1
|
Tembrock LR, Zink FA, Gilligan TM. Viral Prevalence and Genomic Xenology in the Coevolution of HzNV-2 (Nudiviridae) with Host Helicoverpa zea (Lepidoptera: Noctuidae). INSECTS 2023; 14:797. [PMID: 37887809 PMCID: PMC10607169 DOI: 10.3390/insects14100797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/16/2023] [Accepted: 09/24/2023] [Indexed: 10/28/2023]
Abstract
Insect viruses have been described from numerous lineages, yet patterns of genetic exchange and viral prevalence, which are essential to understanding host-virus coevolution, are rarely studied. In Helicoverpa zea, the virus HzNV-2 can cause deformity of male and female genitalia, resulting in sterility. Using ddPCR, we found that male H. zea with malformed genitalia (agonadal) contained high levels of HzNV-2 DNA, confirming previous work. HzNV-2 was found to be prevalent throughout the United States, at more than twice the rate of the baculovirus HaSNPV, and that it contained several host-acquired DNA sequences. HzNV-2 possesses four recently endogenized lepidopteran genes and several more distantly related genes, including one gene with a bacteria-like sequence found in both host and virus. Among the recently acquired genes is cytosolic serine hydroxymethyltransferase (cSHMT). In nearly all tested H. zea, cSHMT contained a 200 bp transposable element (TE) that was not found in cSHMT of the sister species H. armigera. No other virus has been found with host cSHMT, and the study of this shared copy, including possible interactions, may yield new insights into the function of this gene with possible applications to insect biological control, and gene editing.
Collapse
Affiliation(s)
- Luke R. Tembrock
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Frida A. Zink
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Todd M. Gilligan
- USDA-APHIS-PPQ-Science & Technology, Identification Technology Program, Fort Collins, CO 80526, USA
| |
Collapse
|
2
|
Carballares D, Morellon-Sterling R, Fernandez-Lafuente R. Design of Artificial Enzymes Bearing Several Active Centers: New Trends, Opportunities and Problems. Int J Mol Sci 2022; 23:5304. [PMID: 35628115 PMCID: PMC9141793 DOI: 10.3390/ijms23105304] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 04/28/2022] [Accepted: 05/08/2022] [Indexed: 12/11/2022] Open
Abstract
Harnessing enzymes which possess several catalytic activities is a topic where intense research has been carried out, mainly coupled with the development of cascade reactions. This review tries to cover the different possibilities to reach this goal: enzymes with promiscuous activities, fusion enzymes, enzymes + metal catalysts (including metal nanoparticles or site-directed attached organometallic catalyst), enzymes bearing non-canonical amino acids + metal catalysts, design of enzymes bearing a second biological but artificial active center (plurizymes) by coupling enzyme modelling and directed mutagenesis and plurizymes that have been site directed modified in both or in just one active center with an irreversible inhibitor attached to an organometallic catalyst. Some examples of cascade reactions catalyzed by the enzymes bearing several catalytic activities are also described. Finally, some foreseen problems of the use of these multi-activity enzymes are described (mainly related to the balance of the catalytic activities, necessary in many instances, or the different operational stabilities of the different catalytic activities). The design of new multi-activity enzymes (e.g., plurizymes or modified plurizymes) seems to be a topic with unarguable interest, as this may link biological and non-biological activities to establish new combo-catalysis routes.
Collapse
Affiliation(s)
- Diego Carballares
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, 28049 Madrid, Spain; (D.C.); (R.M.-S.)
| | - Roberto Morellon-Sterling
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, 28049 Madrid, Spain; (D.C.); (R.M.-S.)
- Student of Departamento de Biología Molecular, Universidad Autónoma de Madrid, C/Darwin 2, Campus UAM-CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, 28049 Madrid, Spain; (D.C.); (R.M.-S.)
- Center of Excellence in Bionanoscience Research, External Scientific Advisory Academic, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
3
|
Lane JR, Tata M, Briles DE, Orihuela CJ. A Jack of All Trades: The Role of Pneumococcal Surface Protein A in the Pathogenesis of Streptococcus pneumoniae. Front Cell Infect Microbiol 2022; 12:826264. [PMID: 35186799 PMCID: PMC8847780 DOI: 10.3389/fcimb.2022.826264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/10/2022] [Indexed: 12/11/2022] Open
Abstract
Streptococcus pneumoniae (Spn), or the pneumococcus, is a Gram-positive bacterium that colonizes the upper airway. Spn is an opportunistic pathogen capable of life-threatening disease should it become established in the lungs, gain access to the bloodstream, or disseminate to vital organs including the central nervous system. Spn is encapsulated, allowing it to avoid phagocytosis, and current preventative measures against infection include polyvalent vaccines composed of capsular polysaccharide corresponding to its most prevalent serotypes. The pneumococcus also has a plethora of surface components that allow the bacteria to adhere to host cells, facilitate the evasion of the immune system, and obtain vital nutrients; one family of these are the choline-binding proteins (CBPs). Pneumococcal surface protein A (PspA) is one of the most abundant CBPs and confers protection against the host by inhibiting recognition by C-reactive protein and neutralizing the antimicrobial peptide lactoferricin. Recently our group has identified two new roles for PspA: binding to dying host cells via host-cell bound glyceraldehyde 3-phosphate dehydrogenase and co-opting of host lactate dehydrogenase to enhance lactate availability. These properties have been shown to influence Spn localization and enhance virulence in the lower airway, respectively. Herein, we review the impact of CBPs, and in particular PspA, on pneumococcal pathogenesis. We discuss the potential and limitations of using PspA as a conserved vaccine antigen in a conjugate vaccine formulation. PspA is a vital component of the pneumococcal virulence arsenal - therefore, understanding the molecular aspects of this protein is essential in understanding pneumococcal pathogenesis and utilizing PspA as a target for treating or preventing pneumococcal pneumonia.
Collapse
Affiliation(s)
| | | | | | - Carlos J. Orihuela
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
4
|
Wu X, Han J, Gong G, Koffas MAG, Zha J. Wall teichoic acids: physiology and applications. FEMS Microbiol Rev 2020; 45:6019871. [DOI: 10.1093/femsre/fuaa064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/01/2020] [Indexed: 12/21/2022] Open
Abstract
ABSTRACT
Wall teichoic acids (WTAs) are charged glycopolymers containing phosphodiester-linked polyol units and represent one of the major components of Gram-positive cell envelope. WTAs have important physiological functions in cell division, gene transfer, surface adhesion, drug resistance and biofilm formation, and are critical virulence factors and vital determinants in mediating cell interaction with and tolerance to environmental factors. Here, we first briefly introduce WTA structure, biosynthesis and its regulation, and then summarize in detail four major physiological roles played by WTAs, i.e. WTA-mediated resistance to antimicrobials, virulence to mammalian cells, interaction with bacteriolytic enzymes and regulation of cell metabolism. We also review the applications of WTAs in these fields that are closely related to the human society, including antibacterial drug discovery targeting WTA biosynthesis, development of vaccines and antibodies regarding WTA-mediated pathogenicity, specific and sensitive detection of pathogens in food using WTAs as a surface epitope and regulation of WTA-related pathways for efficient microbial production of useful compounds. We also point out major problems remaining in these fields, and discuss some possible directions in the future exploration of WTA physiology and applications.
Collapse
Affiliation(s)
- Xia Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Jing Han
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Guoli Gong
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Mattheos A G Koffas
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Jian Zha
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| |
Collapse
|
5
|
Crystal structure of the choline-binding protein CbpJ from Streptococcus pneumoniae. Biochem Biophys Res Commun 2019; 514:1192-1197. [PMID: 31104766 DOI: 10.1016/j.bbrc.2019.05.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 02/04/2023]
Abstract
The choline-binding proteins play essential roles in pneumococcal colonization and virulence. It has been suggested that the choline-binding protein J (termed CbpJ; encoded by the gene sp_0378) from Streptococcus pneumoniae TIGR4 involves in the colonization in host and contributes to evasion of neutrophil killing. Here we report the 2.0 Å crystal structure of CbpJ in complex with choline. CbpJ consists of an N-terminal putative functional domain (N-domain) followed by a C-terminal choline-binding domain (CBD). The N-domain harbors four degenerated choline-binding repeats (CBRs) that lose the capacity of binding to choline, whereas the CBD is composed of seven typical CBRs. Further functional assays showed that the CBD contributes to the pneumococcal adhesion to human lung epithelial cell A549. These findings provide insights into the pneumococcal pathogenesis and broaden our understanding on the functions of choline-binding proteins.
