1
|
Arrieta-Gisasola A, Martínez-Ballesteros I, Martinez-Malaxetxebarria I, Bikandi J, Laorden L. Detection of mobile genetic elements conferring resistance to heavy metals in Salmonella 4,[5],12:i:- and Salmonella Typhimurium serovars and their association with antibiotic resistance. Int J Food Microbiol 2025; 426:110890. [PMID: 39241546 DOI: 10.1016/j.ijfoodmicro.2024.110890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 09/09/2024]
Abstract
Salmonella enterica subsp. enterica serovar Typhimurium variant 4,[5],12:i:- (referred to as S. 4,[5],12:i:-) has emerged rapidly as the predominant Salmonella serovar in pigs, often associated with the acquisition of antibiotic resistance (ABR) and heavy metal resistance (HMR) genes. Our study analysed 78 strains of S. 4,[5],12:i:- (n = 57) and S. Typhimurium (n = 21), collected from 1999 to 2021, to investigate the evolution of mobile genetic elements (MGEs) containing HMR and ABR genes. Five MGEs harbouring HMR genes were identified: pUO-STVR2, pSTM45, pUO-STmRV1, SGI-4 and MREL. Among the strains, 91.23 % (52/57) of S. 4,[5],12:i:- carried at least one of these elements, compared to only 14.29 % (3/21) of S. Typhimurium. Since 2008, S. 4,[5],12:i:- have shifted from predominantly carrying pUO-STmRV1 to the emergence of SGI-4 and MREL, reducing ABR genes, reflecting the European Union ban on the use of antibiotics as feed additives. Increased resistance to copper and silver in S. 4,[5],12:i:-, conferred by SGI-4 and MREL, reflected that their acquisition was linked to the ongoing use of heavy metals in food-animal production. However, strains carrying SGI-4 and MREL still exhibit multidrug resistance, emphasising the need for targeted interventions to mitigate multidrug-resistant Salmonella spread in veterinary and public health settings.
Collapse
Affiliation(s)
- A Arrieta-Gisasola
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Bioaraba, Microbiology, Infectious Diseases, Antimicrobial Agents and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| | - I Martínez-Ballesteros
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Bioaraba, Microbiology, Infectious Diseases, Antimicrobial Agents and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| | - I Martinez-Malaxetxebarria
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Bioaraba, Microbiology, Infectious Diseases, Antimicrobial Agents and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| | - J Bikandi
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Bioaraba, Microbiology, Infectious Diseases, Antimicrobial Agents and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| | - L Laorden
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Bioaraba, Microbiology, Infectious Diseases, Antimicrobial Agents and Gene Therapy, 01006 Vitoria-Gasteiz, Spain.
| |
Collapse
|
2
|
Clinically healthy household dogs and cats as carriers of multidrug-resistant Salmonella enterica with variable R plasmids. J Med Microbiol 2022; 71. [DOI: 10.1099/jmm.0.001488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Introduction. Antimicrobial resistance (AMR) is a One Health issue concerning humans, animals and the environment and a unified One Health approach is required to contain this problematic issue. Dogs and cats are popular pet animals and are known to carry many bacterial pathogens that are of public health importance, including
Salmonella
. However, data on AMR in companion animals is limited.
Gap statement. Scant AMR data from bacteria originating from companion animals limits an accurate assessment of the impacts of pet-animal-related AMR on public health.
Purpose. This study aimed to phenotypically and genetically investigate AMR in
Salmonella
isolated from pet dogs and cats in Thailand.
Methodology.
Salmonella enterica
were isolated from pet dogs (n=159) and cats (n=19) in Thailand between 2016 and 2019. All isolates were serotyped. Phenotypic and genotypic antimicrobial resistance was examined. PCR-based replicon typing, replicon sequence typing and plasmid multilocus sequence typing were conducted to characterize plasmids.
