1
|
Palacios-Rodriguez AP, Espinoza-Culupú A, Durán Y, Sánchez-Rojas T. Antimicrobial Activity of Bacillus amyloliquefaciens BS4 against Gram-Negative Pathogenic Bacteria. Antibiotics (Basel) 2024; 13:304. [PMID: 38666980 PMCID: PMC11047741 DOI: 10.3390/antibiotics13040304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 04/29/2024] Open
Abstract
Worldwide, bacterial resistance is one of the most severe public health problems. Currently, the failure of antibiotics to counteract superbugs highlights the need to search for new molecules with antimicrobial potential to combat them. The objective of this research was to evaluate the antimicrobial activity of Bacillus amyloliquefaciens BS4 against Gram-negative bacteria. Thirty yeasts and thirty-two Bacillus isolates were tested following the agar well-diffusion method. Four Bacillus sp. strains (BS3, BS4, BS17, and BS21) showed antagonistic activity against E. coli ATCC 25922 using bacterial culture (BC) and the cell-free supernatant (CFS), where the BS4 strain stood out, showing inhibitory values of 20.50 ± 0.70 mm and 19.67 ± 0.58 mm for BC and CFS, respectively. The Bacillus sp. BS4 strain can produce antioxidant, non-hemolytic, and antimicrobial metabolites that exhibit activity against several microorganisms such as Salmonella enterica, Klebsiella pneumoniae, Shigella flexneri, Enterobacter aerogenes, Proteus vulgaris, Yersinia enterocolitica, Serratia marcescens, Aeromonas sp., Pseudomonas aeruginosa, Candida albicans, and Candida tropicalis. According to the characterization of the supernatant, the metabolites could be proteinaceous. The production of these metabolites is influenced by carbon and nitrogen sources. The most suitable medium to produce antimicrobial metabolites was TSB broth. The one-factor-at-a-time method was used to standardize parameters such as pH, agitation, temperature, carbon source, nitrogen source, and salts, resulting in the best conditions of pH 7, 150 rpm, 28 °C, starch (2.5 g/L), tryptone (20 g/L), and magnesium sulfate (0.2 g/L), respectively. Moreover, the co-culture was an excellent strategy to improve antimicrobial activity, achieving maximum antimicrobial activity with an inhibition zone of 21.85 ± 1.03 mm. These findings position the Bacillus amyloliquefaciens BS4 strain as a promising candidate for producing bioactive molecules with potential applications in human health.
Collapse
Affiliation(s)
- Ana Paula Palacios-Rodriguez
- Laboratory of Environmental Microbiology and Biotechnology, Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru; (A.P.P.-R.); (Y.D.)
| | - Abraham Espinoza-Culupú
- Laboratory of Molecular Microbiology and Biotechnology, Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru
| | - Yerson Durán
- Laboratory of Environmental Microbiology and Biotechnology, Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru; (A.P.P.-R.); (Y.D.)
| | - Tito Sánchez-Rojas
- Laboratory of Environmental Microbiology and Biotechnology, Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru; (A.P.P.-R.); (Y.D.)
| |
Collapse
|
2
|
Pandey S, Doo H, Keum GB, Kim ES, Kwak J, Ryu S, Choi Y, Kang J, Kim S, Lee NR, Oh KK, Lee JH, Kim HB. Antibiotic resistance in livestock, environment and humans: One Health perspective. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:266-278. [PMID: 38628683 PMCID: PMC11016740 DOI: 10.5187/jast.2023.e129] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 04/19/2024]
Abstract
Antibiotic resistance (AR) is a complex, multifaceted global health issue that poses a serious threat to livestock, humans, and the surrounding environment. It entails several elements and numerous potential transmission routes and vehicles that contribute to its development and spread, making it a challenging issue to address. AR is regarded as an One Health issue, as it has been found that livestock, human, and environmental components, all three domains are interconnected, opening up channels for transmission of antibiotic resistant bacteria (ARB). AR has turned out to be a critical problem mainly because of the overuse and misuse of antibiotics, with the anticipation of 10 million annual AR-associated deaths by 2050. The fact that infectious diseases induced by ARB are no longer treatable with antibiotics foreshadows an uncertain future in the context of health care. Hence, the One Health approach should be emphasized to reduce the impact of AR on livestock, humans, and the environment, ensuring the longevity of the efficacy of both current and prospective antibiotics.
Collapse
Affiliation(s)
- Sriniwas Pandey
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Hyunok Doo
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Gi Beom Keum
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Eun Sol Kim
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Jinok Kwak
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Sumin Ryu
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Yejin Choi
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Juyoun Kang
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Sheena Kim
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Na Rae Lee
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Kwang Kyo Oh
- Microbial Safety Division, National
Institute of Agricultural Sciences, Rural Development
Administration, Wanju 55365, Korea
| | - Ju-Hoon Lee
- Department of Food Animal Biotechnology,
Seoul National University, Seoul 08826, Korea
- Department of Agricultural Biotechnology,
Seoul National University, Seoul 08826, Korea
- Center for Food and Bioconvergence, Seoul
National University, Seoul 08826, Korea
| | - Hyeun Bum Kim
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| |
Collapse
|
3
|
Bogri A, Jensen EEB, Borchert AV, Brinch C, Otani S, Aarestrup FM. Transmission of antimicrobial resistance in the gut microbiome of gregarious cockroaches: the importance of interaction between antibiotic exposed and non-exposed populations. mSystems 2024; 9:e0101823. [PMID: 38095429 PMCID: PMC10805027 DOI: 10.1128/msystems.01018-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/17/2023] [Indexed: 01/24/2024] Open
Abstract
Antimicrobial resistance (AMR) is a major global health concern, further complicated by its spread via the microbiome bacterial members. While mathematical models discuss AMR transmission through the symbiotic microbiome, experimental studies are scarce. Herein, we used a gregarious cockroach, Pycnoscelus surinamensis, as an in vivo animal model for AMR transmission investigations. We explored whether the effect of antimicrobial treatment is detectable with metagenomic sequencing, and whether AMR genes can be spread and established in unchallenged (not treated with antibiotics) individuals following contact with treated donors, and under various frequencies of interaction. Gut and soil substrate microbiomes were investigated by metagenomic sequencing for bacterial community composition and resistome profiling. We found that tetracycline treatment altered the treated gut microbiome by decreasing bacterial diversity and increasing the abundance of tetracycline resistance genes. Untreated cockroaches that interacted with treated donors also had elevated tetracycline resistance. The levels of resistance differed depending on the magnitude and frequency of donor transfer. Additionally, treated donors showed signs of microbiome recovery due to their interaction with the untreated ones. Similar patterns were also recorded in the soil substrate microbiomes. Our results shed light on how interacting microbiomes facilitate AMR gene transmission to previously unchallenged hosts, a dynamic influenced by the interaction frequencies, using an in vivo model to validate theoretical AMR transmission models.IMPORTANCEAntimicrobial resistance is a rising threat to human and animal health. The spread of resistance through the transmission of the symbiotic gut microbiome is of concern and has been explored in theoretical modeling studies. In this study, we employ gregarious insect populations to examine the emergence and transmission of antimicrobial resistance in vivo and validate modeling hypotheses. We find that antimicrobial treatment increases the levels of resistance in treated populations. Most importantly, we show that resistance increased in untreated populations after interacting with the treated ones. The level of resistance transmission was affected by the magnitude and frequency of population mixing. Our results highlight the importance of microbial transmission in the spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Amalia Bogri
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs., Lyngby, Denmark
| | | | - Asbjørn Vedel Borchert
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs., Lyngby, Denmark
| | - Christian Brinch
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs., Lyngby, Denmark
| | - Saria Otani
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs., Lyngby, Denmark
| | - Frank M. Aarestrup
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs., Lyngby, Denmark
| |
Collapse
|
4
|
Keneh NK, Kenmoe S, Bowo-Ngandji A, Tatah Kihla Akoachere JF, Gonsu Kamga H, Ndip RN, Ebogo-Belobo JT, Kengne-Ndé C, Mbaga DS, Tendongfor N, Ndip LM, Esemu SN. A mapping review of methicillin-resistant Staphylococcus aureus proportions, genetic diversity, and antimicrobial resistance patterns in Cameroon. PLoS One 2023; 18:e0296267. [PMID: 38134014 PMCID: PMC10745167 DOI: 10.1371/journal.pone.0296267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND The emergence of methicillin-resistant Staphylococcus aureus (MRSA) has increased and poses a significant threat to human and animal health in Cameroon and the world at large. MRSA strains have infiltrated various settings, including hospitals, communities, and livestock, contributing to increased morbidity, treatment costs, and mortality. This evidence synthesis aims to understand MRSA prevalence, resistance patterns, and genetic characterization in Cameroon. METHODS The methodology was consistent with the PRISMA 2020 guidelines. Studies of any design containing scientific data on MRSA prevalence, genetic diversity, and antimicrobial resistance patterns in Cameroon were eligible for inclusion, with no restrictions on language or publication date. The search involved a comprehensive search strategy in several databases including Medline, Embase, Global Health, Web of Science, African Index Medicus, and African Journal Online. The risk of bias in the included studies was assessed using the Hoy et al tool, and the results were synthesized and presented in narrative synthesis and/or tables and graphs. RESULTS The systematic review analyzed 24 studies, mostly conducted after 2010, in various settings in Cameroon. The studies, characterized by moderate to low bias, revealed a wide prevalence of MRSA ranging from 1.9% to 46.8%, with considerable variation based on demographic and environmental factors. Animal (0.2%), food (3.2% to 15.4%), and environmental samples (0.0% to 34.6%) also showed a varied prevalence of MRSA. The genetic diversity of MRSA was heterogeneous, with different virulence gene profiles and clonal lineages identified in various populations and sample types. Antimicrobial resistance rates showed great variability in the different regions of Cameroon, with notable antibiotic resistance recorded for the beta-lactam, fluoroquinolone, glycopeptide, lincosamide, and macrolide families. CONCLUSION This study highlights the significant variability in MRSA prevalence, genetic diversity, and antimicrobial resistance patterns in Cameroon, and emphasizes the pressing need for comprehensive antimicrobial stewardship strategies in the country.