Collapse
|
6
|
Desvaux M, Candela T, Serror P. Surfaceome and Proteosurfaceome in Parietal Monoderm Bacteria: Focus on Protein Cell-Surface Display. Front Microbiol 2018; 9:100. [PMID: 29491848 PMCID: PMC5817068 DOI: 10.3389/fmicb.2018.00100] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 01/16/2018] [Indexed: 12/12/2022] Open
Abstract
The cell envelope of parietal monoderm bacteria (archetypal Gram-positive bacteria) is formed of a cytoplasmic membrane (CM) and a cell wall (CW). While the CM is composed of phospholipids, the CW is composed at least of peptidoglycan (PG) covalently linked to other biopolymers, such as teichoic acids, polysaccharides, and/or polyglutamate. Considering the CW is a porous structure with low selective permeability contrary to the CM, the bacterial cell surface hugs the molecular figure of the CW components as a well of the external side of the CM. While the surfaceome corresponds to the totality of the molecules found at the bacterial cell surface, the proteinaceous complement of the surfaceome is the proteosurfaceome. Once translocated across the CM, secreted proteins can either be released in the extracellular milieu or exposed at the cell surface by associating to the CM or the CW. Following the gene ontology (GO) for cellular components, cell-surface proteins at the CM can either be integral (GO: 0031226), i.e., the integral membrane proteins, or anchored to the membrane (GO: 0046658), i.e., the lipoproteins. At the CW (GO: 0009275), cell-surface proteins can be covalently bound, i.e., the LPXTG-proteins, or bound through weak interactions to the PG or wall polysaccharides, i.e., the cell wall binding proteins. Besides monopolypeptides, some proteins can associate to each other to form supramolecular protein structures of high molecular weight, namely the S-layer, pili, flagella, and cellulosomes. After reviewing the cell envelope components and the different molecular mechanisms involved in protein attachment to the cell envelope, perspectives in investigating the proteosurfaceome in parietal monoderm bacteria are further discussed.
Collapse
Affiliation(s)
- Mickaël Desvaux
- Université Clermont Auvergne, INRA, UMR454 MEDiS, Clermont-Ferrand, France
| | - Thomas Candela
- EA4043 Unité Bactéries Pathogènes et Santé, Châtenay-Malabry, France
| | - Pascale Serror
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
7
|
Heß N, Waldow F, Kohler TP, Rohde M, Kreikemeyer B, Gómez-Mejia A, Hain T, Schwudke D, Vollmer W, Hammerschmidt S, Gisch N. Lipoteichoic acid deficiency permits normal growth but impairs virulence of Streptococcus pneumoniae. Nat Commun 2017; 8:2093. [PMID: 29233962 PMCID: PMC5727136 DOI: 10.1038/s41467-017-01720-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 10/11/2017] [Indexed: 11/09/2022] Open
Abstract
Teichoic acid (TA), a crucial cell wall constituent of the pathobiont Streptococcus pneumoniae, is bound to peptidoglycan (wall teichoic acid, WTA) or to membrane glycolipids (lipoteichoic acid, LTA). Both TA polymers share a common precursor synthesis pathway, but differ in the final transfer of the TA chain to either peptidoglycan or a glycolipid. Here, we show that LTA exhibits a different linkage conformation compared to WTA, and identify TacL (previously known as RafX) as a putative lipoteichoic acid ligase required for LTA assembly. Pneumococcal mutants deficient in TacL lack LTA and show attenuated virulence in mouse models of acute pneumonia and systemic infections, although they grow normally in culture. Hence, LTA is important for S. pneumoniae to establish systemic infections, and TacL represents a potential target for antimicrobial drug development. Teichoic acid is bound to peptidoglycan (wall teichoic acid, WTA) or to membrane glycolipids (lipoteichoic acid, LTA) in most Gram-positive bacteria. Here, the authors identify a putative ligase required for the assembly of LTA, but not WTA, and important for Streptococcus pneumoniae virulence in mouse models.
Collapse
Affiliation(s)
- Nathalie Heß
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Friedrich Ludwig Jahnstr. 15a, 17487, Greifswald, Germany
| | - Franziska Waldow
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 1-40, 23845, Borstel, Germany
| | - Thomas P Kohler
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Friedrich Ludwig Jahnstr. 15a, 17487, Greifswald, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, HZI - Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Bernd Kreikemeyer
- University Medicine, Institute of Medical Microbiology, Virology and Hygiene, Rostock University, Schillingallee 70, 18057, Rostock, Germany
| | - Alejandro Gómez-Mejia
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Friedrich Ludwig Jahnstr. 15a, 17487, Greifswald, Germany
| | - Torsten Hain
- Institute for Medical Microbiology, Justus-Liebig University of Giessen, Schubertstraße 81, 35392, Giessen, Germany
| | - Dominik Schwudke
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 1-40, 23845, Borstel, Germany
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Friedrich Ludwig Jahnstr. 15a, 17487, Greifswald, Germany.
| | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 1-40, 23845, Borstel, Germany.
| |
Collapse
|
8
|
Gutiérrez-Fernández J, Saleh M, Alcorlo M, Gómez-Mejía A, Pantoja-Uceda D, Treviño MA, Voß F, Abdullah MR, Galán-Bartual S, Seinen J, Sánchez-Murcia PA, Gago F, Bruix M, Hammerschmidt S, Hermoso JA. Modular Architecture and Unique Teichoic Acid Recognition Features of Choline-Binding Protein L (CbpL) Contributing to Pneumococcal Pathogenesis. Sci Rep 2016; 6:38094. [PMID: 27917891 PMCID: PMC5137146 DOI: 10.1038/srep38094] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 11/04/2016] [Indexed: 12/27/2022] Open
Abstract
The human pathogen Streptococcus pneumoniae is decorated with a special class of surface-proteins known as choline-binding proteins (CBPs) attached to phosphorylcholine (PCho) moieties from cell-wall teichoic acids. By a combination of X-ray crystallography, NMR, molecular dynamics techniques and in vivo virulence and phagocytosis studies, we provide structural information of choline-binding protein L (CbpL) and demonstrate its impact on pneumococcal pathogenesis and immune evasion. CbpL is a very elongated three-module protein composed of (i) an Excalibur Ca2+-binding domain -reported in this work for the very first time-, (ii) an unprecedented anchorage module showing alternate disposition of canonical and non-canonical choline-binding sites that allows vine-like binding of fully-PCho-substituted teichoic acids (with two choline moieties per unit), and (iii) a Ltp_Lipoprotein domain. Our structural and infection assays indicate an important role of the whole multimodular protein allowing both to locate CbpL at specific places on the cell wall and to interact with host components in order to facilitate pneumococcal lung infection and transmigration from nasopharynx to the lungs and blood. CbpL implication in both resistance against killing by phagocytes and pneumococcal pathogenesis further postulate this surface-protein as relevant among the pathogenic arsenal of the pneumococcus.
Collapse
Affiliation(s)
- Javier Gutiérrez-Fernández
- Department of Crystallography and Structural Biology, "Rocasolano" Institute of Physical-Chemistry, CSIC, Serrano 119, E-28006-Madrid, Spain
| | - Malek Saleh
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst Moritz Arndt University of Greifswald, D-17487 Greifswald, Germany
| | - Martín Alcorlo
- Department of Crystallography and Structural Biology, "Rocasolano" Institute of Physical-Chemistry, CSIC, Serrano 119, E-28006-Madrid, Spain
| | - Alejandro Gómez-Mejía
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst Moritz Arndt University of Greifswald, D-17487 Greifswald, Germany
| | - David Pantoja-Uceda
- Department of Biological Physical Chemistry. "Rocasolano" Institute of Physical-Chemistry, CSIC, Serrano 119, E-28006-Madrid, Spain
| | - Miguel A Treviño
- Department of Biological Physical Chemistry. "Rocasolano" Institute of Physical-Chemistry, CSIC, Serrano 119, E-28006-Madrid, Spain
| | - Franziska Voß
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst Moritz Arndt University of Greifswald, D-17487 Greifswald, Germany
| | - Mohammed R Abdullah
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst Moritz Arndt University of Greifswald, D-17487 Greifswald, Germany
| | - Sergio Galán-Bartual
- Department of Crystallography and Structural Biology, "Rocasolano" Institute of Physical-Chemistry, CSIC, Serrano 119, E-28006-Madrid, Spain
| | - Jolien Seinen
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst Moritz Arndt University of Greifswald, D-17487 Greifswald, Germany
| | - Pedro A Sánchez-Murcia
- Department of Biomedical Sciences, Unidad Asociada al IQM-CSIC, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Federico Gago
- Department of Biomedical Sciences, Unidad Asociada al IQM-CSIC, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Marta Bruix
- Department of Biological Physical Chemistry. "Rocasolano" Institute of Physical-Chemistry, CSIC, Serrano 119, E-28006-Madrid, Spain
| | - Sven Hammerschmidt
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst Moritz Arndt University of Greifswald, D-17487 Greifswald, Germany
| | - Juan A Hermoso
- Department of Crystallography and Structural Biology, "Rocasolano" Institute of Physical-Chemistry, CSIC, Serrano 119, E-28006-Madrid, Spain
| |
Collapse
|
9
|
Choline Binding Proteins from Streptococcus pneumoniae: A Dual Role as Enzybiotics and Targets for the Design of New Antimicrobials. Antibiotics (Basel) 2016; 5:antibiotics5020021. [PMID: 27314398 PMCID: PMC4929436 DOI: 10.3390/antibiotics5020021] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 05/04/2016] [Accepted: 05/16/2016] [Indexed: 12/20/2022] Open
Abstract
Streptococcus pneumoniae (pneumococcus) is an important pathogen responsible for acute invasive and non-invasive infections such as meningitis, sepsis and otitis media, being the major cause of community-acquired pneumonia. The fight against pneumococcus is currently hampered both by insufficient vaccine coverage and by rising antimicrobial resistances to traditional antibiotics, making necessary the research on novel targets. Choline binding proteins (CBPs) are a family of polypeptides found in pneumococcus and related species, as well as in some of their associated bacteriophages. They are characterized by a structural organization in two modules: a functional module (FM), and a choline-binding module (CBM) that anchors the protein to the choline residues present in the cell wall through non-covalent interactions. Pneumococcal CBPs include cell wall hydrolases, adhesins and other virulence factors, all playing relevant physiological roles for bacterial viability and virulence. Moreover, many pneumococcal phages also make use of hydrolytic CBPs to fulfill their infectivity cycle. Consequently, CBPs may play a dual role for the development of novel antipneumococcal drugs, both as targets for inhibitors of their binding to the cell wall and as active cell lytic agents (enzybiotics). In this article, we review the current state of knowledge about host- and phage-encoded pneumococcal CBPs, with a special focus on structural issues, together with their perspectives for effective anti-infectious treatments.