Results. Seventy-seven serovars were identified, with serovars Weltevreden (9.6%) and Stockholm (9.0%) the most common. Most of the isolates (34.3%) were multidrug-resistant. The serovar Stockholm was an ESBL-producer and carried the β-lactamase genes bla
TEM-1 and bla
CTX-M-55. The plasmid-mediated quinolone resistance (PMQR) gene, qnrS, was also detected (10.1%). Class 1 integrons carrying the dfrA12-aadA2 cassette array were most frequent (45.9%). Five plasmid replicon types as IncA/C (0.6%), N (1.1%), IncFIIA (28.7%), IncHI1 (2.2%), and IncI1 (3.4%) were identified. Based on the pMLST typing scheme (n=9), plasmids were assigned into five different STs including IncA/C-ST6 (n=1), IncH1-ST16 (n=4), IncI1-ST3 (n=1), IncI1-ST60 (n=1) and IncI1-ST136 (n=1). The ST 16 of IncHI1 plasmid was a novel plasmid ST. Subtyping F-type plasmids using the RST scheme (n=9) revealed four different combinations of replicons including S1:A-:B- (n=4), S1:A-:B22 (n=2), S3:A-:B- (n=1) and S-:A-:B47 (n=1).
Conclusions. Our findings highlight the role of clinically healthy household dogs and cats as carriers of AMR
Salmonella
strains with different R plasmid. The implementation of AMR phenotypes instigation and genotypic monitoring and surveillance programmes in companion animals are imperative as integral components of the One Health framework.
Collapse
|
3
|
Dos Santos AMP, Panzenhagen P, Ferrari RG, Rodrigues GL, Conte-Junior CA. The pESI megaplasmid conferring virulence and multiple-drug resistance is detected in a Salmonella Infantis genome from Brazil. INFECTION GENETICS AND EVOLUTION 2021; 95:104934. [PMID: 34029725 DOI: 10.1016/j.meegid.2021.104934] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/21/2021] [Accepted: 05/19/2021] [Indexed: 11/20/2022]
Affiliation(s)
- Anamaria M P Dos Santos
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
| | - Pedro Panzenhagen
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
| | - Rafaela G Ferrari
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil.
| | - Grazielle L Rodrigues
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
| | - Carlos A Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói, RJ 24230-340, Brazil; Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ 21040-900, Brazil; Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
| |
Collapse
|
4
|
García V, Herrero-Fresno A, Rodicio R, Felipe-López A, Montero I, Olsen JE, Hensel M, Rodicio MR. A Plasmid-Encoded FetMP-Fls Iron Uptake System Confers Selective Advantages to Salmonella enterica Serovar Typhimurium in Growth under Iron-Restricted Conditions and for Infection of Mammalian Host Cells. Microorganisms 2020; 8:microorganisms8050630. [PMID: 32349391 PMCID: PMC7285068 DOI: 10.3390/microorganisms8050630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/22/2020] [Accepted: 04/25/2020] [Indexed: 12/03/2022] Open
Abstract
The resistance plasmid pUO-StVR2, derived from virulence plasmid pSLT, is widespread in clinical isolates of Salmonella enterica serovar Typhimurium recovered in Spain and other European countries. pUO-StVR2 carries several genes encoding a FetMP-Fls system, which could be involved in iron uptake. We therefore analyzed S. Typhimurium LSP 146/02, a clinical strain selected as representative of the isolates carrying the plasmid, and an otherwise isogenic mutant lacking four genes (fetMP-flsDA) of the fetMP-fls region. Growth curves and determination of the intracellular iron content under iron-restricted conditions demonstrated that deletion of these genes impairs iron acquisition. Thus, under these conditions, the mutant grew significantly worse than the wild-type strain, its iron content was significantly lower, and it was outcompeted by the wild-type strain in competition assays. Importantly, the strain lacking the fetMP-flsDA genes was less invasive in cultured epithelial HeLa cells and replicated poorly upon infection of RAW264.7 macrophages. The genes were introduced into S. Typhimurium ATCC 14028, which lacks the FetMP-Fls system, and this resulted in increased growth under iron limitation as well as an increased ability to multiply inside macrophages. These findings indicate that the FetMP-Fls iron acquisition system exceeds the benefits conferred by the other high-affinity iron uptake systems carried by ATCC 14028 and LSP 146/02. We proposed that effective iron acquisition by this system in conjunction with antimicrobial resistance encoded from the same plasmid have greatly contributed to the epidemic success of S. Typhimurium isolates harboring pUO-StVR2.