Collapse
Affiliation(s)
- Nene Kaah Keneh
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Laboratory for Emerging Infectious Diseases, University of Buea, Buea, South West Region, Cameroon
| | - Sebastien Kenmoe
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Arnol Bowo-Ngandji
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | | | - Hortense Gonsu Kamga
- Faculty of Medicine and Biomedical Sciences, The University of Yaounde I, Yaoundé, Cameroon
| | - Roland Ndip Ndip
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Jean Thierry Ebogo-Belobo
- Center for Research in Health and Priority Pathologies, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
| | - Cyprien Kengne-Ndé
- Epidemiological Surveillance, Evaluation and Research Unit, National AIDS Control Committee, Douala, Cameroon
| | | | | | - Lucy Mande Ndip
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Laboratory for Emerging Infectious Diseases, University of Buea, Buea, South West Region, Cameroon
| | - Seraphine Nkie Esemu
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Laboratory for Emerging Infectious Diseases, University of Buea, Buea, South West Region, Cameroon
| |
Collapse
|
5
|
Pimenta J, Pinto AR, Saavedra MJ, Cotovio M. Equine Gram-Negative Oral Microbiota: An Antimicrobial Resistances Watcher? Antibiotics (Basel) 2023; 12:antibiotics12040792. [PMID: 37107153 PMCID: PMC10135200 DOI: 10.3390/antibiotics12040792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Horses are considered as reservoirs of multidrug resistant bacteria that can be spread through the environment and possibly to humans. The aim of this study was to characterize the oral Gram-negative microbiota of healthy horses and evaluate their antimicrobial susceptibility profile in a One Health approach. For this purpose, samples were collected from the gingival margin of healthy horses, free of antimicrobial therapy, cultured in selective mediums, identified, and tested for antimicrobial susceptibility. Fifty-five Gram-negative isolates were identified, with 89.5% being zoonotic and 62% affecting humans, which were also found commonly in the environment. Forty-eight isolates (96%) were MDR. The phenotypic resistance presented as higher to macrolides (81.8%), β-lactams (55.4%), and quinolones (50%), and lower to sulfonamides (27.3%), tetracyclines, and amphenicols (both with 30.9%). In total, 51.5% of the isolates presented resistance to carbapenems. In addition to being the first report on the commensal oral microbiota of horses and respective susceptibility profile, this study highlights the horse as a valuable sentinel that can control the evolution and transmission of multidrug-resistant bacteria between the "One Health triad" since it is in contact with humans, other animals, and the environment, in different geographic locations.
Collapse
Affiliation(s)
- José Pimenta
- Department of Veterinary Sciences, Antimicrobials, Biocides & Biofilms Unit (A2BUnit), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- CECAV-Veterinary and Animal Research Center and Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Ana Rita Pinto
- Department of Veterinary Sciences, Antimicrobials, Biocides & Biofilms Unit (A2BUnit), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- CITAB-Centre for the Research and Technology of Agro-Environmental and Biological Sciences and Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Maria José Saavedra
- Department of Veterinary Sciences, Antimicrobials, Biocides & Biofilms Unit (A2BUnit), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- CECAV-Veterinary and Animal Research Center and Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- CITAB-Centre for the Research and Technology of Agro-Environmental and Biological Sciences and Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Mário Cotovio
- Department of Veterinary Sciences, Antimicrobials, Biocides & Biofilms Unit (A2BUnit), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- CECAV-Veterinary and Animal Research Center and Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| |
Collapse
|
6
|
Foyle L, Burnett M, Creaser A, Hens R, Keough J, Madin L, Price R, Smith H, Stone S, Kinobe RT. Prevalence and distribution of antimicrobial resistance in effluent wastewater from animal slaughter facilities: A systematic review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120848. [PMID: 36563990 DOI: 10.1016/j.envpol.2022.120848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/18/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
The extensive use of antibiotics in food animal production and disposal of untreated wastewater from food animal slaughter facilities may create a shift in microbiomes of different ecosystems by generating reservoirs of antimicrobial resistance along the human-animal-environmental interface. This epidemiological problem has been studied, but its magnitude and impact on a global scale is poorly characterised. A systematic review was done to determine global prevalence and distribution patterns of antimicrobial resistance in effluent wastewater from animal slaughter facilities. Extracted data were stratified into rational groups for secondary analyses and presented as percentages. Culture and sensitivity testing was the predominant method; Escherichia spp., Enterococcus spp., and Staphylococcus aureus were the most targeted isolates. Variable incidences of resistance were detected against all major antimicrobial classes including reserved drugs such as ceftazidime, piperacillin, gentamicin, ciprofloxacin, and chloramphenicol; the median frequency and range in resistant Gram-negative isolates were: 11 (0-100), 62 (0-100), 8 (0-100), 14 (0-93) and 12 (0-62) respectively. Ciprofloxacin was the most tested drug with the highest incidences of resistance in livestock slaughterhouses in Iran (93%), Nigeria (50%) and China (20%), and poultry slaughterhouses in Germany (21-81%) and Spain (56%). Spatial global distribution patterns for antimicrobial resistance were associated with previously reported magnitude of antibiotic use in livestock or poultry farming and, the implicit existence of jurisdictional policies to regulate antibiotic use. These data indicate that anthropogenic activities in farming systems are a major contributor to the cause and dissemination of antimicrobial resistance into the environment via slaughterhouse effluents.