Collapse
|
10
|
Percy MG, Gründling A. Lipoteichoic Acid Synthesis and Function in Gram-Positive Bacteria. Annu Rev Microbiol 2014; 68:81-100. [DOI: 10.1146/annurev-micro-091213-112949] [Citation(s) in RCA: 266] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Matthew G. Percy
- Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ UK; ,
| | - Angelika Gründling
- Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ UK; ,
| |
Collapse
|
11
|
Bello-Gil D, Maestro B, Fonseca J, Feliu JM, Climent V, Sanz JM. Specific and reversible immobilization of proteins tagged to the affinity polypeptide C-LytA on functionalized graphite electrodes. PLoS One 2014; 9:e87995. [PMID: 24498237 PMCID: PMC3909327 DOI: 10.1371/journal.pone.0087995] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 01/02/2014] [Indexed: 11/19/2022] Open
Abstract
We have developed a general method for the specific and reversible immobilization of proteins fused to the choline-binding module C-LytA on functionalized graphite electrodes. Graphite electrode surfaces were modified by diazonium chemistry to introduce carboxylic groups that were subsequently used to anchor mixed self-assembled monolayers consisting of N,N-diethylethylenediamine groups, acting as choline analogs, and ethanolamine groups as spacers. The ability of the prepared electrodes to specifically bind C-LytA-tagged recombinant proteins was tested with a C-LytA-β-galactosidase fusion protein. The binding, activity and stability of the immobilized protein was evaluated by electrochemically monitoring the formation of an electroactive product in the enzymatic hydrolysis of the synthetic substrate 4-aminophenyl β-D-galactopyranoside. The hybrid protein was immobilized in an specific and reversible way, while retaining the catalytic activity. Moreover, these functionalized electrodes were shown to be highly stable and reusable. The method developed here can be envisaged as a general, immobilization procedure on the protein biosensor field.
Collapse
Affiliation(s)
- Daniel Bello-Gil
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, Spain
- Instituto Universitario de Electroquímica. Universidad de Alicante, Alicante, Spain
| | - Beatriz Maestro
- Instituto Universitario de Electroquímica. Universidad de Alicante, Alicante, Spain
| | - Jennifer Fonseca
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, Spain
| | - Juan M. Feliu
- Instituto Universitario de Electroquímica. Universidad de Alicante, Alicante, Spain
| | - Víctor Climent
- Instituto Universitario de Electroquímica. Universidad de Alicante, Alicante, Spain
| | - Jesús M. Sanz
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, Spain
- * E-mail:
| |
Collapse
|
12
|
Genome Sequence of the Butanol Hyperproducer Clostridium saccharoperbutylacetonicum N1-4. GENOME ANNOUNCEMENTS 2013; 1:e0007013. [PMID: 23516201 PMCID: PMC3593318 DOI: 10.1128/genomea.00070-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Clostridium saccharoperbutylacetonicum is one of the most important acetone-butanol-ethanol (ABE)-generating industrial microorganisms and one of the few bacteria containing choline in its cell wall. Here, we report the draft genome sequence of C. saccharoperbutylacetonicum strain N1-4 (6.6 Mbp; G+C content, 29.4%) and the findings obtained from the annotation of the genome.
Collapse
|
13
|
Are the surface layer homology domains essential for cell surface display and glycosylation of the S-layer protein from Paenibacillus alvei CCM 2051T? J Bacteriol 2012. [PMID: 23204458 DOI: 10.1128/jb.01487-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Paenibacillus alvei CCM 2051(T) cells are decorated with a two-dimensional (2D) crystalline array comprised of the glycosylated S-layer protein SpaA. At its N terminus, SpaA possesses three consecutive surface layer (S-layer) homology (SLH) domains containing the amino acid motif TRAE, known to play a key role in cell wall binding, as well as the TVEE and TRAQ variations thereof. SpaA is predicted to be anchored to the cell wall by interaction of the SLH domains with a peptidoglycan (PG)-associated, nonclassical, pyruvylated secondary cell wall polymer (SCWP). In this study, we have analyzed the role of the three predicted binding motifs within the SLH domains by mutating them into TAAA motifs, either individually, pairwise, or all of them. Effects were visualized in vivo by homologous expression of chimeras made of the mutated S-layer proteins and enhanced green fluorescent protein and in an in vitro binding assay using His-tagged SpaA variants and native PG-containing cell wall sacculi that either contained SCWP or were deprived of it. Experimental data indicated that (i) the TRAE, TVEE, and TRAQ motifs are critical for the binding function of SLH domains, (ii) two functional motifs are sufficient for cell wall binding, regardless of the domain location, (iii) SLH domains have a dual-recognition function for the SCWP and the PG, and (iv) cell wall anchoring is not necessary for SpaA glycosylation. Additionally, we showed that the SLH domains of SpaA are sufficient for in vivo cell surface display of foreign proteins at the cell surface of P. alvei.
Collapse
|
14
|
Pérez-Dorado I, Galan-Bartual S, Hermoso JA. Pneumococcal surface proteins: when the whole is greater than the sum of its parts. Mol Oral Microbiol 2012; 27:221-45. [PMID: 22759309 DOI: 10.1111/j.2041-1014.2012.00655.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Surface-exposed proteins of pathogenic bacteria are considered as potential virulence factors through their direct contribution to host-pathogen interactions. Four families of surface proteins decorate the cell surface of the human pathogen Streptococcus pneumoniae. Besides lipoproteins and LPXTG proteins, also present in other gram-positive bacteria, the pneumococcus presents the choline-binding protein (CBP) family and the non-classical surface proteins (NCSPs). The CBPs present specific structural features that allow their anchorage to the cell envelope through non-covalent interaction with choline residues of lipoteichoic acid and teichoic acid. NCSP is an umbrella term for less characterized proteins displaying moonlighting functions on the pneumococcal surface that lack a leader peptide and membrane-anchor motif. Considering the unceasing evolution of microbial species under the selective pressure of antibiotic use, detailed understanding of the interaction between pathogen and the host cells is required for the development of novel therapeutic strategies to combat pneumococcal infections. This article reviews recent progress in the investigation of the three-dimensional structures of surface-exposed pneumococcal proteins. The modular nature of some of them produces a great versatility and sophistication of the virulence functions that, in most cases, cannot be deduced by the structural analysis of the isolated modules.
Collapse
Affiliation(s)
- I Pérez-Dorado
- Department of Crystallography and Structural Biology, Instituto de Química-Física Rocasolano, CSIC, Madrid, Spain
| | | | | |
Collapse
|
15
|
Bui NK, Eberhardt A, Vollmer D, Kern T, Bougault C, Tomasz A, Simorre JP, Vollmer W. Isolation and analysis of cell wall components from Streptococcus pneumoniae. Anal Biochem 2012; 421:657-66. [DOI: 10.1016/j.ab.2011.11.026] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 11/14/2011] [Accepted: 11/22/2011] [Indexed: 11/16/2022]
|
16
|
Domenech CE, Otero LH, Beassoni PR, Lisa AT. Phosphorylcholine Phosphatase: A Peculiar Enzyme of Pseudomonas aeruginosa. Enzyme Res 2011; 2011:561841. [PMID: 21915373 PMCID: PMC3170909 DOI: 10.4061/2011/561841] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Revised: 05/31/2011] [Accepted: 06/07/2011] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa synthesizes phosphorylcholine phosphatase (PchP) when grown on choline, betaine, dimethylglycine or carnitine. In the presence of Mg2+ or Zn2+, PchP catalyzes the hydrolysis of p-nitrophenylphosphate (p-NPP) or phosphorylcholine (Pcho). The regulation of pchP gene expression is under the control of GbdR and NtrC; dimethylglycine is likely the metabolite directly involved in the induction of PchP. Therefore, the regulation of choline metabolism and consequently PchP synthesis may reflect an adaptive response of P. aeruginosa to environmental conditions. Bioinformatic and biochemistry studies shown that PchP contains two sites for alkylammonium compounds (AACs): one in the catalytic site near the metal ion-phosphoester pocket, and another in an inhibitory site responsible for the binding of the alkylammonium moiety. Both sites could be close to each other and interact through the residues 42E, 43E and 82YYY84. Zn2+ is better activator than Mg2+ at pH 5.0 and it is more effective at alleviating the inhibition produced by the entry of Pcho or different AACs in the inhibitory site. We postulate that Zn2+ induces at pH 5.0 a conformational change in the active center that is communicated to the inhibitory site, producing a compact or closed structure. However, at pH 7.4, this effect is not observed because to the hydrolysis of the [Zn2+L2−1L20(H2O)2] complex, which causes a change from octahedral to tetrahedral in the metal coordination geometry. This enzyme is also present in P. fluorescens, P. putida, P. syringae, and other organisms. We have recently crystallized PchP and solved its structure.