Collapse
Affiliation(s)
- Vanesa García
- Department of Functional Biology, Section of Microbiology, University of Oviedo, 33006 Oviedo, Spain; (V.G.); (I.M.)
- Division of Microbiology, University of Osnabrück, 49076 Osnabrück, Germany; (A.F.-L.); (M.H.)
| | - Ana Herrero-Fresno
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (A.H.-F.); (J.E.O.)
| | - Rosaura Rodicio
- Department of Biochemistry and Molecular Biology, University of Oviedo, 33006 Oviedo, Spain;
- Translacional Microbiology Group, Health Research Institute of Principado de Asturias, 33011 Oviedo, Spain (ISPA)
| | - Alfonso Felipe-López
- Division of Microbiology, University of Osnabrück, 49076 Osnabrück, Germany; (A.F.-L.); (M.H.)
| | - Ignacio Montero
- Department of Functional Biology, Section of Microbiology, University of Oviedo, 33006 Oviedo, Spain; (V.G.); (I.M.)
| | - John E. Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (A.H.-F.); (J.E.O.)
| | - Michael Hensel
- Division of Microbiology, University of Osnabrück, 49076 Osnabrück, Germany; (A.F.-L.); (M.H.)
| | - María Rosario Rodicio
- Department of Functional Biology, Section of Microbiology, University of Oviedo, 33006 Oviedo, Spain; (V.G.); (I.M.)
- Translacional Microbiology Group, Health Research Institute of Principado de Asturias, 33011 Oviedo, Spain (ISPA)
- Correspondence: ; Tel.: +34-985103562
| |
Collapse
|
5
|
Liao J, Orsi RH, Carroll LM, Kovac J, Ou H, Zhang H, Wiedmann M. Serotype-specific evolutionary patterns of antimicrobial-resistant Salmonella enterica. BMC Evol Biol 2019; 19:132. [PMID: 31226931 PMCID: PMC6588947 DOI: 10.1186/s12862-019-1457-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 06/11/2019] [Indexed: 12/28/2022] Open
Abstract
Background The emergence of antimicrobial-resistant (AMR) strains of the important human and animal pathogen Salmonella enterica poses a growing threat to public health. Here, we studied the genome-wide evolution of 90 S. enterica AMR isolates, representing one host adapted serotype (S. Dublin) and two broad host range serotypes (S. Newport and S. Typhimurium). Results AMR S. Typhimurium had a large effective population size, a large and diverse genome, AMR profiles with high diversity, and frequent positive selection and homologous recombination. AMR S. Newport showed a relatively low level of diversity and a relatively clonal population structure. AMR S. Dublin showed evidence for a recent population bottleneck, and the genomes were characterized by a larger number of genes and gene ontology terms specifically absent from this serotype and a significantly higher number of pseudogenes as compared to other two serotypes. Approximately 50% of accessory genes, including specific AMR and putative prophage genes, were significantly over- or under-represented in a given serotype. Approximately 65% of the core genes showed phylogenetic clustering by serotype, including the AMR gene aac (6′)-Iaa. While cell surface proteins were shown to be the main target of positive selection, some proteins with possible functions in AMR and virulence also showed evidence for positive selection. Homologous recombination mainly acted on prophage-associated proteins. Conclusions Our data indicates a strong association between genome content of S. enterica and serotype. Evolutionary patterns observed in S. Typhimurium are consistent with multiple emergence events of AMR strains and/or ecological success of this serotype in different hosts or habitats. Evolutionary patterns of S. Newport suggested that antimicrobial resistance emerged in one single lineage, Lineage IIC. A recent population bottleneck and genome decay observed in AMR S. Dublin are congruent with its narrow host range. Finally, our results suggest the potentially important role of positive selection in the evolution of antimicrobial resistance, host adaptation and serotype diversification in S. enterica. Electronic supplementary material The online version of this article (10.1186/s12862-019-1457-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jingqiu Liao
