1
|
Liang X, Pacuła-Miszewska AJ, Obieziurska-Fabisiak M, Vartak R, Mao G, Patel K, Fedosova NU, Ścianowski J, Billack B. Selected N-Terpenyl Organoselenium Compounds Possess Antimycotic Activity In Vitro and in a Mouse Model of Vulvovaginal Candidiasis. Molecules 2023; 28:7377. [PMID: 37959796 PMCID: PMC10647704 DOI: 10.3390/molecules28217377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
In the present work, a series of N-terpenyl organoselenium compounds (CHB1-6) were evaluated for antimycotic activity by determining the minimum inhibitory concentration (MIC) for each compound in fluconazole (FLU)-sensitive (S1) and FLU-resistant (S2) strains of Candida albicans (C. albicans). The most active compounds in the MIC screen were CHB4 and CHB6, which were then evaluated for cytotoxicity in human cervical cancer cells (KB-3-1) and found to be selective for fungi. Next, CHB4 and CHB6 were investigated for skin irritation using a reconstructed 3D human epidermis and both compounds were considered safe to the epidermis. Using a mouse model of vulvovaginal candidiasis (VVC), CHB4 and CHB6 both exhibited antimycotic efficacy by reducing yeast colonization of the vaginal tract, alleviating injury to the vaginal mucosa, and decreasing the abundance of myeloperoxidase (MPO) expression in the tissue, indicating a reduced inflammatory response. In conclusion, CHB4 and CHB6 demonstrate antifungal activity in vitro and in the mouse model of VVC and represent two new promising antifungal agents.
Collapse
Affiliation(s)
- Xiuyi Liang
- Department of Pharmaceutical Sciences, St. John’s University, Queens, NY 11439, USA; (X.L.); (R.V.); (G.M.); (K.P.)
| | - Agata J. Pacuła-Miszewska
- Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Toruń, Poland; (A.J.P.-M.); (M.O.-F.); (J.Ś.)
| | | | - Richa Vartak
- Department of Pharmaceutical Sciences, St. John’s University, Queens, NY 11439, USA; (X.L.); (R.V.); (G.M.); (K.P.)
| | - Ganming Mao
- Department of Pharmaceutical Sciences, St. John’s University, Queens, NY 11439, USA; (X.L.); (R.V.); (G.M.); (K.P.)
| | - Ketankumar Patel
- Department of Pharmaceutical Sciences, St. John’s University, Queens, NY 11439, USA; (X.L.); (R.V.); (G.M.); (K.P.)
| | | | - Jacek Ścianowski
- Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Toruń, Poland; (A.J.P.-M.); (M.O.-F.); (J.Ś.)
| | - Blase Billack
- Department of Pharmaceutical Sciences, St. John’s University, Queens, NY 11439, USA; (X.L.); (R.V.); (G.M.); (K.P.)
| |
Collapse
|
2
|
De Jesus DFF, De Freitas ALD, De Oliveira IM, De Almeida LC, Bastos RW, Spadari CDC, Melo ASDA, Santos DDA, Costa-Lotufo LV, Reis FCG, Rodrigues ML, Stefani HA, Ishida K. Organoselenium Has a Potent Fungicidal Effect on Cryptococcus neoformans and Inhibits the Virulence Factors. Antimicrob Agents Chemother 2023; 67:e0075922. [PMID: 36815840 PMCID: PMC10019174 DOI: 10.1128/aac.00759-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 01/14/2023] [Indexed: 02/24/2023] Open
Abstract
Cryptococcosis therapy is often limited by toxicity problems, antifungal tolerance, and high costs. Studies approaching chalcogen compounds, especially those containing selenium, have shown promising antifungal activity against pathogenic species. This work aimed to evaluate the in vitro and in vivo antifungal potential of organoselenium compounds against Cryptococcus neoformans. The lead compound LQA_78 had an inhibitory effect on C. neoformans planktonic cells and dispersed cells from mature biofilms at similar concentrations. The fungal growth inhibition led to an increase in budding cells arrested in the G2/M phase, but the compound did not significantly affect structural cell wall components or chitinase activity, an enzyme that regulates the dynamics of the cell wall. The compound also inhibited titan cell (Tc) and enlarged capsule yeast (NcC) growth and reduced the body diameter and capsule thickness associated with increased capsular permeability of both virulent morphotypes. LQA_78 also reduced fungal melanization through laccase activity inhibition. The fungicidal activity was observed at higher concentrations (16 to 64 μg/mL) and may be associated with augmented plasma membrane permeability, ROS production, and loss of mitochondrial membrane potential. While LQA_78 is a nonhemolytic compound, its cytotoxic effects were cell type dependent, exhibiting no toxicity on Galleria mellonella larvae at a dose ≤46.5 mg/kg. LQA_78 treatment of larvae infected with C. neoformans effectively reduced the fungal burden and inhibited virulent morphotype formation. To conclude, LQA_78 displays fungicidal action and inhibits virulence factors of C. neoformans. Our results highlight the potential use of LQA_78 as a lead molecule for developing novel pharmaceuticals for treating cryptococcosis.