Collapse
Affiliation(s)
- Carlos Eduardo Domenech
- Departamento de Biología Molecular, Área Bioquímica, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, 5800 Río Cuarto, Córdoba, Argentina
| | | | | | | |
Collapse
|
17
|
Beassoni PR, Otero LH, Boetsch C, Domenech CE, González-Nilo FD, Lisa AT. Site-directed mutations and kinetic studies show key residues involved in alkylammonium interactions and reveal two sites for phosphorylcholine in Pseudomonas aeruginosa phosphorylcholine phosphatase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:858-63. [PMID: 21515416 DOI: 10.1016/j.bbapap.2011.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Revised: 03/17/2011] [Accepted: 04/01/2011] [Indexed: 11/16/2022]
Abstract
Pseudomonas aeruginosa phosphorylcholine phosphatase (PchP) catalyzes the hydrolysis of phosphorylcholine (Pcho) to produce choline and inorganic phosphate. PchP belongs to the haloacid dehalogenase superfamily (HAD) and possesses the three characteristic motifs of this family: motif I ((31)D and (33)D), motif II ((166)S), and motif III ((242)K, (261)G, (262)D and (267)D), which fold to form the catalytic site that binds the metal ion and the phosphate moiety of Pcho. Based on comparisons to the PHOSPHO1 and PHOSPHO2 human enzymes and the choline-binding proteins of Gram-(+) bacteria, we selected residues (42)E and (43)E and the aromatic triplet (82)YYY(84) for site-directed mutagenesis to study the interactions with Pcho and p-nitrophenylphosphate as substrates of PchP. Because mutations in (42)E, (43)E and the three tyrosine residues affect both the substrate affinity and the inhibitory effect produced by high Pcho concentrations, we postulate that two sites, one catalytic and one inhibitory, are present in PchP and that they are adjacent and share residues.
Collapse
Affiliation(s)
- Paola R Beassoni
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, X5800BYA Río Cuarto, Córdoba, Argentina.
| | | | | | | | | | | |
Collapse
|
18
|
Hernández-Rocamora VM, Reulen SWA, de Waal B, Meijer EW, Sanz JM, Merkx M. Choline dendrimers as generic scaffolds for the non-covalent synthesis of multivalent protein assemblies. Chem Commun (Camb) 2011; 47:5997-9. [DOI: 10.1039/c0cc05605g] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Frolet C, Beniazza M, Roux L, Gallet B, Noirclerc-Savoye M, Vernet T, Di Guilmi AM. New adhesin functions of surface-exposed pneumococcal proteins. BMC Microbiol 2010; 10:190. [PMID: 20624274 PMCID: PMC2911433 DOI: 10.1186/1471-2180-10-190] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2009] [Accepted: 07/12/2010] [Indexed: 12/02/2022] Open
Abstract
Background Streptococcus pneumoniae is a widely distributed commensal Gram-positive bacteria of the upper respiratory tract. Pneumococcal colonization can progress to invasive disease, and thus become lethal, reason why antibiotics and vaccines are designed to limit the dramatic effects of the bacteria in such cases. As a consequence, pneumococcus has developed efficient antibiotic resistance, and the use of vaccines covering a limited number of serotypes such as Pneumovax® and Prevnar® results in the expansion of non-covered serotypes. Pneumococcal surface proteins represent challenging candidates for the development of new therapeutic targets against the bacteria. Despite the number of described virulence factors, we believe that the majority of them remain to be characterized. This is the reason why pneumococcus invasion processes are still largely unknown. Results Availability of genome sequences facilitated the identification of pneumococcal surface proteins bearing characteristic motifs such as choline-binding proteins (Cbp) and peptidoglycan binding (LPXTG) proteins. We designed a medium throughput approach to systematically test for interactions between these pneumococcal surface proteins and host proteins (extracellular matrix proteins, circulating proteins or immunity related proteins). We cloned, expressed and purified 28 pneumococcal surface proteins. Interactions were tested in a solid phase assay, which led to the identification of 23 protein-protein interactions among which 20 are new. Conclusions We conclude that whether peptidoglycan binding proteins do not appear to be major adhesins, most of the choline-binding proteins interact with host proteins (elastin and C reactive proteins are the major Cbp partners). These newly identified interactions open the way to a better understanding of host-pneumococcal interactions.
Collapse
Affiliation(s)
- Cécile Frolet
- Institut de Biologie Structurale, UMR, Université Joseph Fourier, CNRS, CEA, Grenoble, France
| | | | | | | | | | | | | |
Collapse
|
20
|
Zhang Z, Li W, Frolet C, Bao R, di Guilmi AM, Vernet T, Chen Y. Structure of the choline-binding domain of Spr1274 in Streptococcus pneumoniae. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:757-61. [PMID: 19652332 PMCID: PMC2720326 DOI: 10.1107/s1744309109025329] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 06/30/2009] [Indexed: 11/10/2022]
Abstract
Spr1274 is a putative choline-binding protein that is bound to the cell wall of Streptococcus pneumoniae through noncovalent interactions with the choline moieties of teichoic and lipoteichoic acids. Its function is still unknown. The crystal structure of the choline-binding domain of Spr1274 (residues 44-129) was solved at 2.38 A resolution with three molecules in the asymmetric unit. It may provide a structural basis for functional analysis of choline-binding proteins.
Collapse
Affiliation(s)
- Zhenyi Zhang
- Protein Research Institute, Tongji University, Shanghai 200092, People’s Republic of China
| | - Wenzhe Li
- Protein Research Institute, Tongji University, Shanghai 200092, People’s Republic of China
| | - Cecile Frolet
- Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5075, Laboratoire d’Ingénierie des Macromolécules, 41 Rue Jules Horowitz, and CEA, Université Joseph Fourier, Partnership for Structural Biology, 38027 Grenoble, France
| | - Rui Bao
- Protein Research Institute, Tongji University, Shanghai 200092, People’s Republic of China
| | - Anne-Marie di Guilmi
- Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5075, Laboratoire d’Ingénierie des Macromolécules, 41 Rue Jules Horowitz, and CEA, Université Joseph Fourier, Partnership for Structural Biology, 38027 Grenoble, France
| | - Thierry Vernet
- Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5075, Laboratoire d’Ingénierie des Macromolécules, 41 Rue Jules Horowitz, and CEA, Université Joseph Fourier, Partnership for Structural Biology, 38027 Grenoble, France
| | - Yuxing Chen
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| |
Collapse
|
21
|
Hakenbeck R, Madhour A, Denapaite D, Brückner R. Versatility of choline metabolism and choline-binding proteins in Streptococcus pneumoniae and commensal streptococci. FEMS Microbiol Rev 2009; 33:572-86. [PMID: 19396958 DOI: 10.1111/j.1574-6976.2009.00172.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The pneumococcal choline-containing teichoic acids are targeted by cholinebinding proteins (CBPs), major surface components implicated in the interaction with host cells and bacterial cell physiology. CBPs also occur in closely related commensal species, Streptococcus oralis and Streptococcus mitis, and many strains of these species contain choline in their cell wall. Physiologically relevant CBPs including cell wall lytic enzymes are highly conserved between Streptococcus pneumoniae and S. mitis. In contrast, the virulence-associated CBPs, CbpA, PspA and PcpA, are S. pneumoniae specific and are thus relevant for the characteristic properties of this species.
