1
|
Canè C, Gallucci N, Amoresano A, Fontanarosa C, Paduano L, De Gregorio E, Duilio A, Di Somma A. The antimicrobial peptide Temporin-L induces vesicle formation and reduces the virulence in S. aureus. Biochem Biophys Rep 2024; 39:101808. [PMID: 39238505 PMCID: PMC11375239 DOI: 10.1016/j.bbrep.2024.101808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 06/06/2024] [Accepted: 08/04/2024] [Indexed: 09/07/2024] Open
Abstract
The evolution of methicillin-resistant Staphylococcus aureus (MRSA) has required the development of new antimicrobial agents and new approaches to prevent and overcome drug resistance. AntiMicrobial Peptides (AMPs) represent promising alternatives due to their rapid bactericidal activity and their broad-spectrum of action against a wide range of microorganisms. The amphibian Temporins constitute a well-known family of AMPs with high antibacterial properties against both Gram-positive and Gram-negative bacteria. In this paper, we evaluated the in vivo effect of Temp-L on S. aureus performing morphological studies using Transmission Electron Microscopy (TEM) that revealed the occurrence of protrusions from the cell surface. The formation of vesicle-like structure was confirmed by Dynamic Light Scattering (DLS). The global effect of Temp-L on Staphylococcus aureus (S. aureus) was deeply investigated by differential proteomics leading to the identification of up-regulated proteins involved in the synthesis of the cell membrane and fatty acids, and down-regulated virulence factors. GC-MS analysis suggested a possible protective response mechanism implemented by the bacterium after treatment with Temp-L, as the synthesis of fatty acids was increased. Adhesion and invasion assays on eukaryotic cells confirmed a reduced virulence of S. aureus following treatment with Temp-L. These results suggested the targeting of virulence factors as novel strategy to replace traditional antimicrobial agents that can be used to treat infections, especially infections caused by the resistant pathogen S. aureus.
Collapse
Affiliation(s)
- Carolina Canè
- Department of Chemical Sciences, University of Naples "Federico II" Via Cinthia 4, 80126, Napoli, Italy
| | - Noemi Gallucci
- Department of Chemical Sciences, University of Naples "Federico II" Via Cinthia 4, 80126, Napoli, Italy
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples "Federico II" Via Cinthia 4, 80126, Napoli, Italy
- National Institute of Biostructures and Biosystems (INBB), Viale Medaglie d'Oro 305, 00136, Rome, Italy
| | - Carolina Fontanarosa
- Department of Chemical Sciences, University of Naples "Federico II" Via Cinthia 4, 80126, Napoli, Italy
| | - Luigi Paduano
- Department of Chemical Sciences, University of Naples "Federico II" Via Cinthia 4, 80126, Napoli, Italy
| | - Eliana De Gregorio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131, Naples, Italy
| | - Angela Duilio
- Department of Chemical Sciences, University of Naples "Federico II" Via Cinthia 4, 80126, Napoli, Italy
- National Institute of Biostructures and Biosystems (INBB), Viale Medaglie d'Oro 305, 00136, Rome, Italy
| | - Angela Di Somma
- Department of Chemical Sciences, University of Naples "Federico II" Via Cinthia 4, 80126, Napoli, Italy
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80126, Napoli, Italy
| |
Collapse
|
2
|
Gostev V, Kalinogorskaya O, Sopova J, Sulian O, Chulkova P, Velizhanina M, Tsvetkova I, Ageevets I, Ageevets V, Sidorenko S. Adaptive Laboratory Evolution of Staphylococcus aureus Resistance to Vancomycin and Daptomycin: Mutation Patterns and Cross-Resistance. Antibiotics (Basel) 2023; 12:antibiotics12050928. [PMID: 37237831 DOI: 10.3390/antibiotics12050928] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Vancomycin and daptomycin are first-line drugs for the treatment of complicated methicillin-resistant Staphylococcus aureus (MRSA) infections, including bacteremia. However, their effectiveness is limited not only by their resistance to each antibiotic but also by their associated resistance to both drugs. It is unknown whether novel lipoglycopeptides can overcome this associated resistance. Resistant derivatives from five S. aureus strains were obtained during adaptive laboratory evolution with vancomycin and daptomycin. Both parental and derivative strains were subjected to susceptibility testing, population analysis profiles, measurements of growth rate and autolytic activity, and whole-genome sequencing. Regardless of whether vancomycin or daptomycin was selected, most of the derivatives were characterized by a reduced susceptibility to daptomycin, vancomycin, telavancin, dalbavancin, and oritavancin. Resistance to induced autolysis was observed in all derivatives. Daptomycin resistance was associated with a significant reduction in growth rate. Resistance to vancomycin was mainly associated with mutations in the genes responsible for cell wall biosynthesis, and resistance to daptomycin was associated with mutations in the genes responsible for phospholipid biosynthesis and glycerol metabolism. However, mutations in walK and mprF were detected in derivatives selected for both antibiotics.