Collapse
Affiliation(s)
- Leo Foyle
- College of Public Health, Medical and Veterinary Sciences, 1 Solander Drive, James Cook University, Townsville, Queensland, 4811, Australia; Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Solander Drive, Townsville, Queensland, 4811, Australia
| | - Matthew Burnett
- College of Public Health, Medical and Veterinary Sciences, 1 Solander Drive, James Cook University, Townsville, Queensland, 4811, Australia
| | - Abbey Creaser
- College of Public Health, Medical and Veterinary Sciences, 1 Solander Drive, James Cook University, Townsville, Queensland, 4811, Australia
| | - Rachel Hens
- College of Public Health, Medical and Veterinary Sciences, 1 Solander Drive, James Cook University, Townsville, Queensland, 4811, Australia
| | - Julia Keough
- College of Public Health, Medical and Veterinary Sciences, 1 Solander Drive, James Cook University, Townsville, Queensland, 4811, Australia
| | - Lauren Madin
- College of Public Health, Medical and Veterinary Sciences, 1 Solander Drive, James Cook University, Townsville, Queensland, 4811, Australia
| | - Ruby Price
- College of Public Health, Medical and Veterinary Sciences, 1 Solander Drive, James Cook University, Townsville, Queensland, 4811, Australia
| | - Hayley Smith
- College of Public Health, Medical and Veterinary Sciences, 1 Solander Drive, James Cook University, Townsville, Queensland, 4811, Australia
| | - Samuel Stone
- College of Public Health, Medical and Veterinary Sciences, 1 Solander Drive, James Cook University, Townsville, Queensland, 4811, Australia
| | - Robert T Kinobe
- College of Public Health, Medical and Veterinary Sciences, 1 Solander Drive, James Cook University, Townsville, Queensland, 4811, Australia; Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Solander Drive, Townsville, Queensland, 4811, Australia.
| |
Collapse
|
7
|
Al-Eitan L, Sendyani S, Alnimri M. Applications of the One Health concept: Current Status in the Middle East. JOURNAL OF BIOSAFETY AND BIOSECURITY 2023. [DOI: 10.1016/j.jobb.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
8
|
Temporal Patterns of Phenotypic Antimicrobial Resistance and Coinfecting Pathogens in Glaesserella parasuis Strains Isolated from Diseased Swine in Germany from 2006 to 2021. Pathogens 2022; 11:pathogens11070721. [PMID: 35889967 PMCID: PMC9316560 DOI: 10.3390/pathogens11070721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 12/10/2022] Open
Abstract
Glaesserella parasuis (Gps) causes high economic losses in pig farms worldwide. So far no vaccine provides cross-protection for different serotypes, so antibiotic treatment is widely used to cope with this pathogen. In this study, routine diagnostic data from 2046 pigs with Gps related diseases sent for necropsy to a German laboratory in the time period 2006–2021 were analysed retrospectively. In the time period 2018–2021, the most frequent serotypes (ST) detected were ST4 (30%) and ST13 (22%). A comparison of the reference period 2006–2013 prior to obligatory routine recording of antimicrobial usage in livestock with the period 2014–2021 resulted in a statistically significant decrease of frequencies of resistant Gps isolates for ceftiofur, enrofloxacin, erythromycin, spectinomycin, tiamulin and tilmicosin. While in 2006–2013 all isolates were resistant for tetracyclin and cephalothin, frequencies of resistant isolates decreased in the second time period to 28% and 62%, respectively. Parallel to the reduction of antimicrobial usage, during recent years a reduction in resistant Gps isolates has been observed, so only a low risk of treatment failure exists. Most frequently, pigs positive for Gps were also positive for S.suis (25.4%), PRRSV-EU (25.1%) and influenza virus (23%). The viral pathogens may act as potential trigger factors.
Collapse
|
9
|
Güths MF, Siqueira HA, Montes JH, Moreira F, Rizzoto G, Peripolli V, Tutida YH, Lucia T, Irgang R, Kich JD, Bianchi I. Removal or substitution of in feed antimicrobials in swine production. Prev Vet Med 2022; 205:105696. [PMID: 35753200 DOI: 10.1016/j.prevetmed.2022.105696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 06/09/2022] [Accepted: 06/12/2022] [Indexed: 10/18/2022]
Abstract
Antimicrobial substitutes are being used in pig production systems, to maintain the health of the animals without compromising their performance. The aim of this study is to evaluate the impact of either the removal of in feed antimicrobials or their substitution for feed additives, at the nursery and growing/finishing stages. At weaning, 1091 piglets were sexed, vaccinated, homogenized by weight and allocated to six treatments during the nursery stage (26-63 d): T1- feed with no antimicrobials nor additives; T2 - feed with antimicrobials; T3 - feed with prebiotic; T4 - feed with probiotic; T5 - feed with essential oils; T6 - feed with organic acids. The same treatments were applied to 840 pigs during the growing/finishing stages (64-167 d). There was no effect of the treatments on feed conversion at the nursery (P = 0.222) and the growing/finishing (P = 0.809) stages. The average daily gain did not differ across treatments in the nursery (P = 0.342) and in growing/finishing (P = 0.050). The cost of the interventions with injectable drugs was not different between the treatments neither at the nursery (P = 0.990) nor at the growing/finishing (P = 0.310). However, the pneumonia and pleurisy index for all treatments was equal or above 1.0, which indicates a respiratory challenge. There was an increase in the cost with antimicrobials or additives per kg of feed produced, which impacts the cost per kg of pig produced. In conclusion, the removal of antimicrobials in pig diets is financially feasible and their substitution by additives did not impact growing performance.
Collapse
Affiliation(s)
- Marcelo Felipe Güths
- Curso de Pós-Graduação em Produção e Sanidade Animal (PPGPSA), Instituto Federal Catarinense, 89245-000 Araquari, Santa Catarina, Brazil
| | - Helloa Alaide Siqueira
- Instituto Federal Catarinense, Campus Araquari, 89245-000 Araquari, Santa Catarina, Brazil
| | - Julia Helena Montes
- Instituto Federal Catarinense, Campus Araquari, 89245-000 Araquari, Santa Catarina, Brazil
| | - Fabiana Moreira
- Curso de Pós-Graduação em Produção e Sanidade Animal (PPGPSA), Instituto Federal Catarinense, 89245-000 Araquari, Santa Catarina, Brazil; Instituto Federal Catarinense, Campus Araquari, 89245-000 Araquari, Santa Catarina, Brazil
| | - Guilherme Rizzoto
- Faculdade de Medicina Veterinária e Zootecnia, Campus de Botucatu, 18618-681, Botucatu, São Paulo, Brazil
| | - Vanessa Peripolli
- Curso de Pós-Graduação em Produção e Sanidade Animal (PPGPSA), Instituto Federal Catarinense, 89245-000 Araquari, Santa Catarina, Brazil; Instituto Federal Catarinense, Campus Araquari, 89245-000 Araquari, Santa Catarina, Brazil.