- Department of Food Science, 341 Stocking Hall, Cornell University, Ithaca, NY, 14853, USA.,Graduate Field of Microbiology, Cornell University, Ithaca, NY, 14853, USA
| | - Renato Hohl Orsi
- Department of Food Science, 341 Stocking Hall, Cornell University, Ithaca, NY, 14853, USA
| | - Laura M Carroll
- Department of Food Science, 341 Stocking Hall, Cornell University, Ithaca, NY, 14853, USA
| | - Jasna Kovac
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Hongyu Ou
- School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hailong Zhang
- Department of Computer Science & Engineering, Ohio State University, Columbus, OH, 43210, USA
| | - Martin Wiedmann
- Department of Food Science, 341 Stocking Hall, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
6
|
Moran RA, Holt KE, Hall RM. pCERC3 from a commensal ST95 Escherichia coli: A ColV virulence-multiresistance plasmid carrying a sul3-associated class 1 integron. Plasmid 2016; 84-85:11-9. [PMID: 26855083 DOI: 10.1016/j.plasmid.2016.02.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/04/2016] [Accepted: 02/04/2016] [Indexed: 01/09/2023]
Abstract
The rare sulphonamide resistance gene sul3 was found in the commensal Escherichia coli ST95 strain 22.1-R1 that was isolated in 2010 from the faeces of a healthy Australian adult. The genome of 22.1-R1 was sequenced and a 144,344bp RepFII/FIB plasmid, pCERC3, carrying sul3 was assembled. The sul3 gene is part of a class 1 integron featuring a sul3-containing conserved segment (sul3-CS) that replaced the classic sul1-containing 3'-conserved segment (3'-CS) usually seen in class 1 integrons. The integron contained the cassette array dfrA12-orfF-aadA2-cmlA1-aadA1-qacH, conferring resistance to trimethoprim, streptomycin, spectinomycin, chloramphenicol and quaternary ammonium compound. Two additional antibiotic resistance genes, blaTEM (ampicillin resistance) and tetA(B) (tetracycline) were adjacent to the integron, forming a single resistance region. In pCERC3, the sul3-type class 1 integron was flanked by sequence derived from the tnp and mer modules of Tn21 and was in the same location as In2, the sul1-containing In5-type class 1 integron of Tn21. At one end the sequence extends into Tn2670-derived sequence and then into sequence derived from the plasmid NR1 (R100). Examination of the sequences of eleven more complete sul3-containing plasmids in GenBank confirmed the relationship between sul3-associated integrons and Tn21/Tn2670/NR1. This suggests that the events that formed sul3-associated class 1 integrons occurred within the Tn21/Tn2670 context, most likely in NR1 or a related plasmid. The backbone of pCERC3 is most closely related to the backbones of ColV virulence plasmids and contains a complete ColV operon as well as several virulence associated genes and gene clusters. Hence, pCERC3 is both an antibiotic resistance and virulence plasmid.
Collapse
Affiliation(s)
- Robert A Moran
- School of Life and Environmental Sciences, The University of Sydney, NSW, Australia
| | - Kathryn E Holt
- Department of Biochemistry and Molecular Biology and Centre for Systems Genomics, University of Melbourne, VIC, Australia
| | - Ruth M Hall
- School of Life and Environmental Sciences, The University of Sydney, NSW, Australia.