Collapse
Affiliation(s)
| | | | | | | | - Rafael Wesley Bastos
- Center of Biosciences, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | | | | | - Daniel de Assis Santos
- Institute of Biomedical Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | - Flavia C. G. Reis
- Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, Brazil
- Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Marcio L. Rodrigues
- Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, Brazil
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Kelly Ishida
- Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
3
|
Tu J, Liu N, Huang Y, Yang W, Sheng C. Small molecules for combating multidrug-resistant superbug Candida auris infections. Acta Pharm Sin B 2022; 12:4056-4074. [PMID: 36386475 PMCID: PMC9643296 DOI: 10.1016/j.apsb.2022.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/09/2022] [Accepted: 07/25/2022] [Indexed: 01/12/2023] Open
Abstract
Candida auris is emerging as a major global threat to human health. C. auris infections are associated with high mortality due to intrinsic multi-drug resistance. Currently, therapeutic options for the treatment of C. auris infections are rather limited. We aim to provide a comprehensive review of current strategies, drug candidates, and lead compounds in the discovery and development of novel therapeutic agents against C. auris. The drug resistance profiles and mechanisms are briefly summarized. The structures and activities of clinical candidates, drug combinations, antifungal chemosensitizers, repositioned drugs, new targets, and new types of compounds will be illustrated in detail, and perspectives for guiding future research will be provided. We hope that this review will be helpful to prompting the drug development process to combat this fungal pathogen.
Collapse
Affiliation(s)
| | | | - Yahui Huang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Wanzhen Yang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
4
|
Tung TT, Nielsen J. Drug Discovery and Development on Pma1, Where Are We Now? A Critical Review from 1995 to 2022. ChemMedChem 2022; 17:e202200356. [PMID: 36094750 DOI: 10.1002/cmdc.202200356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/31/2022] [Indexed: 11/09/2022]
Abstract
Plasma membrane H+ -ATPase (Pma1) is an enzyme uniquely found in plants and fungi. The enzyme controls the nutrient uptake of plants and fungi via an electrochemical gradient processes, which is essential for their survival. Inhibiting Pma1, therefore, constitutes an alternative antifungal target void of toxicity to humans. From a medicinal chemistry point of view, this review provides a first summary of the recent drug design, synthesis, evaluation, and discovery of molecules targeting Pma1 for 25 years from 1995 to 2022.
Collapse
Affiliation(s)
- Truong-Thanh Tung
- Faculty of Pharmacy, PHENIKAA University, Hanoi, 12116, Vietnam.,PHENIKAA Institute for Advanced Study (PIAS), PHENIKAA University, Hanoi, 12116, Vietnam
| | - John Nielsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen Ø, Denmark
| |
Collapse
|
5
|
Heidary F, Shams-Ghahfarokhi M, Razzaghi-Abyaneh M. Inhibitory effects of Allium cepa L. ethanolic extract on biological activities and expression of ERG11 in Candida albicans. J Herb Med 2022. [DOI: 10.1016/j.hermed.2022.100535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Liu L, Jiang T, Zhou J, Mei Y, Li J, Tan J, Wei L, Li J, Peng Y, Chen C, Liu N, Wang H. Repurposing the FDA-approved anticancer agent ponatinib as a fluconazole potentiator by suppression of multidrug efflux and Pma1 expression in a broad spectrum of yeast species. Microb Biotechnol 2022; 15:482-498. [PMID: 33955652 PMCID: PMC8867973 DOI: 10.1111/1751-7915.13814] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 11/29/2022] Open
Abstract
Fungal infections have emerged as a major global threat to human health because of the increasing incidence and mortality rates every year. The emergence of drug resistance and limited arsenal of antifungal agents further aggravates the current situation resulting in a growing challenge in medical mycology. Here, we identified that ponatinib, an FDA-approved antitumour drug, significantly enhanced the activity of the azole fluconazole, the most widely used antifungal drug. Further detailed investigation of ponatinib revealed that its combination with fluconazole displayed broad-spectrum synergistic interactions against a variety of human fungal pathogens such as Candida albicans, Saccharomyces cerevisiae and Cryptococcus neoformans. Mechanistic insights into the mode of action unravelled that ponatinib reduced the efflux of fluconazole via Pdr5 and suppressed the expression of the proton pump, Pma1. Taken together, our study identifies ponatinib as a novel antifungal that enhances drug activity of fluconazole against diverse fungal pathogens.
Collapse
Affiliation(s)
- Lin Liu
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Tong Jiang
- Center for MicrobesDevelopment and HealthKey Laboratory of Molecular Virology and ImmunologyInstitut Pasteur of ShanghaiChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijingChina
| | - Jia Zhou
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Yikun Mei
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Jinyang Li
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Jingcong Tan
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Luqi Wei
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Jingquan Li
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Yibing Peng
- Department of Laboratory MedicineRuijin HospitalShanghai Jiao Tong University School of MedicineNo. 197 Ruijin ER RoadShanghai200025China
- Faculty of Medical Laboratory ScienceShanghai Jiao Tong University School of MedicineNo. 197 Ruijin ER RoadShanghai200025China
| | - Changbin Chen
- Center for MicrobesDevelopment and HealthKey Laboratory of Molecular Virology and ImmunologyInstitut Pasteur of ShanghaiChinese Academy of SciencesShanghai200031China
- The Nanjing Unicorn Academy of InnovationInstitut Pasteur of ShanghaiChinese Academy of SciencesNanjing211135China
| | - Ning‐Ning Liu
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| |
Collapse
|
7
|
Menon S, Vartak R, Patel K, Billack B. Evaluation of the antifungal activity of an ebselen-loaded nanoemulsion in a mouse model of vulvovaginal candidiasis. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 37:102428. [PMID: 34217850 DOI: 10.1016/j.nano.2021.102428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/01/2021] [Accepted: 05/03/2021] [Indexed: 12/20/2022]
Abstract
Vulvovaginal candidiasis (VVC), caused by Candida albicans, is a common infection in women affecting their quality of life. Standard antifungal drugs (e.g., fluconazole, itraconazole) are typically fungistatic or rendered ineffective due to drug resistance indicating an urgent need to build an arsenal of novel antifungal agents. To surmount this issue, we tested the hypothesis that the organoselenium compound ebselen (EB) possesses antifungal efficacy in a mouse model of VVC. EB is a poorly water-soluble drug and DMSO as a vehicle has the potential to exhibit cytotoxic effects when administered in vivo. EB loaded self-nanoemulsifying preconcentrate (EB-SNEP) was developed, characterized in vitro, and tested in a mouse model of VVC. In vivo studies carried out with EB-SNEP (12.5 mg/kg) showed a remarkable decrease in infection by ~562-fold compared to control (infected, untreated animals). Taken together, EB nanoemulsion proved to be an effective and promising antifungal agent.