Collapse
Affiliation(s)
- Vladimir Gostev
- Pediatric Research and Clinical Center for Infectious Diseases, Department of Medical Microbiology and Molecular Epidemiology, 197022 Saint Petersburg, Russia
- Department of Medical Microbiology, North-Western State Medical University named after I.I. Mechnikov, 195067 Saint Petersburg, Russia
| | - Olga Kalinogorskaya
- Pediatric Research and Clinical Center for Infectious Diseases, Department of Medical Microbiology and Molecular Epidemiology, 197022 Saint Petersburg, Russia
| | - Julia Sopova
- Center of Transgenesis and Genome Editing, Saint Petersburg State University, 199034 Saint Petersburg, Russia
- Saint Petersburg Branch of Vavilov Institute of General Genetics, Russian Academy of Sciences, 198504 Saint Petersburg, Russia
| | - Ofelia Sulian
- Pediatric Research and Clinical Center for Infectious Diseases, Department of Medical Microbiology and Molecular Epidemiology, 197022 Saint Petersburg, Russia
| | - Polina Chulkova
- Pediatric Research and Clinical Center for Infectious Diseases, Department of Medical Microbiology and Molecular Epidemiology, 197022 Saint Petersburg, Russia
| | - Maria Velizhanina
- Center of Transgenesis and Genome Editing, Saint Petersburg State University, 199034 Saint Petersburg, Russia
- Laboratory of Signal Regulation, All-Russia Research Institute for Agricultural Microbiology, Pushkin, 196608 Saint Petersburg, Russia
| | - Irina Tsvetkova
- Pediatric Research and Clinical Center for Infectious Diseases, Department of Medical Microbiology and Molecular Epidemiology, 197022 Saint Petersburg, Russia
| | - Irina Ageevets
- Pediatric Research and Clinical Center for Infectious Diseases, Department of Medical Microbiology and Molecular Epidemiology, 197022 Saint Petersburg, Russia
| | - Vladimir Ageevets
- Pediatric Research and Clinical Center for Infectious Diseases, Department of Medical Microbiology and Molecular Epidemiology, 197022 Saint Petersburg, Russia
| | - Sergey Sidorenko
- Pediatric Research and Clinical Center for Infectious Diseases, Department of Medical Microbiology and Molecular Epidemiology, 197022 Saint Petersburg, Russia
- Department of Medical Microbiology, North-Western State Medical University named after I.I. Mechnikov, 195067 Saint Petersburg, Russia
| |
Collapse
|
3
|
Li QQ, Chae HS, Kang OH, Kwon DY. Synergistic Antibacterial Activity with Conventional Antibiotics and Mechanism of Action of Shikonin against Methicillin-Resistant Staphylococcus aureus. Int J Mol Sci 2022; 23:ijms23147551. [PMID: 35886892 PMCID: PMC9322759 DOI: 10.3390/ijms23147551] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 12/11/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a troublesome pathogen that poses a global threat to public health. Shikonin (SKN) isolated from Lithospermum erythrorhizon (L. erythrorhizon) possesses a variety of biological activities. This study aims to explore the effect of the combined application of SKN and traditional antibiotics on the vitality of MRSA and the inherent antibacterial mechanism of SKN. The synergies between SKN and antibiotics against MRSA and its clinical strain have been demonstrated by the checkerboard assay and the time-kill assay. The effect of SKN on disrupting the integrity and permeability of bacterial cell membranes was verified by a nucleotide and protein leakage assay and a bacteriolysis assay. As