diabetic retinopathy (DR). Despite extensive efforts, the delivery of therapeutic drugs to the rear part of the eye remains an unresolved issue. This comprehensive review delves into conventional and innovative formulation strategies for drug delivery to the posterior segment of the eye. By utilizing alternative nanoformulation approaches such as liposomes, nanoparticles, and microneedle patches, researchers and clinicians can overcome the limitations of conventional eye drops and achieve more effective drug delivery to the posterior segment of the eye. These innovative strategies offer improved drug penetration, prolonged residence time, and controlled release, enhancing therapeutic outcomes for ocular diseases. Moreover, this article explores recently approved delivery systems that leverage diverse polymer technologies, such as chitosan and hyaluronic acid, to regulate drug-controlled release over an extended period. By offering a comprehensive understanding of the available formulation strategies, this review aims to empower researchers and clinicians in their pursuit of developing highly effective treatments for posterior-segment ocular diseases.
Collapse
Affiliation(s)
- Arpon Biswas
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Jawaharlal Nehru University, New Delhi, 110067, India
| | - Abhijit Deb Choudhury
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Jawaharlal Nehru University, New Delhi, 110067, India
| | - Amol Chhatrapati Bisen
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Sristi Agrawal
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Sachin Nashik Sanap
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Sarvesh Kumar Verma
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Jawaharlal Nehru University, New Delhi, 110067, India
| | - Anjali Mishra
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Shivansh Kumar
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Rabi Sankar Bhatta
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.
| |
Collapse
|