Collapse
Affiliation(s)
- Suvidha Menon
- Department of Pharmaceutical Sciences, St. John's University, Queens, Jamaica, NY, USA
| | - Richa Vartak
- Department of Pharmaceutical Sciences, St. John's University, Queens, Jamaica, NY, USA
| | - Ketankumar Patel
- Department of Pharmaceutical Sciences, St. John's University, Queens, Jamaica, NY, USA.
| | - Blase Billack
- Department of Pharmaceutical Sciences, St. John's University, Queens, Jamaica, NY, USA.
| |
Collapse
|
8
|
Benelli JL, Poester VR, Munhoz LS, Melo AM, Trápaga MR, Stevens DA, Xavier MO. Ebselen and diphenyl diselenide against fungal pathogens: A systematic review. Med Mycol 2021; 59:409-421. [PMID: 33421963 DOI: 10.1093/mmy/myaa115] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/16/2020] [Accepted: 12/18/2020] [Indexed: 12/17/2022] Open
Abstract
Fungal infections are one of the most prevalent diseases in the world and there is a lack of new antifungal drug development for these diseases. We conducted a systematic review of the literature regarding the in vitro antifungal activity of the organoselenium compounds ebselen (Eb) and diphenyl diselenide [(PhSe)2]. A systematic review was carried out based on the search for articles with data concerning Minimal Inhibitory Concentration (MIC) values, indexed in international databases and published until August 2020. A total of 2337 articles were found, and, according to the inclusion and exclusion criteria used, 22 articles were included in the study. Inhibitory activity against 96% (200/208) and 95% (312/328) of the pathogenic fungi tested was described for Eb and [(PhSe)2], respectively. Including in these 536 fungal isolates tested, organoselenium activity was highlighted against Candida spp., Cryptococcus ssp., Trichosporon spp., Aspergillus spp., Fusarium spp., Pythium spp., and Sporothrix spp., with MIC values lower than 64 μg/mL. In conclusion, Eb and [(PhSe)2] have a broad spectrum of in vitro inhibitory antifungal activity. These data added with other pharmacological properties of these organoselenium compounds suggest that both compounds are potential future antifungal drugs. Whether MICs toward the upper end of the ranges described here are compatible with efficacious therapy, and whether they may achieve such end as a result of the favorable non-antimicrobial effects of selenium on the host, requires more in vivo testing.
Collapse
Affiliation(s)
- Jéssica Louise Benelli
- Mycology Laboratory, College of Medicine, Federal University of Rio Grande, Rio Grande, RS, Brazil.,Health Science Post-graduation program, College of Medicine, Federal University of Rio Grande, Rio Grande, RS, Brazil
| | - Vanice Rodrigues Poester
- Mycology Laboratory, College of Medicine, Federal University of Rio Grande, Rio Grande, RS, Brazil.,Health Science Post-graduation program, College of Medicine, Federal University of Rio Grande, Rio Grande, RS, Brazil
| | - Lívia Silveira Munhoz
- Mycology Laboratory, College of Medicine, Federal University of Rio Grande, Rio Grande, RS, Brazil.,Health Science Post-graduation program, College of Medicine, Federal University of Rio Grande, Rio Grande, RS, Brazil
| | - Aryse Martins Melo
- Mycology Laboratory, College of Medicine, Federal University of Rio Grande, Rio Grande, RS, Brazil.,Microbiology and Parasitology Post-graduation program, Institute of Biology, Federal University of Pelotas, Pelotas, RS, Brazil
| | | | - David A Stevens
- California Institute for Medical Research, San Jose, California, USA.,Division of Infectious Diseases and Geographic Medicine, Stanford University Medical School, Stanford, California, USA
| | - Melissa Orzechowski Xavier
- Mycology Laboratory, College of Medicine, Federal University of Rio Grande, Rio Grande, RS, Brazil.,Health Science Post-graduation program, College of Medicine, Federal University of Rio Grande, Rio Grande, RS, Brazil.,Microbiology and Parasitology Post-graduation program, Institute of Biology, Federal University of Pelotas, Pelotas, RS, Brazil
| |
Collapse
|
9
|
Abstract
Ebselen is a synthetic organoselenium radical scavenger compound that possesses glutathione peroxidase-like activity and its own unique bioactivity by reacting with thiols, hydroperoxides and peroxynitrites. Owing to its high affinity toward several essential reactions, ebselen protects cellular components from oxidative and free radical damage, and it has been employed as a useful tool for studying redox-related mechanisms. Based on numerous in vitro and in vivo research, mechanisms are proposed to understand the biomedical and molecular actions of ebselen in health and disease, and it is currently under clinical trials for the prevention and treatment of various human disorders. Based on these outstanding discoveries, this review summarizes the current understanding of the biochemical and molecular characteristics, pharmacological applications and future directions of ebselen.