determined by crystal violet staining, SKN inhibited the biofilm formation of clinical MRSA strains. The results of Western blot and qRT-PCR showed that SKN could inhibit the expression of proteins and genes related to drug resistance and S. aureus exotoxins. SKN inhibited the ability of RAW264.7 cells to release the pro-inflammatory cytokines TNF-α and IL-6, as measured by ELISA. Our findings suggest that SKN has the potential to be developed as a promising alternative for the treatment of MRSA infections.
Collapse
Affiliation(s)
- Qian-Qian Li
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan 54538, Jeonbuk, Korea;
| | - Hee-Sung Chae
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA;
| | - Ok-Hwa Kang
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan 54538, Jeonbuk, Korea;
- Correspondence: (O.-H.K.); (D.-Y.K.); Tel.: +82-63-850-6802 (O.-H.K.)
| | - Dong-Yeul Kwon
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan 54538, Jeonbuk, Korea;
- Correspondence: (O.-H.K.); (D.-Y.K.); Tel.: +82-63-850-6802 (O.-H.K.)
| |
Collapse
|
4
|
Roch M, Varela MC, Taglialegna A, Rose WE, Rosato AE. Activity of Telavancin against Staphylococcus aureus Isolates, Including Those with Decreased Susceptibility to Ceftaroline, from Cystic Fibrosis Patients. Antimicrob Agents Chemother 2018; 62:e00956-18. [PMID: 29914961 PMCID: PMC6125506 DOI: 10.1128/aac.00956-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/13/2018] [Indexed: 11/21/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) acquisition in cystic fibrosis (CF) patients confers a clinical outcome worse than that in non-CF patients with an increased rate of declined lung function. Telavancin, an approved lipoglycopeptide used to treat infections due to S. aureus, has a dual mode of action causing inhibition of peptidoglycan synthesis and membrane depolarization. MRSA infections in CF patients remain an important problem with no foreseeable decline in prevalence rates. Although telavancin is currently in clinical use for the treatment of complicated skin infections and hospital-acquired pneumonia, the activity against S. aureus infections in CF patients has not been investigated. In this work, we studied the activity of telavancin against CF patient-derived S. aureus strains collected from geographically diverse CF centers in the United States. We found that the telavancin MIC90 was 0.06 μg/ml, 8-fold lower than the ceftaroline or daptomycin MIC90 and 25-fold lower than the linezolid and vancomycin MIC90 We demonstrate that telavancin at serum free concentrations has rapid bactericidal activity, with a decrease of more than 3 log10 CFU/ml being achieved during the first 4 to 6 h of treatment, performing better in this assay than vancomycin and ceftaroline, including against S. aureus strains resistant to ceftaroline. Telavancin resistance was infrequent (0.3%), although we found that it can occur in vitro in both CF- and non-CF patient-derived S. aureus strains by progressive passages with subinhibitory concentrations. Genetic analysis of telavancin-resistant in vitro mutants showed gene polymorphisms in cell wall and virulence genes and increased survival in a Galleria mellonella infection model. Thus, we conclude that telavancin represents a promising therapeutic option for infections in CF patients with potent in vitro activity and a low resistance development potential.