| | - Yuso Henrique Tutida
- Curso de Pós-Graduação em Produção e Sanidade Animal (PPGPSA), Instituto Federal Catarinense, 89245-000 Araquari, Santa Catarina, Brazil
| | - Thomaz Lucia
- Faculdade de Veterinária, Universidade Federal de Pelotas, Campus Capão do Leão, 96010-900 Pelotas, Rio Grande do Sul, Brazil
| | - Renato Irgang
- Universidade Federal de Santa Catarina, 88034-000 Florianópolis, Santa Catarina, Brazil
| | - Jalusa Deon Kich
- Curso de Pós-Graduação em Produção e Sanidade Animal (PPGPSA), Instituto Federal Catarinense, 89245-000 Araquari, Santa Catarina, Brazil; Embrapa Suínos e Aves, 89715-899 Concórdia, Santa Catarina, Brazil
| | - I Bianchi
- Curso de Pós-Graduação em Produção e Sanidade Animal (PPGPSA), Instituto Federal Catarinense, 89245-000 Araquari, Santa Catarina, Brazil; Instituto Federal Catarinense, Campus Araquari, 89245-000 Araquari, Santa Catarina, Brazil
| |
Collapse
|
10
|
Morgan BL, Depenbrock S, Martínez-López B. Identifying Associations in Minimum Inhibitory Concentration Values of Escherichia coli Samples Obtained From Weaned Dairy Heifers in California Using Bayesian Network Analysis. Front Vet Sci 2022; 9:771841. [PMID: 35573403 PMCID: PMC9093072 DOI: 10.3389/fvets.2022.771841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveMany antimicrobial resistance (AMR) studies in both human and veterinary medicine use traditional statistical methods that consider one bacteria and one antibiotic match at a time. A more robust analysis of AMR patterns in groups of animals is needed to improve on traditional methods examining antibiotic resistance profiles, the associations between the patterns of resistance or reduced susceptibility for all isolates in an investigation. The use of Bayesian network analysis can identify associations between distributions; this investigation seeks to add to the growing body of AMR pattern research by using Bayesian networks to identify relationships between susceptibility patterns in Escherichia coli (E. coli) isolates obtained from weaned dairy heifers in California.MethodsA retrospective data analysis was performed using data from rectal swab samples collected from 341 weaned dairy heifers on six farms in California and selectively cultured for E. coli. Antibiotic susceptibility tests for 281 isolates against 15 antibiotics were included. Bayesian networks were used to identify joint patterns of reduced susceptibility, defined as an increasing trend in the minimum inhibitory concentration (MIC) values. The analysis involved learning the network structure, identifying the best fitting graphical mode, and learning the parameters in the final model to quantify joint probabilities.ResultsThe graph identified that as susceptibility to one antibiotic decreases, so does susceptibility to other antibiotics in the same or similar class. The following antibiotics were connected in the final graphical model: ampicillin was connected to ceftiofur; spectinomycin was connected with trimethoprim-sulfamethoxazole, and this association was mediated by farm; florfenicol was connected with tetracycline.ConclusionsBayesian network analysis can elucidate complex relationships between MIC patterns. MIC values may be associated within and between drug classes, and some associations may be correlated with farm of sample origin. Treating MICs as discretized variables and testing for joint associations in trends may overcome common research problems surrounding the lack of clinical breakpoints.
Collapse
Affiliation(s)
- Brittany L. Morgan
- Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA, United States
- Center for Animal Disease Modeling and Surveillance, Department of Veterinary Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- *Correspondence: Brittany L. Morgan
| | - Sarah Depenbrock
- Department of Veterinary Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Beatriz Martínez-López
- Center for Animal Disease Modeling and Surveillance, Department of Veterinary Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
11
|
Mitman SL, Amato HK, Saraiva-Garcia C, Loayza F, Salinas L, Kurowski K, Marusinec R, Paredes D, Cárdenas P, Trueba G, Graham JP. Risk factors for third-generation cephalosporin-resistant and extended-spectrum β-lactamase-producing Escherichia coli carriage in domestic animals of semirural parishes east of Quito, Ecuador. PLOS GLOBAL PUBLIC HEALTH 2022; 2:e0000206. [PMID: 36962308 PMCID: PMC10021719 DOI: 10.1371/journal.pgph.0000206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/19/2022] [Indexed: 12/27/2022]
Abstract
Extended-spectrum β-lactamase (ESBL)-producing and other antimicrobial resistant (AR) Escherichia coli threaten human and animal health worldwide. This study examined risk factors for domestic animal colonization with ceftriaxone-resistant (CR) and ESBL-producing E. coli in semirural parishes east of Quito, Ecuador, where small-scale food animal production is common. Survey data regarding household characteristics, animal care, and antimicrobial use were collected from 304 households over three sampling cycles, and 1195 environmental animal fecal samples were assessed for E. coli presence and antimicrobial susceptibility. Multivariable regression analyses were used to assess potential risk factors for CR and ESBL-producing E. coli carriage. Overall, CR and ESBL-producing E. coli were detected in 56% and 10% of all fecal samples, respectively. The odds of CR E. coli carriage were greater among dogs at households that lived within a 5 km radius of more than 5 commercial food animal facilities (OR 1.72, 95% CI 1.15-2.58) and lower among dogs living at households that used antimicrobials for their animal(s) based on veterinary/pharmacy recommendation (OR 0.18, 95% CI 0.04-0.96). Increased odds of canine ESBL-producing E. coli carriage were associated with recent antimicrobial use in any household animal (OR 2.69, 95% CI 1.02-7.10) and purchase of antimicrobials from pet food stores (OR 6.83, 95% CI 1.32-35.35). Food animals at households that owned more than 3 species (OR 0.64, 95% CI 0.42-0.97), that used antimicrobials for growth promotion (OR 0.41, 95% CI 0.19-0.89), and that obtained antimicrobials from pet food stores (OR 0.47, 95% CI 0.25-0.89) had decreased odds of CR E. coli carriage, while food animals at households with more than 5 people (OR 2.22, 95% CI 1.23-3.99) and located within 1 km of a commercial food animal facility (OR 2.57, 95% CI 1.08-6.12) had increased odds of ESBL-producing E. coli carriage. Together, these results highlight the complexity of antimicrobial resistance among domestic animals in this setting.
Collapse
Affiliation(s)
- Siena L. Mitman
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
- Division of Environmental Sciences, University of California, Berkeley School of Public Health, Berkeley, California, United States of America
| | - Heather K. Amato
- Division of Environmental Sciences, University of California, Berkeley School of Public Health, Berkeley, California, United States of America
| | - Carlos Saraiva-Garcia
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Fernanda Loayza
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Liseth Salinas
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Kathleen Kurowski
- Division of Infectious Diseases and Vaccinology, University of California, Berkeley School of Public Health, Berkeley, California, United States of America
| | - Rachel Marusinec
- Division of Infectious Diseases and Vaccinology, University of California, Berkeley School of Public Health, Berkeley, California, United States of America
| | - Diana Paredes
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Paúl Cárdenas
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Gabriel Trueba
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Jay P. Graham
- Division of Environmental Sciences, University of California, Berkeley School of Public Health, Berkeley, California, United States of America
| |
Collapse
|
12
|
Firth CL, Fuchs R, Fuchs K. National Monitoring of Veterinary-Dispensed Antimicrobials for Use on Pig Farms in Austria: 2015-2020. Antibiotics (Basel) 2022; 11:216. [PMID: 35203818 PMCID: PMC8868257 DOI: 10.3390/antibiotics11020216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 01/31/2022] [Accepted: 02/05/2022] [Indexed: 02/05/2023] Open
Abstract
Antimicrobial use in livestock production systems is increasingly scrutinised by consumers, stakeholders, and the veterinary profession. In Austria, veterinarians dispensing antimicrobials for use in food-producing animals have been required to report these drugs since 2015. Here, we describe the national monitoring systems and the results obtained for Austrian pig production over a six-year period. Antimicrobial dispensing is described using the mass-based metric, milligrams per population correction unit (mg/PCU) and the dose-based metric, Defined Daily Dose (DDDvet) per year and divided into the European Medicines Agency's prudent use categories. Pig production was divided into breeding units, fattening farms, farrow-to-finish farms, and piglet-rearing systems. Over all six years and all pig production systems, the mean amount of antimicrobials dispensed was 71.6 mg/PCU or 2.2 DDDvet per year. Piglet-rearing systems were found to have the highest levels of antimicrobial dispensing in DDDvet, as well as the largest proportion of Category B antimicrobials, including polymyxins. Although progress has been made in promoting a more prudent use of antimicrobials in veterinary medicine in Austria, further steps need to be taken to proactively improve animal health and prevent disease to reduce the need for antimicrobials, particularly those critically important for human medicine, in the future.