Collapse
|
10
|
Vartak R, Patki M, Menon S, Jablonski J, Mediouni S, Fu Y, Valente ST, Billack B, Patel K. β-cyclodextrin polymer/Soluplus® encapsulated Ebselen ternary complex (EβpolySol) as a potential therapy for vaginal candidiasis and pre-exposure prophylactic for HIV. Int J Pharm 2020; 589:119863. [DOI: 10.1016/j.ijpharm.2020.119863] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 01/10/2023]
|
11
|
Vartak R, Menon S, Patki M, Billack B, Patel K. Ebselen nanoemulgel for the treatment of topical fungal infection. Eur J Pharm Sci 2020; 148:105323. [DOI: 10.1016/j.ejps.2020.105323] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/17/2020] [Accepted: 03/22/2020] [Indexed: 11/25/2022]
|
12
|
Esquivel BD, Rybak JM, Barker KS, Fortwendel JR, Rogers PD, White TC. Characterization of the Efflux Capability and Substrate Specificity of Aspergillus fumigatus PDR5-like ABC Transporters Expressed in Saccharomyces cerevisiae. mBio 2020; 11:e00338-20. [PMID: 32209680 PMCID: PMC7157516 DOI: 10.1128/mbio.00338-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 02/24/2020] [Indexed: 12/27/2022] Open
Abstract
This research analyzed six Aspergillus fumigatus genes encoding putative efflux proteins for their roles as transporters. TheA. fumigatus genes abcA, abcC, abcF, abcG, abcH, and abcI were cloned into plasmids and overexpressed in a Saccharomyces cerevisiae strain in which the highly active endogenous ABC transporter gene PDR5 was deleted. The activity of each transporter was measured by efflux of rhodamine 6G and accumulation of alanine β-naphthylamide. The transporters AbcA, AbcC, and AbcF had the strongest efflux activities of these compounds. All of the strains with plasmid-expressed transporters had more efflux activity than did the PDR5-deleted background strain. We performed broth microdilution drug susceptibility testing and agar spot assays using an array of compounds and antifungal drugs to determine the transporter specificity and drug susceptibility of the strains. The transporters AbcC and AbcF showed the broadest range of substrate specificity, while AbcG and AbcH had the narrowest range of substrates. Strains expressing the AbcA, AbcC, AbcF, or AbcI transporter were more resistant to fluconazole than was the PDR5-deleted background strain. Strains expressing AbcC and AbcF were additionally more resistant to clotrimazole, itraconazole, ketoconazole, and posaconazole than was the background strain. Finally, we analyzed the expression levels of the genes by reverse transcription-quantitative PCR (RT-qPCR) in triazole-susceptible and -resistant A. fumigatus clinical isolates. All of these transporters are expressed at a measurable level, and transporter expression varied significantly between strains, demonstrating the high degree of phenotypic variation, plasticity, and divergence of which this species is capable.IMPORTANCE One mechanism behind drug resistance is altered export out of the cell. This work is a multifaceted analysis of membrane efflux transporters in the human fungal pathogen A. fumigatus Bioinformatics evidence infers that there is a relatively large number of genes in A. fumigatus that encode ABC efflux transporters. However, very few of these transporters have been directly characterized and analyzed for their potential role in drug resistance.Our objective was to determine if these undercharacterized proteins function as efflux transporters and then to better define whether their efflux substrates include antifungal drugs used to treat fungal infections. We chose six A. fumigatus potential plasma membrane ABC transporter genes for analysis and found that all six genes produced functional transporter proteins. We used two fungal systems to look for correlations between transporter function and drug resistance. These transporters have the potential to produce drug-resistant phenotypes in A. fumigatus Continued characterization of these and other transporters may assist in the development of efflux inhibitor drugs.
Collapse
Affiliation(s)
- Brooke D Esquivel
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Jeffrey M Rybak
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Katherine S Barker
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jarrod R Fortwendel
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - P David Rogers
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Theodore C White
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri, USA
| |
Collapse
|
13
|
Rane HS, Hayek SR, Frye JE, Abeyta EL, Bernardo SM, Parra KJ, Lee SA. Candida albicans Pma1p Contributes to Growth, pH Homeostasis, and Hyphal Formation. Front Microbiol 2019; 10:1012. [PMID: 31143168 PMCID: PMC6521590 DOI: 10.3389/fmicb.2019.01012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/24/2019] [Indexed: 12/30/2022] Open
Abstract
Candida albicans occupies diverse ecological niches within the host and must tolerate a wide range of environmental pH. The plasma membrane H+-ATPase Pma1p is the major regulator of cytosolic pH in fungi. Pma1p extrudes protons from the cytosol to maintain neutral-to-alkaline pH and is a potential drug target due to its essentiality and fungal specificity. We characterized mutants in which one allele of PMA1 has been deleted and the other truncated by 18–38 amino acids. Increasing C-terminal truncation caused corresponding decreases in plasma membrane ATPase-specific activity and cytosolic pH. Pma1p is regulated by glucose: glucose rapidly activates the ATPase, causing a sharp increase in cytosolic pH. Increasing Pma1p truncation severely impaired this glucose response. Pma1p truncation also altered cation responses, disrupted vacuolar morphology and pH, and reduced filamentation competence. Early studies of cytosolic pH and filamentation have described a rapid, transient alkalinization of the cytosol preceding germ tube formation; Pma1p has been proposed as a regulator of this process. We find Pma1p plays a role in the establishment of cell polarity, and distribution of Pma1p is non-homogenous in emerging hyphae. These findings suggest a role of PMA1 in cytosolic alkalinization and in the specialized form of polarized growth that is filamentation.