Collapse
Affiliation(s)
- Melanie Roch
- Department of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas, USA
| | - Maria Celeste Varela
- Department of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas, USA
| | - Agustina Taglialegna
- Department of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas, USA
| | - Warren E Rose
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Adriana E Rosato
- Department of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas, USA
| |
Collapse
|
5
|
Werth BJ, Jain R, Hahn A, Cummings L, Weaver T, Waalkes A, Sengupta D, Salipante SJ, Rakita RM, Butler-Wu SM. Emergence of dalbavancin non-susceptible, vancomycin-intermediate Staphylococcus aureus (VISA) after treatment of MRSA central line-associated bloodstream infection with a dalbavancin- and vancomycin-containing regimen. Clin Microbiol Infect 2017; 24:429.e1-429.e5. [PMID: 28782651 DOI: 10.1016/j.cmi.2017.07.028] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/07/2017] [Accepted: 07/04/2017] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Dalbavancin is a long-acting lipoglycopeptide with activity against gram-positives, including methicillin-resistant Staphylococcus aureus (MRSA). The potential for lipoglycopeptides, with half-lives greater than 1 week, to select for resistance is unknown. Here we explore a case of MRSA central line-associated bloodstream infection in which dalbavancin and vancomycin non-susceptibility emerged in a urine isolate collected after the patient was treated with vancomycin and dalbavancin sequentially. METHODS Isolates from blood and urine underwent susceptibility testing, and whole genome sequencing (WGS). The blood isolate was subjected to successive passage in vitro in the presence of escalating dalbavancin concentrations and the emergent isolate was subjected to repeat susceptibility testing and WGS. RESULTS The blood isolate was fully susceptible to vancomycin; however, MICs of the urine isolate to dalbavancin, vancomycin, telavancin, and daptomycin were at least fourfold higher than the blood-derived strain. Both strains were indistinguishable by spa and variable number tandem repeat (VNTR) typing, and WGS revealed only seven variants, indicating clonality. Four variants affected genes, including a 3bp in-frame deletion in yvqF, a gene which has been implicated in glycopeptide resistance. Vancomycin and dalbavancin non-susceptibility emerged in the blood isolate after successive passage in vitro in the presence of dalbavancin, and WGS identified a single non-synonymous variant in yvqF. CONCLUSIONS This is the first case in which VISA has emerged in the context of a dalbavancin-containing regimen. The selection for cross-resistance to vancomycin in vitro by dalbavancin exposure alone is troubling. Clinicians should be aware of the possibility for emergence of dalbavancin non-susceptibility and glycopeptide cross-resistance arising following therapy.
Collapse
Affiliation(s)
- B J Werth
- Department of Pharmacy, University of Washington School of Pharmacy, Seattle, WA, USA
| | - R Jain
- Department of Pharmacy, University of Washington School of Pharmacy, Seattle, WA, USA
| | - A Hahn
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA
| | - L Cummings
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - T Weaver
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - A Waalkes
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - D Sengupta
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - S J Salipante
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - R M Rakita
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA
| | - S M Butler-Wu
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
6
|
Zeng D, Debabov D, Hartsell TL, Cano RJ, Adams S, Schuyler JA, McMillan R, Pace JL. Approved Glycopeptide Antibacterial Drugs: Mechanism of Action and Resistance. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a026989. [PMID: 27663982 DOI: 10.1101/cshperspect.a026989] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The glycopeptide antimicrobials are a group of natural product and semisynthetic glycosylated peptides that show antibacterial activity against Gram-positive organisms through inhibition of cell-wall synthesis. This is achieved primarily through binding to the d-alanyl-d-alanine terminus of the lipid II bacterial cell-wall precursor, preventing cross-linking of the peptidoglycan layer. Vancomycin is the foundational member of the class, showing both clinical longevity and a still preferential role in the therapy of methicillin-resistant Staphylococcus aureus and of susceptible Enterococcus spp. Newer lipoglycopeptide derivatives (telavancin, dalbavancin, and oritavancin) were designed in a targeted fashion to increase antibacterial activity, in some cases through secondary mechanisms of action. Resistance to the glycopeptides emerged in delayed fashion and occurs via a spectrum of chromosome- and plasmid-associated elements that lead to structural alteration of the bacterial cell-wall precursor substrates.