Collapse
Affiliation(s)
- Clair L. Firth
- Unit of Veterinary Public Health & Epidemiology, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Reinhard Fuchs
- Data, Statistics and Risk Assessment, Austrian Agency for Health and Food Safety (AGES), 8010 Graz, Austria;
| | - Klemens Fuchs
- Data, Statistics and Risk Assessment, Austrian Agency for Health and Food Safety (AGES), 8010 Graz, Austria;
| |
Collapse
|
13
|
Hennig-Pauka I, Hartmann M, Merkel J, Kreienbrock L. Coinfections and Phenotypic Antimicrobial Resistance in Actinobacillus pleuropneumoniae Strains Isolated From Diseased Swine in North Western Germany-Temporal Patterns in Samples From Routine Laboratory Practice From 2006 to 2020. Front Vet Sci 2022; 8:802570. [PMID: 35155648 PMCID: PMC8831912 DOI: 10.3389/fvets.2021.802570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
Actinobacillus pleuropneumoniae (APP) is one major bacterial porcine respiratory tract pathogen causing disease outbreaks worldwide, although effective commercial vaccines are available. Due to frequent failure of this preventive measure, treatment with antimicrobials is indispensable to prevent animal losses within an outbreak situation. To preserve the effectivity of antimicrobial substances to fight APP should therefore be the primary aim of any interventions. In this study, the temporal development of antimicrobial resistance in APP was analyzed retrospectively in the time period 2006-2020 from a routine diagnostic database. In parallel, frequent coinfections were evaluated to identify most important biotic cofactors as important triggers for disease outbreaks in endemically infected herds. The proportion of APP serotype 2 decreased over time but was isolated most often from diseased swine (57% in 2020). In ~1% of the cases, APP was isolated from body sites outside the respiratory tract as brain and joints. The lowest frequencies of resistant isolates were found for cephalothin and ceftiofur (0.18%), florfenicol (0.24%), tilmicosin (2.4%), tiamulin (2.4%), enrofloxacin (2.7%), and spectinomycin (3.6%), while the highest frequencies of resistant isolates were found for gentamicin (30.9%), penicillin (51.5%), and tetracycline (78.2%). For enrofloxacin, tiamulin, tilmicosin, and tetracycline, significantly lower frequencies of resistant isolates were found in the time period 2015-2020 compared to 2006-2014, while gentamicin-resistant isolates increased. In summary, there is only a low risk of treatment failure due to resistant isolates. In maximum, up to six coinfecting pathogens were identified in pigs positive for APP. Most often pigs were coinfected with Porcine Circovirus 2 (56%), Streptococcus suis (24.8%), or the Porcine Reproductive and Respiratory Syndrome Virus (23.3%). Potential synergistic effects between these pathogens published from experimental findings can be hypothesized by these field data as well. To prevent APP disease outbreaks in endemically infected herds more efficiently in the future, next to environmental trigger factors, preventive measures must also address the coinfecting agents.
Collapse
Affiliation(s)
- Isabel Hennig-Pauka
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, Bakum, Germany
| | - Maria Hartmann
- Department of Biometry, Epidemiology and Information Processing, WHO Collaborating Centre for Research and Training for Health at the Human-Animal-Environment Interface, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Jörg Merkel
- Department of Infectious Diseases, Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Lothar Kreienbrock
- Department of Biometry, Epidemiology and Information Processing, WHO Collaborating Centre for Research and Training for Health at the Human-Animal-Environment Interface, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
14
|
Janssen P, Barton G, Kietzmann M, Meißner J. Treatment of pigs with enrofloxacin via different oral dosage forms – environmental contaminations and resistance development of Escherichia coli. J Vet Sci 2022; 23:e23. [PMID: 35187880 PMCID: PMC8977541 DOI: 10.4142/jvs.21216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/17/2021] [Accepted: 12/13/2021] [Indexed: 11/22/2022] Open
Abstract
Background Antibacterial agents play important roles in the treatment of bacterial infections. However, the development of antimicrobial resistance (AMR) and carry-over of substances into the environment are several problems arising during oral treatment of bacterial infections. We assessed AMR development in commensal Escherichia coli (E. coli) in enrofloxacin treated and untreated animals. In addition, we examined fluoroquinolone in the plasma and urine of treated and untreated animals, and in sedimentation dust and aerosol. Methods In each trial, six pigs were treated with enrofloxacin via powder, granulate or pellet forms in two time periods (days 1–5 and 22–26). Four pigs served as untreated controls. The minimum inhibitory concentration (MIC) was determined to evaluate AMR development. Analysis of enro- and ciprofloxacin was performed with high performance liquid chromatography. Results Non-wildtype E. coli (MIC > 0.125 µg/mL) was detected in the pellet treated group after the first treatment period, whereas in the other groups, non-wildtype isolates were found after the second treatment period. E. coli with MIC > 4 µg/mL was found in only the pellet trial. Untreated animals showed similar susceptibility shifts several days later. Bioavailability differed among the treatment forms (granulate > pellet > powder). Enro- and ciprofloxacin were detected in aerosols and sedimentation dust (granulate, powder > pellet). Conclusions This study indicates that the kind of the oral dosage form of antibiotics affects environmental contamination and AMR development in commensal E. coli in treated and untreated pigs.
Collapse
Affiliation(s)
| | | | - Manfred Kietzmann
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Hannover 30559, Germany
| | - Jessica Meißner
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Hannover 30559, Germany
| |
Collapse
|
15
|
Tutida Y, Montes J, Borstnez K, Siqueira H, Güths MF, Moreira F, Peripolli V, Irgang R, Morés N, Bianchi I, Kich J. Effects of in feed removal of antimicrobials in comparison to other prophylactic alternatives in growing and finishing pigs. ARQ BRAS MED VET ZOO 2021. [DOI: 10.1590/1678-4162-12450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT The utilization of antimicrobials in animal production, causes selection of resistant bacteria. The objective of this study was to compare the utilization of alternatives in association with preventive antibiotic therapy in swine feed during the growing and finishing phases. 1,045 animals were used from 60 to 190 days of age and were subjected to six treatments with 16 repetitions as follows: 1) antibiotic free; 2) antibiotics; 3) prebiotic; 4) probiotic; 5) essential oils; and 6) organic acid. Animals were weighted, and clinical history was recorded including mortality and diarrhea. At the abattoir, pneumonia index and gastric ulcers were investigated. The cost for each treatment was discussed. No difference between treatments were observed (P>0.05) regarding feed conversion rate (2.64±0.03), overall average weight gain (107.06±0.9kg), average daily weight gain (856.49±7.7g) and carcass weight (92.4±0.7kg). The application injectable drugs in animals presenting clinical symptoms, represented US$ 0.56/intervention, without difference between the treatments (P>0.05). Furthermore, independently of the treatment, high frequency of pneumonia was observed (>0.90). No difference for the degree of gastric ulcer nor feces consistency were observed (P>0.05). The utilization of antibiotic therapy and alternatives to antibiotics in feed did not produce benefits to the production indices and sanitary performances of the animals.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - R. Irgang
- Universidade Federal de Santa Catarina, Brazil
| | | | | | - J.D. Kich
- Instituto Federal Catarinense, Brazil; Embrapa Suínos e Aves, Brazil
| |
Collapse
|
16
|
Aslam B, Khurshid M, Arshad MI, Muzammil S, Rasool M, Yasmeen N, Shah T, Chaudhry TH, Rasool MH, Shahid A, Xueshan X, Baloch Z. Antibiotic Resistance: One Health One World Outlook. Front Cell Infect Microbiol 2021; 11:771510. [PMID: 34900756 PMCID: PMC8656695 DOI: 10.3389/fcimb.2021.771510] [Citation(s) in RCA: 198] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/29/2021] [Indexed: 01/07/2023] Open
Abstract
Antibiotic resistance (ABR) is a growing public health concern worldwide, and it is now regarded as a critical One Health issue. One Health's interconnected domains contribute to the emergence, evolution, and spread of antibiotic-resistant microorganisms on a local and global scale, which is a significant risk factor for global health. The persistence and spread of resistant microbial species, and the association of determinants at the human-animal-environment interface can alter microbial genomes, resulting in resistant superbugs in various niches. ABR is motivated by a well-established link between three domains: human, animal, and environmental health. As a result, addressing ABR through the One Health approach makes sense. Several countries have implemented national action plans based on the One Health approach to combat antibiotic-resistant microbes, following the Tripartite's Commitment Food and Agriculture Organization (FAO)-World Organization for Animal Health (OIE)-World Health Organization (WHO) guidelines. The ABR has been identified as a global health concern, and efforts are being made to mitigate this global health threat. To summarize, global interdisciplinary and unified approaches based on One Health principles are required to limit the ABR dissemination cycle, raise awareness and education about antibiotic use, and promote policy, advocacy, and antimicrobial stewardship.