Collapse
Affiliation(s)
- Hallie S Rane
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Science Center, Albuquerque, NM, United States
| | - Summer R Hayek
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Science Center, Albuquerque, NM, United States
| | - Jillian E Frye
- Section of Infectious Diseases, New Mexico VA Healthcare System, Albuquerque, NM, United States
| | - Esteban L Abeyta
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Science Center, Albuquerque, NM, United States
| | - Stella M Bernardo
- Division of Infectious Diseases, University of New Mexico Health Science Center, Albuquerque, NM, United States
| | - Karlett J Parra
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Science Center, Albuquerque, NM, United States
| | - Samuel A Lee
- Medicine Service, White River Junction VA Medical Center, White River Junction, VT, United States.,Infectious Disease Section, Department of Medicine, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
14
|
de Oliveira HC, Monteiro MC, Rossi SA, Pemán J, Ruiz-Gaitán A, Mendes-Giannini MJS, Mellado E, Zaragoza O. Identification of Off-Patent Compounds That Present Antifungal Activity Against the Emerging Fungal Pathogen Candida auris. Front Cell Infect Microbiol 2019; 9:83. [PMID: 31001487 PMCID: PMC6454888 DOI: 10.3389/fcimb.2019.00083] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/11/2019] [Indexed: 12/16/2022] Open
Abstract
Candida auris is an emerging fungal pathogen of great concern among the scientific community because it is causing an increasing number of hospital outbreaks of difficult management worldwide. In addition, isolates from this species frequently present reduced susceptibility to azole and echinocandin drugs. For this reason, it is necessary to develop new antifungal strategies to better control the disease caused by this yeast. In this work, we screened drugs from the Prestwick chemical library, which contains 1,280 off-patent compounds that are already approved by the Food and Drug Administration, with the aim of identifying molecules with antifungal activity against C. auris. In an initial screening, we looked for drugs that inhibited the growth of three different C. auris strains and found 27 of them which it did so. Ten active compounds were selected to test the susceptibility profile by using the EUCAST protocol. Antifungal activity was confirmed for seven drugs with MICs ranging from 0.5 to 64 mg/L. Some of these drugs were also tested in combination with voriconazole and anidulafungin at sub-inhibitory concentrations. Our results suggest synergistic interactions between suloctidil and voriconazole with fractional inhibitory concentration index (FICI) values of 0.11 to 0.5 and between ebselen and anidulafungin (FICI, 0.12 to 0.44). Our findings indicate that drug repurposing could be a viable alternative to managing infections by C. auris.
Collapse
Affiliation(s)
- Haroldo Cesar de Oliveira
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain.,Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Maria Candida Monteiro
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Suélen Andreia Rossi
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Pemán
- Hospital Universitari i Politécnic La Fe, Valencia, Spain.,Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | | | - Maria José Soares Mendes-Giannini
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Emilia Mellado
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Oscar Zaragoza
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
15
|
Felli Kubiça T, Bedin Denardi L, Silva de Loreto É, Zeni G, Weiblen C, Oliveira V, Morais Santurio J, Hartz Alves S. In vitro activity of diphenyl diselenide and ebselen alone and in combination with antifungal agents against
Trichosporon asahii. Mycoses 2019; 62:428-433. [DOI: 10.1111/myc.12906] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/13/2019] [Accepted: 02/13/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Thaís Felli Kubiça
- Department of Microbiology and ParasitologyFederal University of Santa Maria (UFSM) Santa Maria Brazil
- Integrated Regional University of High Uruguay and Missions (URI) Santiago Brazil
| | - Laura Bedin Denardi
- Department of Microbiology and ParasitologyFederal University of Santa Maria (UFSM) Santa Maria Brazil
- Integrated Regional University of High Uruguay and Missions (URI) Santiago Brazil
| | - Érico Silva de Loreto
- Department of Microbiology and ParasitologyFederal University of Santa Maria (UFSM) Santa Maria Brazil
| | - Gilson Zeni
- Department of ChemistryCenter of Natural and Exact SciencesFederal University of Santa Maria (UFSM) Santa Maria Brazil
| | - Carla Weiblen
- Department of Microbiology and ParasitologyFederal University of Santa Maria (UFSM) Santa Maria Brazil
| | - Vanessa Oliveira
- Department of Microbiology and ParasitologyFederal University of Santa Maria (UFSM) Santa Maria Brazil
| | - Janio Morais Santurio
- Department of Microbiology and ParasitologyFederal University of Santa Maria (UFSM) Santa Maria Brazil
| | - Sydney Hartz Alves
- Department of Microbiology and ParasitologyFederal University of Santa Maria (UFSM) Santa Maria Brazil
| |
Collapse
|
16
|
Pedersen JT, Kanashova T, Dittmar G, Palmgren M. Isolation of native plasma membrane H +-ATPase (Pma1p) in both the active and basal activation states. FEBS Open Bio 2018; 8:774-783. [PMID: 29744292 PMCID: PMC5929935 DOI: 10.1002/2211-5463.12413] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/20/2018] [Accepted: 02/26/2018] [Indexed: 12/18/2022] Open
Abstract
The yeast plasma membrane H+‐ATPase Pma1p is a P‐type ATPase that energizes the yeast plasma membrane. Pma1p exists in two activation states: an autoinhibited basal state and an activated state. Here we show that functional and stable Pma1p can be purified in native form and reconstituted in artificial liposomes without altering its activation state. Acetylated tubulin has previously been reported to maintain Pma1p in the basal state but, as this protein was absent from the purified preparations, it cannot be an essential component of the autoinhibitory mechanism. Purification of and reconstitution of native Pma1p in both activation states opens up for a direct comparison of the transport properties of these states, which allowed us to confirm that the basal state has a low coupling ratio between ATP hydrolysis and protons pumped, whereas the activated state has a high coupling ratio. The ability to prepare native Pma1p in both activation states will facilitate further structural and biochemical studies examining the mechanism by which plasma membrane H+‐ATPases are autoinhibited.