| |
Collapse
|
7
|
Transposition and homologous recombination drive evolution of pUO-StVR2, a multidrug resistance derivative of pSLT, the virulence plasmid specific of Salmonella enterica serovar Typhimurium. INFECTION GENETICS AND EVOLUTION 2015; 29:99-102. [DOI: 10.1016/j.meegid.2014.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/08/2014] [Accepted: 11/11/2014] [Indexed: 11/18/2022]
|
8
|
García P, Hopkins KL, García V, Beutlich J, Mendoza MC, Threlfall J, Mevius D, Helmuth R, Rodicio MR, Guerra B. Diversity of plasmids encoding virulence and resistance functions in Salmonella enterica subsp. enterica serovar Typhimurium monophasic variant 4,[5],12:i:- strains circulating in Europe. PLoS One 2014; 9:e89635. [PMID: 24586926 PMCID: PMC3935914 DOI: 10.1371/journal.pone.0089635] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 01/22/2014] [Indexed: 11/19/2022] Open
Abstract
Plasmids encoding resistance and virulence properties in multidrug resistant (MDR) Salmonella enterica (S.) serovar Typhimurium monophasic variant 4,[5],12:i:- isolates recovered from pigs and humans (2006-2008) in Europe were characterised. The isolates were selected based on the detection by PCR-amplification of S. Typhimurium virulence plasmid pSLT genes and were analysed by multi-locus sequence typing (MLST). The resistance genes present in the isolates and the association of these genes with integrons, transposons and insertion sequences were characterised by PCR-sequencing, and their plasmid location was determined by alkaline lysis and by S1-nuclease pulsed-field gel electrophoresis (PFGE) Southern-blot hybridisation. Plasmids were further analysed by replicon typing, plasmid MLST and conjugation experiments. The 10 S. 4,[5],12,i:- selected isolates belonged to ST19. Each isolate carried a large plasmid in which MDR with pSLT-associated virulence genes were located. After analysis, eight different plasmids of three incompatibility groups (IncA/C, IncR and IncF) were detected. Two IncA/C plasmids represented novel variants within the plasmid family of the S. 4,[5],12:i:- Spanish clone, and carried an empty class 1 integron with a conventional qacEΔ1-sul1 3′ conserved segment or an In-sul3 type III with estX-psp-aadA2-cmlA1-aadA1-qacH variable region linked to tnpA440-sul3, part of Tn2, Tn21 and Tn1721 transposons, and ISCR2. Four newly described IncR plasmids contained the resistance genes within In-sul3 type I (dfrA12-orfF-aadA2-cmlA1-aadA1-qacH/tnpA440-sul3) and part of Tn10 [tet(B)]. Two pSLT-derivatives with FIIs-ST1+FIB-ST17 replicons carried cmlA1-[aadA1-aadA2]-sul3-dfrA12 and blaTEM-1 genes linked to an In-sul3 type I integron and to Tn2, respectively. In conclusion, three emerging European clones of S. 4,[5],12:i:- harboured MDR plasmids encoding additional virulence functions that could contribute significantly to their evolutionary success.
Collapse
Affiliation(s)
- Patricia García
- Department of Functional Biology, Area of Microbiology, University of Oviedo, Oviedo, Asturias, Spain
| | - Katie L. Hopkins
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Public Health England (PHE), London, United Kingdom
| | - Vanesa García
- Department of Functional Biology, Area of Microbiology, University of Oviedo, Oviedo, Asturias, Spain
| | - Janine Beutlich
- Department of Biological Safety, Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - M. Carmen Mendoza
- Department of Functional Biology, Area of Microbiology, University of Oviedo, Oviedo, Asturias, Spain
| | - John Threlfall
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Public Health England (PHE), London, United Kingdom
| | - Dik Mevius
- Department of Bacteriology and TSEs, Central Veterinary Institute (CVI), Lelystad, The Netherlands
| | - Reiner Helmuth
- Department of Biological Safety, Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - M. Rosario Rodicio
- Department of Functional Biology, Area of Microbiology, University of Oviedo, Oviedo, Asturias, Spain
| | - Beatriz Guerra
- Department of Biological Safety, Federal Institute for Risk Assessment (BfR), Berlin, Germany
- * E-mail:
| | | |
Collapse
|