Collapse
Affiliation(s)
- Bilal Aslam
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Mohsin Khurshid
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Saima Muzammil
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Maria Rasool
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Nafeesa Yasmeen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Taif Shah
- Faculty of Life Science and Technology, Kunming University Science and Technology, Kunming, Yunnan, China
| | - Tamoor Hamid Chaudhry
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
- Public Health Laboratories Division, National Institute of Health, Islamabad, Pakistan
| | | | - Aqsa Shahid
- Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Faisalabad, Pakistan
| | - Xia Xueshan
- Faculty of Life Science and Technology, Kunming University Science and Technology, Kunming, Yunnan, China
| | - Zulqarnain Baloch
- Faculty of Life Science and Technology, Kunming University Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
17
|
Yun J, Muurinen J, Nykäsenoja S, Seppä-Lassila L, Sali V, Suomi J, Tuominen P, Joutsen S, Hämäläinen M, Olkkola S, Myllyniemi AL, Peltoniemi O, Heinonen M. Antimicrobial use, biosecurity, herd characteristics, and antimicrobial resistance in indicator Escherichia coli in ten Finnish pig farms. Prev Vet Med 2021; 193:105408. [PMID: 34130225 DOI: 10.1016/j.prevetmed.2021.105408] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 05/31/2021] [Accepted: 06/04/2021] [Indexed: 11/24/2022]
Abstract
We investigated connections between antimicrobial use (AMU), biosecurity, and the numbers of pigs and staff in ten Finnish farrow-to-finish herds. Data on AMU in each herd were collected for 12 months. AMU was quantified as treatment incidences per 1000 days at risk (TI) using the consensus defined daily dose calculation. Biosecurity was scored using the Biocheck.UGent™ system. We also examined antimicrobial resistance patterns of indicator E. coli isolated from faeces of selected pigs. In each herd, two groups of five pigs were formed: 1) antimicrobial treatment group (ANT: at least one pig in the litter was identified as sick and treated with antimicrobials) and 2) non-antimicrobial treatment group (NON: the litter was not medicated). Faecal samples were taken from these pigs at 5 and 22 weeks of age, cultured, and indicator E. coli isolates were tested for antimicrobial susceptibilities. The AMU varied considerably between the herds. Altogether, most of the antimicrobial treatment courses were assigned to weaned piglets. When AMU was quantified as TIs, suckling piglets had the highest TI (mean 46.6), which was significantly higher (P < 0.05) than TIs in fatteners and breeders (9.3 and 7.3, respectively). The difference between TI in suckling and TI in weaned piglets (19.1) was not statistically significant. There was a tendency for a negative correlation between the TI in breeders and the number of sows (r = -0.56, P = 0.09). Larger herds had higher external biosecurity scores than smaller herds (LS-means; 72 vs. 66, P < 0.05). The proportions of E. coli isolates resistant to at least one antimicrobial were higher in pigs at 5 weeks than in pigs at 22 weeks of age (Binomial proportion means; 40.5 % vs. 15.5 %, P < 0.05); as well as proportions of isolates resistant to at least three antimicrobial classes (23.0 % vs. 3.7 %, P < 0.01). These proportions did not differ between the ANT and NON groups at either 5 or 22 weeks of age (P> 0.05). We found few connections: enhanced external biosecurity levels found in the large herds co-occurred with lower use of antimicrobials and herds with low biosecurity scores - especially in the internal subcategories - appeared to have higher proportions of resistant isolates. Conclusively, we suggest that enhancing internal biosecurity might contribute to a reduction in the spreading of antimicrobial resistance in pig herds.
Collapse
Affiliation(s)
- Jinhyeon Yun
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Finland; Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Johanna Muurinen
- Finnish Food Authority (Ruokavirasto), Risk Assessment Unit, Helsinki, Finland
| | - Suvi Nykäsenoja
- Finnish Food Authority (Ruokavirasto), Microbiology Unit, Helsinki, Finland
| | - Leena Seppä-Lassila
- Finnish Food Authority (Ruokavirasto), Risk Assessment Unit, Helsinki, Finland
| | - Virpi Sali
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Finland
| | - Johanna Suomi
- Finnish Food Authority (Ruokavirasto), Risk Assessment Unit, Helsinki, Finland
| | - Pirkko Tuominen
- Finnish Food Authority (Ruokavirasto), Risk Assessment Unit, Helsinki, Finland
| | - Suvi Joutsen
- Finnish Food Authority (Ruokavirasto), Risk Assessment Unit, Helsinki, Finland
| | - Merja Hämäläinen
- Finnish Food Authority (Ruokavirasto), Microbiology Unit, Helsinki, Finland
| | - Satu Olkkola
- Finnish Food Authority (Ruokavirasto), Microbiology Unit, Helsinki, Finland
| | | | - Olli Peltoniemi
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Finland
| | - Mari Heinonen
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Finland
| |
Collapse
|
18
|
Decundo JM, Diéguez SN, Amanto FA, Martínez G, Pérez Gaudio DS, Fernández Paggi MB, Romanelli A, Soraci AL. Potential interactions between an oral fosfomycin formulation and feed or drinking water: Impact on bioavailability in piglets. J Vet Pharmacol Ther 2021; 44:783-792. [PMID: 33720436 DOI: 10.1111/jvp.12966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/19/2021] [Indexed: 11/28/2022]
Abstract
Feed and drinking water are the most frequently used vehicles for administration of antibiotics in intensive pig production. Interactions of drugs with feed and water components may affect dissolution and bioavailability. Therefore, antibiotic formulations should be tested in order to assure their suitability for oral use. In this study, an oral fosfomycin (FOS) formulation was evaluated considering dissolution in water (soft and hard), release kinetics from feed in simulated gastrointestinal fluids and bioavailability after oral administration blended into feed or dissolved in water (soft and hard), to fed and fasted piglets. FOS reached immediate dissolution in soft and hard water. The presence of feed significantly decreased antibiotic dissolution in simulated intestinal medium. Bioavailability was lower when feed was used as a vehicle for FOS administration than when the drug was dissolved in water (soft or hard). The fed or fasted condition of piglets did not affect bioavailability. Probably, FOS interactions with feed components alter its dissolution in the gastrointestinal tract, and only a fraction of the dose would be available for absorption. This information must be considered to support decisions on eligibility of antibiotic pharmaceutical formulations and the vehicle for their administration in order to pursue a responsible use of antibiotics.