Collapse
Affiliation(s)
- Jesper Torbøl Pedersen
- Department of Plant and Environmental Sciences University of Copenhagen Frederiksberg Denmark.,Present address: Institute of Environmental Medicine (IMM) Karolinska Institutet Stockholm Sweden
| | - Tamara Kanashova
- Mass Spectrometry Core Unit Max Delbrück Center for Molecular Medicine Berlin Germany
| | - Gunnar Dittmar
- Mass Spectrometry Core Unit Max Delbrück Center for Molecular Medicine Berlin Germany.,Proteome and Genome Research Laboratory Luxembourg Institute of Health Strassen Luxembourg
| | - Michael Palmgren
- Department of Plant and Environmental Sciences University of Copenhagen Frederiksberg Denmark
| |
Collapse
|
17
|
Kwak MK, Ku M, Kang SO. Inducible NAD(H)-linked methylglyoxal oxidoreductase regulates cellular methylglyoxal and pyruvate through enhanced activities of alcohol dehydrogenase and methylglyoxal-oxidizing enzymes in glutathione-depleted Candida albicans. Biochim Biophys Acta Gen Subj 2018; 1862:18-39. [DOI: 10.1016/j.bbagen.2017.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 09/30/2017] [Accepted: 10/06/2017] [Indexed: 12/15/2022]
|
18
|
Tung TT, Dao TT, Junyent MG, Palmgren M, Günther-Pomorski T, Fuglsang AT, Christensen SB, Nielsen J. LEGO-Inspired Drug Design: Unveiling a Class of Benzo[d]thiazoles Containing a 3,4-Dihydroxyphenyl Moiety as Plasma Membrane H+-ATPase Inhibitors. ChemMedChem 2017; 13:37-47. [DOI: 10.1002/cmdc.201700635] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/09/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Truong-Thanh Tung
- Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Ø Denmark
| | - Trong T. Dao
- Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Ø Denmark
- Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Department of Plant and Environmental Sciences; University of Copenhagen; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | - Marta G. Junyent
- Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Department of Plant and Environmental Sciences; University of Copenhagen; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | - Michael Palmgren
- Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Department of Plant and Environmental Sciences; University of Copenhagen; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | - Thomas Günther-Pomorski
- Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Department of Plant and Environmental Sciences; University of Copenhagen; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | - Anja T. Fuglsang
- Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Department of Plant and Environmental Sciences; University of Copenhagen; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | - Søren B. Christensen
- Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Ø Denmark
| | - John Nielsen
- Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Ø Denmark
| |
Collapse
|
19
|
Orie NN, Warren AR, Basaric J, Lau-Cam C, Piętka-Ottlik M, Młochowski J, Billack B. In vitroassessment of the growth and plasma membrane H+-ATPase inhibitory activity of ebselen and structurally related selenium- and sulfur-containing compounds inCandida albicans. J Biochem Mol Toxicol 2017; 31. [DOI: 10.1002/jbt.21892] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 12/06/2016] [Accepted: 12/16/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Natalie N. Orie
- Department of Pharmaceutical Sciences; St. John's University; Jamaica NY USA
| | - Andrew R. Warren
- Department of Pharmaceutical Sciences; St. John's University; Jamaica NY USA
| | - Jovana Basaric
- Department of Pharmaceutical Sciences; St. John's University; Jamaica NY USA
| | - Cesar Lau-Cam
- Department of Pharmaceutical Sciences; St. John's University; Jamaica NY USA
| | - Magdalena Piętka-Ottlik
- Division of Organic and Pharmaceutical Technology, Faculty of Chemistry; Wrocław University of Technology; Wrocław Poland
| | - Jacek Młochowski
- Department of Organic Chemistry, Faculty of Chemistry; Wrocław University of Technology; Wrocław Poland
| | - Blase Billack
- Department of Pharmaceutical Sciences; St. John's University; Jamaica NY USA
| |
Collapse
|
20
|
Venturini TP, Chassot F, Loreto ÉS, Keller JT, Azevedo MI, Zeni G, Santurio JM, Alves SH. Antifungal activities of diphenyl diselenide and ebselen alone and in combination with antifungal agents againstFusariumspp. Med Mycol 2016; 54:550-5. [DOI: 10.1093/mmy/myv120] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 12/18/2015] [Indexed: 01/17/2023] Open
|
21
|
Azad GK, Tomar RS. Ebselen, a promising antioxidant drug: mechanisms of action and targets of biological pathways. Mol Biol Rep 2014; 41:4865-79. [DOI: 10.1007/s11033-014-3417-x] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
22
|
Hayek SR, Lee SA, Parra KJ. Advances in targeting the vacuolar proton-translocating ATPase (V-ATPase) for anti-fungal therapy. Front Pharmacol 2014; 5:4. [PMID: 24478704 PMCID: PMC3902353 DOI: 10.3389/fphar.2014.00004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 01/06/2014] [Indexed: 11/13/2022] Open