Collapse
Affiliation(s)
- Regine Hakenbeck
- Department of Microbiology, University of Kaiserslautern, Germany.
| | | | | | | |
Collapse
|
22
|
Bierne H, Cossart P. Listeria monocytogenes surface proteins: from genome predictions to function. Microbiol Mol Biol Rev 2007; 71:377-97. [PMID: 17554049 PMCID: PMC1899877 DOI: 10.1128/mmbr.00039-06] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The genome of the human food-borne pathogen Listeria monocytogenes is predicted to encode a high number of surface proteins. This abundance likely reflects the ability of this bacterium to survive in diverse environments, including soil, food, and the human host. This review focuses on the various mechanisms by which listerial proteins are attached at the bacterial surface and their many functions, including peptidoglycan metabolism, protein processing, adhesion to host cells, and invasion of host tissues. Extensive in silico analysis of the domains or motifs present in these mosaic proteins reveals that diverse structural features allow the surface proteome to interact with diverse bacterial or host components. This diversity offers new clues about the molecular bases of Listeria pathogenesis.
Collapse
Affiliation(s)
- Hélène Bierne
- Institut Pasteur, Unité des Interactions Bactéries Cellules, Paris F-75015, France.
| | | |
Collapse
|
23
|
Jedrzejas MJ. Unveiling molecular mechanisms of pneumococcal surface protein A interactions with antibodies and lactoferrin. Clin Chim Acta 2006; 367:1-10. [PMID: 16513101 DOI: 10.1016/j.cca.2005.09.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Revised: 09/27/2005] [Accepted: 09/29/2005] [Indexed: 11/16/2022]
Abstract
BACKGROUND Streptococcus pneumoniae is a Gram-positive bacterium and a major human pathogen. The organism displays on its surface a variety of molecules that are involved in many essential processes including interactions with the tissues and molecules of its human host. A number of such surface molecules are essential virulence factors in disease processes and pathogenesis during all stages of bacterial life. FOCUS Here we introduce one such surface protein, pneumococcal surface protein A (PspA), and show its molecular and structural aspects, and underlying mechanism of function at the atomic level as currently understood. The basis of its anti-complementary properties and functional interactions with its ligand, lactoferrin, is discussed. The PspA antigen binding to lactoferrin prevents the bactericidal effect of this human molecule of many functions. This review is focused on new function characterization studies performed during this century (year 2001 and later). Earlier studies on PspA were reviewed by this author in 2001 and 2004 [Jedrzejas MJ. Pneumococcal virulence factors: structure and function. Microbiol Mol Biol Rev, 2001;65:187-207; Jedrzejas MJ. Extracellular virulence factors of Streptococcus pneumoniae. Front Biosci 2004;9:891-914]. CONCLUSIONS The discovery and understanding of the molecular mechanisms of individual virulence factors, including PspA, are essential to the appreciation of S. pneumoniae function and mechanisms responsible for colonization and invasion of human tissues by this organism. The utilization of a microscopic view at the atomic level provided by structural biology is essential to this process of discovery. The development of new and better cures for the disease might follow as a result of such awareness.
Collapse
Affiliation(s)
- Mark J Jedrzejas
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King, Jr. Way, Oakland, CA 94609, USA.
| |
Collapse
|
24
|
May A, Pusztahelyi T, Hoffmann N, Fischer RJ, Bahl H. Mutagenesis of conserved charged amino acids in SLH domains of Thermoanaerobacterium thermosulfurigenes EM1 affects attachment to cell wall sacculi. Arch Microbiol 2006; 185:263-9. [PMID: 16470371 DOI: 10.1007/s00203-006-0092-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Revised: 01/17/2006] [Accepted: 01/20/2006] [Indexed: 02/03/2023]
Abstract
SLH domains (for surface layer homology) are involved in the attachment of proteins to bacterial cell walls. The data presented here assign the conserved TRAE motif within SLH domains a key role for the binding. The charged amino acids arginine (R) or/and glutamic acid (E) were replaced via site-directed mutagenesis by different amino acids. Effects were visualized in an in vitro binding assay using native cell wall sacculi of Thermoanaerobacterium thermosulfurigenes EM1 and different variants of an SLH protein which consisted of the triplicate SLH domain of xylanase XynA of this bacterium and which was purified after expression in Escherichia coli. The results indicated (1) that the TRAE motif is critical for the binding function of SLH domains, (2) that a functional TRAE motif is necessary in all three domains, (3) that a least one (preferentially positively) charged amino acid in the TRAE motif is required for the functionality of the SLH domain, and (4) that the position of the negatively and positively charged amino acids is important. The finding that the cell wall of T. thermosulfurigenes EM1 contains pyruvate (4 microg mg(-1)) is in agreement with the hypothesis that pyruvylated secondary cell wall polymers function as ligand for SLH domains.
Collapse
Affiliation(s)
- Antje May
- Institute of Biological Sciences, Division of Microbiology, University of Rostock, Albert-Einstein-Str. 3, 18051, Rostock, Germany
| | | | | | | | | |
Collapse
|
25
|
Mann B, Orihuela C, Antikainen J, Gao G, Sublett J, Korhonen TK, Tuomanen E. Multifunctional role of choline binding protein G in pneumococcal pathogenesis. Infect Immun 2006; 74:821-9. [PMID: 16428724 PMCID: PMC1360319 DOI: 10.1128/iai.74.2.821-829.2006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the choline binding protein (Cbp) family are noncovalently bound to phosphorylcholine residues on the surface of Streptococcus pneumoniae. It has been suggested that CbpG plays a role in adherence and increase virulence both at the mucosal surface and in the bloodstream, but the function of this protein has been unclear. A new sequence analysis indicated that CbpG is a possible member of the S1 family of multifunctional surface-associated serine proteases. Clinical isolates contained two alleles of cbpG, and one-third of the strains expressed a truncated protein lacking the C-terminal, cell wall-anchoring choline binding domain. CbpG on the surface of pneumococci (full length) or released into the supernatant (truncated) showed proteolytic activity for fibronectin and casein, as did CbpG expressed on lactobacilli or as a purified full-length or truncated recombinant protein. Recombinant CbpG (rCbpG)-coated beads adhered to eukaryotic cells, and TIGR4 mutants lacking CbpG or having a truncated CbpG protein showed decreased adherence in vitro and attenuation of disease in mouse challenge models of colonization, pneumonia, and bacteremia. Immunization with rCbpG was protective in an animal model of colonization and sepsis. We propose that CbpG is a multifunctional surface protein that in the cell-attached or secreted form cleaves host extracellular matrix and in the cell-attached form participates in bacterial adherence. This is the first example of distinct functions in virulence that are dependent on natural variation in expression of a choline binding domain.
Collapse
Affiliation(s)
- B Mann
- St. Jude Children's Research Hospital, 332 N. Lauderdale Rd., Memphis, TN 38105, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Massimelli MJ, Beassoni PR, Forrellad MA, Barra JL, Garrido MN, Domenech CE, Lisa AT. Identification, cloning, and expression of Pseudomonas aeruginosa phosphorylcholine phosphatase gene. Curr Microbiol 2005; 50:251-6. [PMID: 15886911 DOI: 10.1007/s00284-004-4499-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Pseudomonas aeruginosa phosphorylcholine phosphatase (PChP) is a periplasmic enzyme produced simultaneously with the hemolytic phospholipase C (PLc-H) when the bacteria are grown in the presence of choline, betaine, dimethylglycine or carnitine. Molecular analysis of the P. aeruginosa mutant JUF8-00, after Tn5-751 mutagenesis, revealed that the PA5292 gene in the P. aeruginosa PAO1 genome was responsible for the synthesis of PChP. The enzyme expressed in E. coli, rPChP-Ec, purified by a chitin-binding column (IMPACT-CN system, New England BioLabs) was homogeneous after SDS-PAGE analysis. PChP was also expressed in P. aeruginosa PAO1-LAC, rPChP-Pa. Both recombinant enzymes exhibited a molecular mass of approximately 40 kDa, as expected for the size of the PA5292 gene, and catalyzed the hydrolysis of phosphorylcholine, phosphorylethanolamine, and p-nitrophenylphosphate. The saturation curve of rPChP-Ec and rPChP-Pa by phosphorylcholine revealed that these recombinant enzymes, like the purified native PChP, also contained the high- and low-affinity sites for phosphorylcholine and that the enzyme activity was inhibited by high substrate concentration.
Collapse
Affiliation(s)
- María J Massimelli
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina
| | | | | | | | | | | | | |
Collapse
|
27
|
Brückner R, Nuhn M, Reichmann P, Weber B, Hakenbeck R. Mosaic genes and mosaic chromosomes-genomic variation in Streptococcus pneumoniae. Int J Med Microbiol 2005; 294:157-68. [PMID: 15493826 DOI: 10.1016/j.ijmm.2004.06.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The genome sequences of two strains of Streptococcus pneumoniae, one of the major human pathogens, are currently available: that of the nonencapsulated laboratory strain R6, the origin of which dates back to the early 20th century, and of the serotype 4 TIGR strain isolated recently. The two genomes are not only different in size (2 versus 2.16 Mb) but differ also by approximately 10% of their genes, many of which being organized in large clusters. Their strain-specific genes and gene clusters are described here. The R6 genome contains 69 kb organized in six large regions that are absent from the TIGR strain, which in turn contains an extra 157kb in twelve clusters compared to R6. In addition, the TIGR strain contains 13 clusters of 4 kb and larger that are not shared by a variety of genetically different S. pneumoniae strains. Many regions bear signs of gene transfer events such as the presence of insertion sequences, transposable elements, and putative site-specific integrases/recombinases. Three strain-specific regions are devoted to genes encoding proteins with the cell wall anchor motif LPXTG which are important for the interaction with host cells and appear to be highly variable, similar to cell wall-associated choline-binding proteins.