Collapse
Affiliation(s)
- Julieta M Decundo
- Área Toxicología, Departamento de Fisiopatología, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina.,Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN, UNCPBA-CICPBA-CONICET, Tandil, Argentina
| | - Susana N Diéguez
- Área Toxicología, Departamento de Fisiopatología, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina.,Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN, UNCPBA-CICPBA-CONICET, Tandil, Argentina.,Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA, Tandil, Argentina
| | - Fabián A Amanto
- Área Producción Porcina, Departamento de Producción Animal, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
| | - Guadalupe Martínez
- Área Toxicología, Departamento de Fisiopatología, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina.,Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN, UNCPBA-CICPBA-CONICET, Tandil, Argentina
| | - Denisa S Pérez Gaudio
- Área Toxicología, Departamento de Fisiopatología, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina.,Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN, UNCPBA-CICPBA-CONICET, Tandil, Argentina
| | - María B Fernández Paggi
- Área Toxicología, Departamento de Fisiopatología, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina.,Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN, UNCPBA-CICPBA-CONICET, Tandil, Argentina.,Área Producción Porcina, Departamento de Producción Animal, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
| | - Agustina Romanelli
- Área Toxicología, Departamento de Fisiopatología, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina.,Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN, UNCPBA-CICPBA-CONICET, Tandil, Argentina.,Área Fisiología de la Nutrición, Departamento de Fisiopatología, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
| | - Alejandro L Soraci
- Área Toxicología, Departamento de Fisiopatología, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina.,Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN, UNCPBA-CICPBA-CONICET, Tandil, Argentina
| |
Collapse
|
19
|
Davtyan H, Grigoryan R, Niazyan L, Davidyants M, Ghalechyan T, Davtyan K. Antimicrobial Resistance in a Tertiary Care Hospital in Armenia: 2016-2019. Trop Med Infect Dis 2021; 6:tropicalmed6010031. [PMID: 33800026 PMCID: PMC8005984 DOI: 10.3390/tropicalmed6010031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 01/15/2023] Open
Abstract
Antimicrobial resistance (AMR) is the acquired ability of pathogens to withstand antimicrobial treatment. To bridge the gap in knowledge for implementing effective and targeted interventions in relation to the AMR in Armenia, we designed this study to explore the performance of AMR diagnostics and the profile of AMR in the Nork Infection Clinical Hospital (NICH) for the period of 2016-2019, particularly to (i) determine the proportions of antimicrobial resistance among all samples tested at the hospital laboratory, (ii) determine the proportion of resistance against specific antimicrobials, and (iii) identify factors associated with AMR. A cross-sectional study was conducted with a secondary data analysis that included all the patients tested for AMR in the laboratory of the NICH for the period of 2016-2019. For this period, only 107 (0.3%) patients out of 36,528 had their AMR test results available and of them, 87 (81%) had resistance at least to one tested antimicrobial. This study has provided some valuable information on the AMR situation in Armenia. The results call for immediate actions to control the access to and the use of antimicrobials, strengthen AMR surveillance, and improve laboratory capacity for the proper and fast identification of drug resistance through a comprehensive system.
Collapse
Affiliation(s)
- Hayk Davtyan
- Tuberculosis Research and Prevention Center NGO, Yerevan 0014, Armenia; (H.D.); (R.G.)
| | - Ruzanna Grigoryan
- Tuberculosis Research and Prevention Center NGO, Yerevan 0014, Armenia; (H.D.); (R.G.)
| | - Lyudmila Niazyan
- Nork Infection Clinical Hospital of Ministry of Health of Armenia, Yerevan 0047, Armenia; (L.N.); (M.D.); (T.G.)
| | - Mher Davidyants
- Nork Infection Clinical Hospital of Ministry of Health of Armenia, Yerevan 0047, Armenia; (L.N.); (M.D.); (T.G.)
| | - Tehmine Ghalechyan
- Nork Infection Clinical Hospital of Ministry of Health of Armenia, Yerevan 0047, Armenia; (L.N.); (M.D.); (T.G.)
| | - Karapet Davtyan
- Tuberculosis Research and Prevention Center NGO, Yerevan 0014, Armenia; (H.D.); (R.G.)
- Correspondence: ; Tel.: +374-77-077793
| |
Collapse
|
20
|
Dazio V, Nigg A, Schmidt JS, Brilhante M, Mauri N, Kuster SP, Brawand SG, Schüpbach-Regula G, Willi B, Endimiani A, Perreten V, Schuller S. Acquisition and carriage of multidrug-resistant organisms in dogs and cats presented to small animal practices and clinics in Switzerland. J Vet Intern Med 2021; 35:970-979. [PMID: 33527554 PMCID: PMC7995377 DOI: 10.1111/jvim.16038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/28/2020] [Accepted: 01/15/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The emergence and spread of multidrug-resistant organisms (MDRO) present a threat to human and animal health. OBJECTIVES To assess acquisition, prevalence of and risk factors for MDRO carriage in dogs and cats presented to veterinary clinics or practices in Switzerland. ANIMALS Privately owned dogs (n = 183) and cats (n = 88) presented to 4 veterinary hospitals and 1 practice. METHODS Prospective, longitudinal, observational study. Oronasal and rectal swabs were collected at presentation and 69% of animals were sampled again at discharge. Methicillin-resistant (MR) staphylococci and macrococci, cephalosporinase-, and carbapenemase-producing (CP) Enterobacterales were isolated. Genetic relatedness of isolates was assessed by repetitive sequence-based polymerase chain reaction and multilocus sequence typing. Risk factors for MDRO acquisition and carriage were analyzed based on questionnaire-derived and hospitalization data. RESULTS Admission prevalence of MDRO carriage in pets was 15.5% (95% confidence interval [CI], 11.4-20.4). The discharge prevalence and acquisition rates were 32.1% (95% CI, 25.5-39.3) and 28.3% (95% CI, 22-35.4), respectively. Predominant hospital-acquired isolates were extended spectrum β-lactamase-producing Escherichia coli (ESBL-E coli; 17.3%) and β-lactamase-producing Klebsiella pneumoniae (13.7%). At 1 institution, a cluster of 24 highly genetically related CP (blaoxa181 and blaoxa48 ) was identified. Multivariate analysis identified hospitalization at clinic 1 (odds ratio [OR], 5.1; 95% CI, 1.6-16.8) and days of hospitalization (OR 3-5 days, 4.4; 95% CI, 1.8-10.9; OR > 5 days, 6.2; 95% CI, 1.3-28.8) as risk factors for MDRO acquisition in dogs. CONCLUSIONS Veterinary hospitals play an important role in the selection and transmission of MDRO among veterinary patients.
Collapse
Affiliation(s)
- Valentina Dazio
- Department of Clinical Veterinary Medicine, University of Bern, Bern, Switzerland
| | - Aurélien Nigg
- Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| | - Janne S Schmidt
- Clinic for Small Animal Internal Medicine, University of Zurich, Zürich, Switzerland
| | - Michael Brilhante
- Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland.,Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Nico Mauri
- Tierklinik Aarau West AG, Oberentfelden, Switzerland
| | - Stephan P Kuster
- Better Together Healthcare Consulting, Steinackerstrasse 44, Wiesendangen, Zurich, Switzerland
| | | | | | - Barbara Willi
- Clinic for Small Animal Internal Medicine, University of Zurich, Zürich, Switzerland
| | - Andrea Endimiani
- Institute for Infectious Diseases, University of Bern, Faculty of Medicine, Bern, Switzerland
| | - Vincent Perreten
- Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| | - Simone Schuller
- Department of Clinical Veterinary Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
21
|
Mesa-Varona O, Kaspar H, Grobbel M, Tenhagen BA. Phenotypical antimicrobial resistance data of clinical and non-clinical Escherichia coli from poultry in Germany between 2014 and 2017. PLoS One 2020; 15:e0243772. [PMID: 33306730 PMCID: PMC7732064 DOI: 10.1371/journal.pone.0243772] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/28/2020] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial resistance (AMR) is a global threat in humans and animals, and antimicrobial usage (AMU) has been identified as a main trigger of AMR. The purpose of this work was to compare data on AMR in clinical and non-clinical isolates of Escherichia coli in German broilers and turkeys between 2014 and 2017. Furthermore, we investigated AMR changes over time and the association of changes in AMU with changes in AMR. Data on clinical and non-clinical isolates together with data on therapy frequency of broilers and turkeys were collected from German monitoring systems. Logistic regression analyses were performed to assess the association between the explanatory factors (AMU, year and isolate type) and the dependent variable (AMR). In broilers, the analysis showed lower resistance proportions of clinical isolates of E. coli to ampicillin and colistin (ampicillin: Odds ratio (OR) and 95% confidence interval (CI) = 0.44 (0.3-0.64), p<0.001; colistin: OR and 95% CI = 0.75 (0.73-0.76), p<0.001) but higher proportions for cefotaxime (OR and 95% CI = 4.58 (1.56-15.1), p = 0.007). Resistance to ampicillin, gentamicin and tetracycline was less frequent in clinical isolates in turkeys (ampicillin: OR and 95% CI = 0.4 (0.29-0.53), p<0.001; gentamicin: OR and 95% CI = 0.5 (0.26-0.94), p = 0.035; tetracycline: OR and 95% CI = 0.4 (0.29-0.55), p<0.001). The analysis found decreasing associations of AMU with resistance to tetracycline in turkeys and to colistin in broilers. Year was associated with a decrease in resistance to colistin in broilers and to tetracycline in turkeys. Differences in resistance found in this study between clinical and non-clinical isolates might play an important role in resistance prevalence. This study indicated that further data analyses over longer time intervals are required to clarify the differences found between clinical and non-clinical isolates and to assess the long-term effects of changes in AMU on the prevalence of AMR.