Collapse
Affiliation(s)
- Daina Zeng
- Agile Sciences, Raleigh, North Carolina 27606
| | | | - Theresa L Hartsell
- Department of Anesthesiology/Critical Care Medicine, The Johns Hopkins School of Medicine and Nursing, Baltimore, Maryland 21287
| | - Raul J Cano
- ATCC Center for Translational Microbiology, Union, New Jersey 07083.,Biological Sciences Department, California Polytechnic State University, San Luis Obispo, California 93407
| | - Stacy Adams
- Center for Skin Biology, GlaxoSmithKline, Durham, North Carolina 27703
| | | | - Ronald McMillan
- ATCC Center for Translational Microbiology, Union, New Jersey 07083
| | - John L Pace
- ATCC Center for Translational Microbiology, Union, New Jersey 07083.,STEM Program, Kean University, Union, New Jersey 07083.,Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, North Carolina 27707
| |
Collapse
|
7
|
Sen S, Sirobhushanam S, Johnson SR, Song Y, Tefft R, Gatto C, Wilkinson BJ. Growth-Environment Dependent Modulation of Staphylococcus aureus Branched-Chain to Straight-Chain Fatty Acid Ratio and Incorporation of Unsaturated Fatty Acids. PLoS One 2016; 11:e0165300. [PMID: 27788193 PMCID: PMC5082858 DOI: 10.1371/journal.pone.0165300] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 10/07/2016] [Indexed: 12/14/2022] Open
Abstract
The fatty acid composition of membrane glycerolipids is a major determinant of Staphylococcus aureus membrane biophysical properties that impacts key factors in cell physiology including susceptibility to membrane active antimicrobials, pathogenesis, and response to environmental stress. The fatty acids of S. aureus are considered to be a mixture of branched-chain fatty acids (BCFAs), which increase membrane fluidity, and straight-chain fatty acids (SCFAs) that decrease it. The balance of BCFAs and SCFAs in USA300 strain JE2 and strain SH1000 was affected considerably by differences in the conventional laboratory medium in which the strains were grown with media such as Mueller-Hinton broth and Luria broth resulting in high BCFAs and low SCFAs, whereas growth in Tryptic Soy Broth and Brain-Heart Infusion broth led to reduction in BCFAs and an increase in SCFAs. Straight-chain unsaturated fatty acids (SCUFAs) were not detected. However, when S. aureus was grown ex vivo in serum, the fatty acid composition was radically different with SCUFAs, which increase membrane fluidity, making up a substantial proportion of the total (<25%) with SCFAs (>37%) and BCFAs (>36%) making up the rest. Staphyloxanthin, an additional major membrane lipid component unique to S. aureus, tended to be greater in content in cells with high BCFAs or SCUFAs. Cells with high staphyloxanthin content had a lower membrane fluidity that was attributed to increased production of staphyloxanthin. S. aureus saves energy and carbon by utilizing host fatty acids for part of its total fatty acids when growing in serum, which may impact biophysical properties and pathogenesis given the role of SCUFAs in virulence. The nutritional environment in which S. aureus is grown in vitro or in vivo in an infection is likely to be a major determinant of membrane fatty acid composition.