Abstract
Vacuolar proton-translocating ATPase (V-ATPase) is a membrane-bound, multi-subunit enzyme that uses the energy of ATP hydrolysis to pump protons across membranes. V-ATPase activity is critical for pH homeostasis and organelle acidification as well as for generation of the membrane potential that drives secondary transporters and cellular metabolism. V-ATPase is highly conserved across species and is best characterized in the model fungus Saccharomyces cerevisiae. However, recent studies in mammals have identified significant alterations from fungi, particularly in the isoform composition of the 14 subunits and in the regulation of complex disassembly. These differences could be exploited for selectivity between fungi and humans and highlight the potential for V-ATPase as an anti-fungal drug target. Candida albicans is a major human fungal pathogen and causes fatality in 35% of systemic infections, even with anti-fungal treatment. The pathogenicity of C. albicans correlates with environmental, vacuolar, and cytoplasmic pH regulation, and V-ATPase appears to play a fundamental role in each of these processes. Genetic loss of V-ATPase in pathogenic fungi leads to defective virulence, and a comprehensive picture of the mechanisms involved is emerging. Recent studies have explored the practical utility of V-ATPase as an anti-fungal drug target in C. albicans, including pharmacological inhibition, azole therapy, and targeting of downstream pathways. This overview will discuss these studies as well as hypothetical ways to target V-ATPase and novel high-throughput methods for use in future drug discovery screens.
Collapse
Affiliation(s)
- Summer R Hayek
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center Albuquerque, NM, USA
| | - Samuel A Lee
- Department of Internal Medicine, School of Medicine, University of New Mexico Health Sciences Center Albuquerque, NM, USA ; Section of Infectious Diseases, New Mexico Veterans Healthcare System Albuquerque, NM, USA
| | - Karlett J Parra
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center Albuquerque, NM, USA
| |
Collapse
|
23
|
Pesarico AP, Sartori G, dos Santos CF, Neto JS, Bortolotto V, Santos RCV, Nogueira CW, Prigol M. 2,2′-Dithienyl diselenide pro-oxidant activity accounts for antibacterial and antifungal activities. Microbiol Res 2013; 168:563-8. [DOI: 10.1016/j.micres.2013.04.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 04/12/2013] [Accepted: 04/13/2013] [Indexed: 01/07/2023]
|
24
|
Denardi LB, Mario DAN, de Loreto ÉS, Nogueira CW, Santurio JM, Alves SH. Antifungal Activities of Diphenyl Diselenide alone and in Combination with Fluconazole or Amphotericin B against Candida glabrata. Mycopathologia 2013; 176:165-9. [DOI: 10.1007/s11046-013-9672-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 05/31/2013] [Indexed: 11/28/2022]
|
25
|
The monoamine oxidase A inhibitor clorgyline is a broad-spectrum inhibitor of fungal ABC and MFS transporter efflux pump activities which reverses the azole resistance of Candida albicans and Candida glabrata clinical isolates. Antimicrob Agents Chemother 2011; 56:1508-15. [PMID: 22203607 DOI: 10.1128/aac.05706-11] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Resistance to the commonly used azole antifungal fluconazole (FLC) can develop due to overexpression of ATP-binding cassette (ABC) and major facilitator superfamily (MFS) plasma membrane transporters. An approach to overcoming this resistance is to identify inhibitors of these efflux pumps. We have developed a pump assay suitable for high-throughput screening (HTS) that uses recombinant Saccharomyces cerevisiae strains hyperexpressing individual transporters from the opportunistic fungal pathogen Candida albicans. The recombinant strains possess greater resistance to azoles and other pump substrates than the parental host strain. A flow cytometry-based HTS, which measured increased intracellular retention of the fluorescent pump substrate rhodamine 6G (R6G) within yeast cells, was used to screen the Prestwick Chemical Library (PCL) of 1,200 marketed drugs. Nine compounds were identified as hits, and the monoamine oxidase A inhibitor (MAOI) clorgyline was identified as an inhibitor of two C. albicans ABC efflux pumps, CaCdr1p and CaCdr2p. Secondary in vitro assays confirmed inhibition of pump-mediated efflux by clorgyline. Clorgyline also reversed the FLC resistance of S. cerevisiae strains expressing other individual fungal ABC transporters (Candida glabrata Cdr1p or Candida krusei Abc1p) or the C. albicans MFS transporter Mdr1p. Recombinant strains were also chemosensitized by clorgyline to other azoles (itraconazole and miconazole). Importantly, clorgyline showed synergy with FLC against FLC-resistant C. albicans clinical isolates and a C. glabrata strain and inhibited R6G efflux from a FLC-resistant C. albicans clinical isolate. Clorgyline is a novel broad-spectrum inhibitor of two classes of fungal efflux pumps that acts synergistically with azoles against azole-resistant C. albicans and C. glabrata strains.