Collapse
Affiliation(s)
- Reinhold Brückner
- Department of Microbiology, University of Kaiserslautern, Paul-Ehrlich-Strasse 23, 67663 Kaiserslautern, Germany
| | | | | | | | | |
Collapse
|
28
|
Shah DSH, Joucla G, Remaud-Simeon M, Russell RRB. Conserved repeat motifs and glucan binding by glucansucrases of oral streptococci and Leuconostoc mesenteroides. J Bacteriol 2005; 186:8301-8. [PMID: 15576779 PMCID: PMC532428 DOI: 10.1128/jb.186.24.8301-8308.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glucansucrases of oral streptococci and Leuconostoc mesenteroides have a common pattern of structural organization and characteristically contain a domain with a series of tandem amino acid repeats in which certain residues are highly conserved, particularly aromatic amino acids and glycine. In some glucosyltransferases (GTFs) the repeat region has been identified as a glucan binding domain (GBD). Such GBDs are also found in several glucan binding proteins (GBP) of oral streptococci that do not have glucansucrase activity. Alignment of the amino acid sequences of 20 glucansucrases and GBP showed the widespread conservation of the 33-residue A repeat first identified in GtfI of Streptococcus downei. Site-directed mutagenesis of individual highly conserved residues in recombinant GBD of GtfI demonstrated the importance of the first tryptophan and the tyrosine-phenylalanine pair in the binding of dextran, as well as the essential contribution of a basic residue (arginine or lysine). A microplate binding assay was developed to measure the binding affinity of recombinant GBDs. GBD of GtfI was shown to be capable of binding glucans with predominantly alpha-1,3 or alpha-1,6 links, as well as alternating alpha-1,3 and alpha-1,6 links (alternan). Western blot experiments using biotinylated dextran or alternan as probes demonstrated a difference between the binding of streptococcal GTF and GBP and that of Leuconostoc glucansucrases. Experimental data and bioinformatics analysis showed that the A repeat motif is distinct from the 20-residue CW motif, which also has conserved aromatic amino acids and glycine and which occurs in the choline-binding proteins of Streptococcus pneumoniae and other organisms.
Collapse
Affiliation(s)
- Deepan S H Shah
- Oral Biology, School of Dental Sciences, University of Newcastle, Newcastle upon Tyne NE2 4BW, United Kingdom
| | | | | | | |
Collapse
|
29
|
Abstract
The large clostridial cytotoxins are a family of structurally and functionally related exotoxins from Clostridium difficile (toxins A and B), C. sordellii (lethal and hemorrhagic toxin) and C. novyi (alpha-toxin). The exotoxins are major pathogenicity factors which in addition to their in vivo effects are cytotoxic to cultured cell lines causing reorganization of the cytoskeleton accompanied by morphological changes. The exotoxins are single-chain protein toxins, which are constructed of three domains: receptor-binding, translocation and catalytic domain. These domains reflect the self-mediated cell entry via receptor-mediated endocytosis, translocation into the cytoplasm, and execution of their cytotoxic activity by an inherent enzyme activity. Enzymatically, the toxins catalyze the transfer of a glucosyl moiety from UDP-glucose to the intracellular target proteins which are the Rho and Ras GTPases. The covalent attachment of the glucose moiety to a conserved threonine within the effector region of the GTPases renders the Rho-GTPases functionally inactive. Whereas the molecular mode of cytotoxic effects is fully understood, the mechanisms leading to inflammatory processes in the context of disease (e.g., antibiotic-associated pseudomembranous colitis caused by Clostridium difficile) are less clear.
Collapse
Affiliation(s)
- I Just
- Institut für Toxikologie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | | |
Collapse
|
30
|
Shah DSH, Russell RRB. A novel glucan-binding protein with lipase activity from the oral pathogen Streptococcus mutans. MICROBIOLOGY-SGM 2004; 150:1947-1956. [PMID: 15184580 DOI: 10.1099/mic.0.26955-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Streptococcus mutans produces extracellular glucosyltransferases (GTFs) that synthesize glucans from sucrose. These glucans are important in determining the permeability properties and adhesiveness of dental plaque. GTFs and the GbpA glucan-binding protein are characterized by a binding domain containing a series of 33-amino-acid repeats, called 'A' repeats. The S. mutans genome sequence was searched for ORFs containing 'A' repeats, and one novel gene, gbpD, which appears to be unique to the mutans group of streptococci, was identified. The GbpD sequence revealed the presence of three 'A' repeats, in the middle of the protein, and a novel glucan-binding assay showed that GbpD binds to dextran with a K(D) of 2-3 nM. Construction of truncated derivatives of GbpD confirmed that the 'A' repeat region was essential for binding. Furthermore, a gbpD knockout mutant was modified in the extent of aggregation induced by polymers derived from sucrose. The N-terminus of GbpD has a signal sequence, followed by a region with no homologues in the public databases, while the C-terminus has homology to the alpha/beta hydrolase family (including lipases and carboxylesterases). GbpD contains the two regions typical of these enzymes: a GxSxG active site 'lipase box' and an 'oxyanion hole'. GbpD released free fatty acids (FFAs) from a range of triglycerides in the presence of calcium, indicating a lipase activity. The glucan binding/lipase bifunctionality suggested the natural substrate for the enzyme may be a surface macromolecule consisting of carbohydrate linked to lipid. The gbpD mutant was less hydrophobic than wild-type and pure recombinant GbpD reduced the hydrophobicity of S. mutans and another plaque bacterium, Streptococcus sanguinis. GbpD bound to and released FFA from lipoteichoic acid (LTA) of S. sanguinis, but had no effect on LTA from S. mutans. These results raise the intriguing possibility that GbpD may be involved in direct interspecies competition within the plaque biofilm.
Collapse
Affiliation(s)
- Deepan S H Shah
- School of Dental Sciences, University of Newcastle, Newcastle upon Tyne NE2 4BW, UK
| | - Roy R B Russell
- School of Dental Sciences, University of Newcastle, Newcastle upon Tyne NE2 4BW, UK
| |
Collapse
|
31
|
Hermoso JA, Monterroso B, Albert A, Galán B, Ahrazem O, García P, Martínez-Ripoll M, García JL, Menéndez M. Structural Basis for Selective Recognition of Pneumococcal Cell Wall by Modular Endolysin from Phage Cp-1. Structure 2003; 11:1239-49. [PMID: 14527392 DOI: 10.1016/j.str.2003.09.005] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pneumococcal bacteriophage-encoded lysins are modular choline binding proteins that have been shown to act as enzymatic antimicrobial agents (enzybiotics) against streptococcal infections. Here we present the crystal structures of the free and choline bound states of the Cpl-1 lysin, encoded by the pneumococcal phage Cp-1. While the catalytic module displays an irregular (beta/alpha)(5)beta(3) barrel, the cell wall-anchoring module is formed by six similar choline binding repeats (ChBrs), arranged into two different structural regions: a left-handed superhelical domain configuring two choline binding sites, and a beta sheet domain that contributes in bringing together the whole structure. Crystallographic and site-directed mutagenesis studies allow us to propose a general catalytic mechanism for the whole glycoside hydrolase family 25. Our work provides the first complete structure of a member of the large family of choline binding proteins and reveals that ChBrs are versatile elements able to tune the evolution and specificity of the pneumococcal surface proteins.
Collapse
Affiliation(s)
- Juan A Hermoso
- Grupo de Cristalografía Macromolecular y Biología Estructural, de Macromoléculas Biológicas, Instituto Química-Física Rocasolano, CSIC, Serrano 119, 28006 Madrid, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Choline has many physiological functions throughout the body that are dependent on its available local supply. However, since choline is a charged hydrophilic cation, transport mechanisms are required for it to cross biological membranes. Choline transport is required for cellular membrane construction and is the rate-limiting step for acetylcholine production. Transport mechanisms include: (1) sodium-dependent high-affinity uptake mechanism in synaptosomes, (2) sodium-independent low-affinity mechanism on cellular membranes, and (3) unique choline uptake mechanisms (e.g., blood-brain barrier choline transport). A comprehensive overview of choline transport studies is provided. This review article examines landmark and current choline transport studies, molecular mapping, and molecular identification of these carriers. Information regarding the choline-binding site is presented by reviewing choline structural analog (hemicholinium-3 and 15, and other nitrogen/methyl-hydroxyl compounds) inhibition studies. Choline transport in Alzheimer's disease, brain ischemic events, and aging is also discussed. Emphasis throughout the article is placed on targeting the choline transporter in disease and use of this carrier as a drug delivery vector.