Collapse
Affiliation(s)
- Suranjana Sen
- School of Biological Sciences, Illinois State University, Normal, Illinois, United States of America
| | - Sirisha Sirobhushanam
- School of Biological Sciences, Illinois State University, Normal, Illinois, United States of America
| | - Seth R. Johnson
- School of Biological Sciences, Illinois State University, Normal, Illinois, United States of America
| | - Yang Song
- School of Biological Sciences, Illinois State University, Normal, Illinois, United States of America
| | - Ryan Tefft
- School of Biological Sciences, Illinois State University, Normal, Illinois, United States of America
| | - Craig Gatto
- School of Biological Sciences, Illinois State University, Normal, Illinois, United States of America
| | - Brian J. Wilkinson
- School of Biological Sciences, Illinois State University, Normal, Illinois, United States of America
| |
Collapse
|
8
|
Karlowsky JA, Nichol K, Zhanel GG. Telavancin: mechanisms of action, in vitro activity, and mechanisms of resistance. Clin Infect Dis 2016; 61 Suppl 2:S58-68. [PMID: 26316559 DOI: 10.1093/cid/civ534] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Telavancin is a semisynthetic lipoglycopeptide derivative of vancomycin. Telavancin has a dual mechanism of antibacterial action, disrupting peptidoglycan synthesis and cell membrane function. In 2014, the Clinical and Laboratory Standards Institute (CLSI) revised the antimicrobial susceptibility testing method for telavancin, resulting in minimum inhibitory concentration (MIC) determinations that are more accurate and reproducible and demonstrate greater in vitro potency than shown with the previous testing method. The CLSI testing method changes coincided with revised telavancin MIC interpretive break point criteria for susceptibility approved by the US Food and Drug Administration for Staphylococcus aureus (≤0.12 µg/mL), Streptococcus pyogenes (≤0.12 µg/mL), Streptococcus agalactiae (≤0.12 µg/mL), Streptococcus anginosus group (≤0.06 µg/mL), and Enterococcus faecalis (vancomycin susceptible, ≤0.25 µg/mL). Telavancin is equally potent against methicillin-susceptible S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA). It demonstrates activity against isolates of heterogeneous vancomycin-intermediate S. aureus and vancomycin-intermediate S. aureus but is poorly active against vancomycin-resistant S. aureus. It also demonstrates potent activity against Staphylococcus epidermidis and Streptococcus spp. (MIC90 ≤0.03 µg/mL). Thus far, it has not been possible to select for high-level telavancin resistance in the laboratory using serially passaged clinical isolates of MRSA and MSSA.
Collapse
Affiliation(s)
- James A Karlowsky
- Department of Medical Microbiology, College of Medicine, University of Manitoba Diagnostic Services Manitoba, Winnipeg, Canada
| | - Kim Nichol
- Diagnostic Services Manitoba, Winnipeg, Canada
| | - George G Zhanel
- Department of Medical Microbiology, College of Medicine, University of Manitoba
| |
Collapse
|
9
|
Van Bambeke F. Lipoglycopeptide Antibacterial Agents in Gram-Positive Infections: A Comparative Review. Drugs 2015; 75:2073-95. [DOI: 10.1007/s40265-015-0505-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Butler MS, Robertson AAB, Cooper MA. Natural product and natural product derived drugs in clinical trials. Nat Prod Rep 2014; 31:1612-61. [DOI: 10.1039/c4np00064a] [Citation(s) in RCA: 383] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The 25 Natural Product (NP)-derived drugs launched since 2008 and the 100 NP-derived compounds and 33 Antibody Drug Conjugates (ADCs) in clinical trials or in registration at the end of 2013 are reviewed.
Collapse
Affiliation(s)
- Mark S. Butler
- Division of Chemistry and Structural Biology
- Institute for Molecular Bioscience
- The University of Queensland
- Brisbane, Australia
| | - Avril A. B. Robertson
- Division of Chemistry and Structural Biology
- Institute for Molecular Bioscience
- The University of Queensland
- Brisbane, Australia
| | - Matthew A. Cooper
- Division of Chemistry and Structural Biology
- Institute for Molecular Bioscience
- The University of Queensland
- Brisbane, Australia
| |
Collapse
|