Collapse
|
26
|
Loreto ES, Alves SH, Santurio JM, Nogueira CW, Zeni G. Diphenyl diselenide in vitro and in vivo activity against the oomycete Pythium insidiosum. Vet Microbiol 2011; 156:222-6. [PMID: 22055205 DOI: 10.1016/j.vetmic.2011.10.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 08/30/2011] [Accepted: 10/07/2011] [Indexed: 02/06/2023]
Abstract
This study evaluated the in vitro activity of diphenyl diselenide against 19 Pythium insidiosum isolates and the in vivo therapeutic response of rabbits with experimentally induced pythiosis. In vitro: susceptibility tests were performed using the broth macrodilution method in accordance with the CLSI document M38-A2. The criteria for interpretation were as follows: MIC-1 and MIC-2 (inhibition of 90% and 100% of mycelium growth, respectively) and the minimum fungicide concentration (MIC-3). In vivo: twenty rabbits were divided into four groups with five animals each and treated for 40 consecutive days: groups 1 and 2 (experimentally induced pythiosis) were treated with diphenyl diselenide (10mg/kg/day) and canola oil (1 mL/kg/day), respectively; groups 3 and 4 (controls) were treated with canola oil (1 mL/kg/day) and diphenyl diselenide (10mg/kg/day), respectively. Toxicity was evaluated using biochemical and haematological parameters. In vitro susceptibility tests showed that 89.4% of isolates had a MIC-1 ≤ 0.5 μg/mL, 84.2% of isolates had a MIC-2 ≤ 1.0 μg/mL and 94.7% of isolates had a MIC-3 ≤ 2.0 μg/mL. The in vivo assay suggested that this compound has a fungistatic activity, and the biochemical and haematological parameters indicated that there was no renal, hepatic or haematological toxicity. The comparison of the unsaturated iron binding capacity levels between animals with and without pythiosis suggested the involvement of iron metabolism in the pathogenesis of pythiosis. This study demonstrated the absence of detectable toxicity caused by diphenyl diselenide and the in vitro fungicidal and in vivo fungistatic activities of this drug, which makes it an option for future therapeutic approaches in the treatment of pythiosis.
Collapse
Affiliation(s)
- Erico Silva Loreto
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, RS, Brazil
| | | | | | | | | |
Collapse
|
27
|
Cai W, Wu J, Xi C, Ashe AJ, Meyerhoff ME. Carboxyl-ebselen-based layer-by-layer films as potential antithrombotic and antimicrobial coatings. Biomaterials 2011; 32:7774-84. [PMID: 21794909 DOI: 10.1016/j.biomaterials.2011.06.075] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 06/28/2011] [Indexed: 02/02/2023]
Abstract
A carboxyl-ebselen-based layer-by-layer (LbL) film was fabricated by alternatively assembling carboxyl-ebselen immobilized polyethylenimine (e-PEI) and alginate (Alg) onto substrates followed by salt annealing and cross-linking. The annealed films exhibiting significantly improved stability are capable of generating nitric oxide (NO) from endogeneous S-nitrosothiols (RSNOs) in the presence of a reducing agent. The NO generation behaviors of different organoselenium species in solution phase are compared and the annealing mechanism to create stable LbL films is studied in detail. An LbL film coated polyurethane catheter is capable of generating physiological levels of NO from RSNOs even after blood soaking for 24 h, indicating potential antithrombotic applications of the coating. Further, the LbL film is also demonstrated to be capable of reducing living bacterial surface attachment and killing a broad spectrum of bacteria, likely through generation of superoxide (O(2)(·-)) from oxygen. This type of film is expected to have potential application as an antithrombotic and antimicrobial coating for different biomedical device surfaces.
Collapse
Affiliation(s)
- Wenyi Cai
- Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
28
|
Rosseti IB, Wagner C, Fachinetto R, Taube Junior P, Costa MS. Candida albicans growth and germ tube formation can be inhibited by simple diphenyl diselenides [(PhSe)2, (MeOPhSe)2, (p-Cl-PhSe)2, (F3CPhSe)2] and diphenyl ditelluride. Mycoses 2010; 54:506-13. [DOI: 10.1111/j.1439-0507.2010.01888.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
29
|
Saunders MJ, Graves SW, Sklar LA, Oprea TI, Edwards BS. High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. Assay Drug Dev Technol 2010; 8:37-46. [PMID: 20035615 DOI: 10.1089/adt.2009.0219] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Given their medical importance, proteases have been studied by diverse approaches and screened for small molecule protease inhibitors. Here, we present a multiplexed microsphere-based protease assay that uses high-throughput flow cytometry to screen for inhibitors of the light chain protease of botulinum neurotoxin type A (BoNTALC). Our assay uses a full-length substrate and several deletion mutants screened in parallel to identify small molecule inhibitors. The use of multiplex flow cytometry has the advantage of using full-length substrates, which contain already identified distal-binding elements for the BoNTALC, and could lead to a new class of BoNTALC inhibitors. In this study, we have screened 880 off patent drugs and bioavailable compounds to identify ebselen as an in vitro inhibitor of BoNTALC. This discovery demonstrates the validity of our microsphere-based approach and illustrates its potential for high-throughput screening for inhibitors of proteases in general.
Collapse
Affiliation(s)
- Matthew J Saunders
- The Center for Molecular Discovery and Department of Pathology, University of New Mexico, Albuquerque, New Mexico 87131, USA.
| | | | | | | | | |
Collapse
|
30
|
Current awareness on yeast. Yeast 2009. [DOI: 10.1002/yea.1626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|