Collapse
Affiliation(s)
- P R Lockman
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106-1712, USA
| | | |
Collapse
|
33
|
Sáiz JL, López-Zumel C, Monterroso B, Varea J, Arrondo JLR, Iloro I, García JL, Laynez J, Menéndez M. Characterization of Ejl, the cell-wall amidase coded by the pneumococcal bacteriophage Ej-1. Protein Sci 2002; 11:1788-99. [PMID: 12070331 PMCID: PMC2373657 DOI: 10.1110/ps.4680102] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The Ejl amidase is coded by Ej-1, a temperate phage isolated from the atypical pneumococcus strain 101/87. Like all the pneumococcal cell-wall lysins, Ejl has a bimodular organization; the catalytic region is located in the N-terminal module, and the C-terminal module attaches the enzyme to the choline residues of the pneumococcal cell wall. The structural features of the Ejl amidase, its interaction with choline, and the structural changes accompanying the ligand binding have been characterized by CD and IR spectroscopies, differential scanning calorimetry, analytical ultracentrifugation, and FPLC. According to prediction and spectroscopic (CD and IR) results, Ejl would be composed of short beta-strands (ca. 36%) connected by long loops (ca. 17%), presenting only two well-predicted alpha-helices (ca. 12%) in the catalytic module. Its polypeptide chain folds into two cooperative domains, corresponding to the N- and C-terminal modules, and exhibits a monomer <--> dimer self-association equilibrium. Choline binding induces small rearrangements in Ejl secondary structure but enhances the amidase self-association by preferential binding to Ejl dimers and tetramers. Comparison of LytA, the major pneumococcal amidase, with Ejl shows that the sequence differences (15% divergence) strongly influence the amidase stability, the organization of the catalytic module in cooperative domains, and the self-association state induced by choline. Moreover, the ligand affinity for the choline-binding locus involved in regulation of the amidase dimerization is reduced by a factor of 10 in Ejl. Present results evidence that sequence differences resulting from the natural variability found in the cell wall amidases coded by pneumococcus and its bacteriophages may significantly alter the protein structure and its attachment to the cell wall.
Collapse
Affiliation(s)
- José L Sáiz
- Instituto de Química-Física Rocasolano, CSIC, Serrano 119, 28006 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Paton JC, Giammarinaro P. Genome-based analysis of pneumococcal virulence factors: the quest for novel vaccine antigens and drug targets. Trends Microbiol 2001; 9:515-8. [PMID: 11825689 DOI: 10.1016/s0966-842x(01)02207-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Daiyasu H, Osaka K, Ishino Y, Toh H. Expansion of the zinc metallo-hydrolase family of the beta-lactamase fold. FEBS Lett 2001; 503:1-6. [PMID: 11513844 DOI: 10.1016/s0014-5793(01)02686-2] [Citation(s) in RCA: 258] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recently, the zinc metallo-hydrolase family of the beta-lactamase fold has grown quite rapidly, accompanied by the accumulation of sequence and structure data. The variety of the biological functions of the family is higher than expected. In addition, the members often have mosaic structures with additional domains. The family includes class B beta-lactamase, glyoxalase II, arylsulfatase, flavoprotein, cyclase/dehydrase, an mRNA 3'-processing protein, a DNA cross-link repair enzyme, a DNA uptake-related protein, an alkylphosphonate uptake-related protein, CMP-N-acetylneuraminate hydroxylase, the romA gene product, alkylsulfatase, and insecticide hydrolases. In this minireview, the functional and structural varieties of the growing protein family are described.
Collapse
Affiliation(s)
- H Daiyasu
- Department of Bioinformatics, Biomolecular Engineering Research Institute, Osaka, Japan
| | | | | | | |
Collapse
|
36
|
Bergé M, García P, Iannelli F, Prère MF, Granadel C, Polissi A, Claverys JP. The puzzle of zmpB and extensive chain formation, autolysis defect and non-translocation of choline-binding proteins in Streptococcus pneumoniae. Mol Microbiol 2001; 39:1651-60. [PMID: 11260480 DOI: 10.1046/j.1365-2958.2001.02359.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Choline-binding proteins (CBPs) from Streptococcus pneumoniae are involved in several important processes. Inactivation of zmpB, a gene that encodes a surface-located putative zinc metalloprotease, in a S. pneumoniae serotype 4 strain was recently reported to reveal a composite phenotype, including extensive chain formation, lysis defect and transformation deficiency. This phenotype was associated with the lack of surface expression of several CBPs, including the major autolysin LytA. LytA, normally 36 kDa in size, was reported to form an SDS-resistant 80 kDa complex with CinA. ZmpB was therefore proposed to control translocation of CBPs to the surface, possibly through the proteolytic release of CBPs (and RecA) from CinA. Based on the use of 12 independent mariner insertions in the zmpB gene of the well-characterized R6 laboratory strain, we could not confirm several of these observations. Our zmpB mutants: (i) did not form chains; (ii) lysed normally in the presence of deoxycholate, which indicates the presence of a functional autolysin; (iii) transformed at normal frequency; and (iv) contained bona fide CinA and LytA species. Polymorphism of ZmpB between R6 and the serotype 4 isolate could not account for the discrepancy, as inactivation of zmpB (through replacement by transposon-inactivated zmpB R6 alleles) in the latter strain did not affect separation of daughter cells and autolysis. The conflicting observations could be explained by our finding that the reportedly serotype 4 zmpB 'mutant' differed from its S. pneumoniae parent in lacking capsule and in exhibiting characteristic traits of the Streptococcus viridans group, including resistance to optochin.
Collapse
Affiliation(s)
- M Bergé
- Laboratoire de Microbiologie et Génétique Moléculaire, UMR5100 CNRS-Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex, France
| | | | | | | | | | | | | |
Collapse
|
37
|
Vollmer W, Tomasz A. Identification of the teichoic acid phosphorylcholine esterase in Streptococcus pneumoniae. Mol Microbiol 2001; 39:1610-22. [PMID: 11260477 DOI: 10.1046/j.1365-2958.2001.02349.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Streptococcus pneumoniae is a major human pathogen and many interactions of this bacterium with its host appear to be mediated, directly or indirectly, by components of the bacterial cell wall, specifically by the phosphorylcholine residues which serve as anchors for surface-located choline-binding proteins and are also recognized by components of the host response, such as the human C-reactive protein, a class of myeloma proteins and PAF receptors. In the present study, we describe the identification of the pneumococcal pce gene encoding for a teichoic acid phosphorylcholine esterase (Pce), an enzymatic activity capable of removing phosphorylcholine residues from the cell wall teichoic acid and lipoteichoic acid. Pce carries an N-terminal signal sequence, contains a C-terminal choline-binding domain with 10 homologous repeating units similar to those found in other pneumococcal surface proteins, and the catalytic (phosphorylcholine esterase) activity is localized on the N-terminal part of the protein. The mature protein was overexpressed in Escherichia coli and purified in a one-step procedure by choline-affinity chromatography and the enzymatic activity was followed using the chromophoric p-nitrophenyl-phosphorylcholine as a model substrate. The product of the enzymatic digestion of 3H-choline-labelled cell walls was shown to be phosphorylcholine. Inactivation of the pce gene in S. pneumoniae strains by insertion-duplication mutagenesis caused a unique change in colony morphology and a striking increase in virulence in the intraperitoneal mouse model. Pce may be a regulatory element involved with the interaction of S. pneumoniae with its human host.
Collapse
Affiliation(s)
- W Vollmer
- Laboratory of Microbiology, The Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
38
|
Gosink KK, Mann ER, Guglielmo C, Tuomanen EI, Masure HR. Role of novel choline binding proteins in virulence of Streptococcus pneumoniae. Infect Immun 2000; 68:5690-5. [PMID: 10992472 PMCID: PMC101524 DOI: 10.1128/iai.68.10.5690-5695.2000] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The choline binding proteins (CBPs) are a family of surface proteins noncovalently bound to the phosphorylcholine moiety of the cell wall of Streptococcus pneumoniae by a conserved choline binding domain. Six new members of this family were identified, and these six plus two recently described cell wall hydrolases, LytB and LytC, were characterized for their roles in virulence. CBP-deficient mutants were constructed and tested for adherence to eukaryotic cells, colonization of the rat nasopharynx, and ability to cause sepsis. Five CBP mutants, CbpD, CbpE, CbpG, LytB, and LytC, showed significantly reduced colonization of the nasopharynx. For CbpE and -G this was attributable to a decreased ability to adhere to human cells. CbpG, a putative serine protease, also played a role in sepsis, the first observation of a pneumococcal virulence determinant strongly operative both on the mucosal surface and in the bloodstream.
Collapse
Affiliation(s)
- K K Gosink
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | |
Collapse
|
39
|
Varea J, Saiz JL, López-Zumel C, Monterroso B, Medrano FJ, Arrondo JLR, Iloro I, Laynez J, Garcı́a JL, Menéndez M. Do Sequence Repeats Play an Equivalent Role in the Choline-binding Module of Pneumococcal LytA Amidase? J Biol Chem 2000. [DOI: 10.1016/s0021-9258(19)61452-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
40
|
Mesnage S, Fontaine T, Mignot T, Delepierre M, Mock M, Fouet A. Bacterial SLH domain proteins are non-covalently anchored to the cell surface via a conserved mechanism involving wall polysaccharide pyruvylation. EMBO J 2000; 19:4473-84. [PMID: 10970841 PMCID: PMC302060 DOI: 10.1093/emboj/19.17.4473] [Citation(s) in RCA: 270] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Several bacterial proteins are non-covalently anchored to the cell surface via an S-layer homology (SLH) domain. Previous studies have suggested that this cell surface display mechanism involves a non-covalent interaction between the SLH domain and peptidoglycan-associated polymers. Here we report the characterization of a two-gene operon, csaAB, for cell surface anchoring, in Bacillus anthracis. Its distal open reading frame (csaB) is required for the retention of SLH-containing proteins on the cell wall. Biochemical analysis of cell wall components showed that CsaB was involved in the addition of a pyruvyl group to a peptidoglycan-associated polysaccharide fraction, and that this modification was necessary for binding of the SLH domain. The csaAB operon is present in several bacterial species that synthesize SLH-containing proteins. This observation and the presence of pyruvate in the cell wall of the corresponding bacteria suggest that the mechanism described in this study is widespread among bacteria.
Collapse
Affiliation(s)
- S Mesnage
- Toxines et Pathogénie Bactériennes (URA 1858, CNRS), Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, cédex 15, France
| | | | | | | | | | | |
Collapse
|
41
|
Novak R, Charpentier E, Braun JS, Park E, Murti S, Tuomanen E, Masure R. Extracellular targeting of choline-binding proteins in Streptococcus pneumoniae by a zinc metalloprotease. Mol Microbiol 2000; 36:366-76. [PMID: 10792723 DOI: 10.1046/j.1365-2958.2000.01854.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A genetic-based search for surface proteins of Streptococcus pneumoniae involved in adhesion identified a putative zinc metalloprotease (ZmpB). ZmpB shared high amino acid sequence similarities with IgA1 proteases of Gram-positive bacteria, but ZmpB had neither IgA1 nor IgA2 protease activity. Analysis of a family of surface-expressed proteins, the choline-binding proteins (Cbp's), in a zmpB-deficient mutant demonstrated a global loss of surface expression of CbpA, CbpE, CbpF and CbpJ. CbpA was detected within the cytoplasm. The zmpB-deficient mutant also failed to lyse with penicillin, a sign of lack of function of the Cbp LytA. Immunodetection studies revealed that the autolysin (LytA), normally located on the cell wall, was trapped in the cytoplasm colocalized with DNA and the transformation protein CinA. Trafficking of CinA and RecA to the cell membrane during genetic competence was also not observed in the zmpB-deficient mutant. These results suggest a protease dependent regulatory mechanism governing the translocation of CinA and the Cbp's LytA and CbpA of S. pneumoniae.
Collapse
Affiliation(s)
- R Novak
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 332 N. Lauderdale St., Memphis, TN 38105, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Jonquières R, Bierne H, Fiedler F, Gounon P, Cossart P. Interaction between the protein InlB of Listeria monocytogenes and lipoteichoic acid: a novel mechanism of protein association at the surface of gram-positive bacteria. Mol Microbiol 1999; 34:902-14. [PMID: 10594817 DOI: 10.1046/j.1365-2958.1999.01652.x] [Citation(s) in RCA: 203] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
InlB is a Listeria monocytogenes protein that is sufficient to promote entry in a variety of mammalian cells. The last 232-amino-acid domain (Csa) of InlB has been shown to mediate attachment on the listerial surface, although its sequence does not suggest any known mechanism of association to the bacterial surface. InlB is present both on the bacterial surface and in culture supernatants. As has been recently demonstrated, both forms of InlB, soluble and surface-bound, can trigger signalling in host cells. To elucidate the specific role of each of the two forms, it was important to understand how InlB associates with the bacterial surface. Using microscopy, we find evidence that InlB is partially buried in the cell wall layer, and using fractionation experiments we demonstrate that InlB associates with the bacterial cytoplasmic membrane. Moreover, using purified lipoteichoic acid (LTA) and the three polypeptides InlB, Csa, or InlBDeltaCsa (InlB lacking the last 232 amino acids), we demonstrate that LTA is a ligand for the Csa domain of InlB. These results provide the first evidence of an interaction between lipoteichoic acids and a bacterial protein involved in adhesion and signalling, and highlight a new mechanism of protein association on the surface of Gram-positive bacteria.
Collapse
Affiliation(s)
- R Jonquières
- Unité des Interactions Bactéries-Cellules, 28 rue du Docteur Roux, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | | | |
Collapse
|
43
|
García P, Paz González M, García E, García JL, López R. The molecular characterization of the first autolytic lysozyme of Streptococcus pneumoniae reveals evolutionary mobile domains. Mol Microbiol 1999; 33:128-38. [PMID: 10411730 DOI: 10.1046/j.1365-2958.1999.01455.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A biochemical approach to identify proteins with high affinity for choline-containing pneumococcal cell walls has allowed the localization, cloning and sequencing of a gene (lytC ) coding for a protein that degrades the cell walls of Streptococcus pneumoniae. The lytC gene is 1506 bp long and encodes a protein (LytC) of 501 amino acid residues with a predicted M r of 58 682. LytC has a cleavable signal peptide, as demonstrated when the mature protein (about 55 kDa) was purified from S. pneumoniae. Biochemical analyses of the pure, mature protein proved that LytC is a lysozyme. Combined cell fractionation and Western blot analysis showed that the unprocessed, primary product of the lytC gene is located in the pneumococcal cytoplasm whereas the processed, active form of LytC is tightly bound to the cell envelope. In vivo experiments demonstrated that this lysozyme behaves as a pneumococcal autolytic enzyme at 30 degrees C. The DNA region encoding the 253 C-terminal amino acid residues of LytC has been cloned and expressed in Escherichia coli. The truncated protein exhibits a low, but significant, choline-independent lysozyme activity, which suggests that this polypeptide adopts an active conformation. Self-alignment of the N-terminal part of the deduced amino acid sequence of LytC revealed the presence of 11 repeated motifs. These results strongly suggest that the lysozyme reported here has changed the general building plan characteristic of the choline-binding proteins of S. pneumoniae and its bacteriophages, i.e. the choline-binding domain and the catalytic domain are located, respectively, at the N-terminal and the C-terminal moieties of LytC. This work illustrates the natural versatility exhibited by the pneumococcal genes coding for choline-binding proteins to fuse separated catalytic and substrate-binding domains and create new and functional mature proteins.
Collapse
Affiliation(s)
- P García
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Velázquez 144, 28006 Madrid, Spain
| | | | | | | | | |
Collapse
|
44
|
Mesnage S, Tosi-Couture E, Fouet A. Production and cell surface anchoring of functional fusions between the SLH motifs of the Bacillus anthracis S-layer proteins and the Bacillus subtilis levansucrase. Mol Microbiol 1999; 31:927-36. [PMID: 10048035 DOI: 10.1046/j.1365-2958.1999.01232.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many surface proteins of Gram-positive bacteria contain motifs, about 50 amino acids long, called S-layer homology (SLH) motifs. Bacillus anthracis, the causal agent of anthrax, synthesizes two S-layer proteins, each with three SLH motifs towards the amino-terminus. We used biochemical and genetic approaches to investigate the involvement of these motifs in cell surface anchoring. Proteinase K digestion produced polypeptides lacking these motifs, and stable three-motif polypeptides were produced in Escherichia coli that were able to bind the B. anthracis cell walls in vitro, demonstrating that the three SLH motifs were organized into a cell surface anchoring domain. We also determined the function of these SLH domains by constructing chimeric genes encoding the SLH domains fused to the normally secreted levansucrase of Bacillus subtilis. Cell fractionation and electron microscopy studies showed that each three-motif domain was sufficient for the efficient anchoring of levansucrase onto the cell surface. Proteins consisting of truncated SLH domains fused to levansucrase were unstable and associated poorly with the cell surface. Surface-exposed levansucrase retained its enzymatic and antigenic properties.
Collapse
Affiliation(s)
- S Mesnage
- Toxines et Pathogénie Bactériennes (URA 1858, CNRS), Paris, France.
| | | | | |
Collapse
|
45
|
Abstract
The complete pneumococcal genome sequence was released in November, 1997. This advance has been combined with new understanding of physiology and pathogenesis including characterization of a family of surface proteins adducted to choline, regulation of virulence, and the regulon for natural DNA transformation. These developments in our understanding of molecular and cellular biology of pneumococcal infection will allow the development of new vaccines and antibiotics against this community acquired pathogen.
Collapse
Affiliation(s)
- E Tuomanen
- Department of Infectious Diseases St Jude Children's Research Hospital 332 N Lauderdale Rd Memphis TN 38105 USA.
| |
Collapse
|