Collapse
Affiliation(s)
- Octavio Mesa-Varona
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Heike Kaspar
- Department Method Standardisation, Reference Laboratories, Resistance to Antibiotics, Berlin, Germany
- Unit Monitoring of Resistance to Antibiotics, Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | - Mirjam Grobbel
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Bernd-Alois Tenhagen
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
22
|
Stability, Homogeneity and Carry-Over of Amoxicillin, Doxycycline, Florfenicol and Flubendazole in Medicated Feed and Drinking Water on 24 Pig Farms. Antibiotics (Basel) 2020; 9:antibiotics9090563. [PMID: 32878274 PMCID: PMC7559249 DOI: 10.3390/antibiotics9090563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/27/2020] [Accepted: 08/29/2020] [Indexed: 11/17/2022] Open
Abstract
The vast majority of medicines in pig rearing are administered via oral group medication through medicated feed and drinking water. However, relevant on-farm factors affecting the concentration of these drugs in feed and drinking water, such as the homogeneity, stability, and cross-contamination, are largely unknown. To characterize these factors, samples of medicated feed and drinking water were taken on 24 Belgian pig farms during treatment and 2 days thereafter, as well as at different on-farm sampling sites from production to feeding troughs or drinking nipples. The samples contained amoxicillin, doxycycline, florfenicol, or flubendazole. Additionally, a questionnaire was completed. In contrast to the results of medicated feed, results of medicated water showed a large between-farm variation in antimicrobial drug concentration. The therapeutic concentration range was only met in 2 out of 11 farms using medicated feed, and in 3 out of 13 farms using medicated water. Medicated feed concentrations were often below the therapeutic concentration range mentioned in the Summary of Product Characteristics, while drinking water concentrations were just as often above as they were below the advised target concentration range. Drug residues measured 2 days after the end of therapy with both feed and water medication rarely exceeded 1% of the lowest therapeutic concentration. This study demonstrates that recommendations on good clinical practices for oral group medication in the pig industry are highly needed.
Collapse
|
23
|
Echtermann T, Müntener C, Sidler X, Kümmerlen D. Impact of the Suissano Health Programme on antimicrobial usage on 291 pig farms in Switzerland. Vet Rec Open 2020; 7:e000389. [PMID: 32626580 PMCID: PMC7326250 DOI: 10.1136/vetreco-2019-000389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/12/2020] [Accepted: 06/02/2020] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND In 2015, in Switzerland the Suissano Health Programme was implemented in pig production to improve transparency for antimicrobial usage (AMU) and to reduce the usage of fluoroquinolones (FQ), macrolides and cephalosporins, representing highest priority critically important antimicrobials. METHODS In the presented cohort study, the impact of the Suissano programme on the AMU of 291 pig farms between 2016 and 2017 was investigated. AMU was calculated in total numbers of defined course doses (nDCDch) for all farms in the programme. For each single farm the nDCDch/animal/year was determined for four different age categories (suckling piglets, weaned piglets, fattening pigs, sows) as well as each antimicrobial substance separately. Trends between 2016 and 2017 were investigated for all farms as well as the 25 per cent with the highest usage of antimicrobials (high users) separately. RESULTS Total AMU measured in nDCDch declined by 23 per cent between 2016 and 2017, but statistically significant differences could not be observed when comparing the data sets of the individual farms. A significantly reduced usage of FQ could be demonstrated in suckling piglets (P=0.003), weaned piglets (P=0.006) and sows (P=0.008) in 2017 compared with 2016. For high users, a significant reduction of total AMU could be shown in suckling piglets (P=0.02), weaned piglets (P=0.0004) and fattening pigs (P=0.01). CONCLUSION This study demonstrated a significant reduction in the usage of FQs in suckling piglets, weaned piglets and sows as well as total AMU in suckling piglets, weaned piglets and fattening pigs on high-usage farms.
Collapse
Affiliation(s)
- Thomas Echtermann
- Division of Swine Medicine, Vetsuisse-Faculty, University of Zurich, Zurich, Switzerland
| | - Cedric Müntener
- Institute for Veterinary Pharmacology and Toxicology, Vetsuisse-Faculty, University of Zurich, Zurich, Switzerland
| | - Xaver Sidler
- Division of Swine Medicine, Vetsuisse-Faculty, University of Zurich, Zurich, Switzerland
| | - Dolf Kümmerlen
- Division of Swine Medicine, Vetsuisse-Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
24
|
Zingali T, Chapman TA, Webster J, Roy Chowdhury P, Djordjevic SP. Genomic Characterisation of a Multiple Drug Resistant IncHI2 ST4 Plasmid in Escherichia coli ST744 in Australia. Microorganisms 2020; 8:microorganisms8060896. [PMID: 32545892 PMCID: PMC7355605 DOI: 10.3390/microorganisms8060896] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 01/16/2023] Open
Abstract
Antibiotic resistance genes (ARGs) including those from the blaCTX-M family and mcr-1 that encode resistance to extended spectrum β–lactams and colistin, respectively, have been linked with IncHI2 plasmids isolated from swine production facilities globally but not in IncHI2 plasmids from Australia. Here we describe the first complete sequence of a multiple drug resistance Australian IncHI2-ST4 plasmid, pTZ41_1P, from a commensal E. coli from a healthy piglet. pTZ41_1P carries genes conferring resistance to heavy-metals (copper, silver, tellurium and arsenic), β-lactams, aminoglycosides and sulphonamides. The ARGs reside within a complex resistance locus (CRL) that shows considerable sequence identity to a CRL in pSDE_SvHI2, an IncHI2:ST3 plasmid from an enterotoxigenic E. coli with serotype O157:H19 of porcine origin that caused substantial losses to swine production operations in Australia in 2007. pTZ41_1P is closely related to IncHI2 plasmids found in E. coli and Salmonella enterica from porcine, avian and human sources in Europe and China but it does not carry genes encoding resistance to clinically-important antibiotics. We identified regions of IncHI2 plasmids that contribute to the genetic plasticity of this group of plasmids and highlight how they may readily acquire new resistance gene cargo. Genomic surveillance should be improved to monitor IncHI2 plasmids.
Collapse
Affiliation(s)
- Tiziana Zingali
- The ithree Institute, University of Technology Sydney, City Campus, Ultimo, NSW 2007, Australia; (T.Z.); (P.R.C.)
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia
| | - Toni A. Chapman
- NSW Department of Primary Industries, Elizabeth MacArthur Agricultural Institute, Menangle, NSW 2568, Australia; (T.A.C.); (J.W.)
| | - John Webster
- NSW Department of Primary Industries, Elizabeth MacArthur Agricultural Institute, Menangle, NSW 2568, Australia; (T.A.C.); (J.W.)
| | - Piklu Roy Chowdhury
- The ithree Institute, University of Technology Sydney, City Campus, Ultimo, NSW 2007, Australia; (T.Z.); (P.R.C.)
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia
| | - Steven P. Djordjevic
- The ithree Institute, University of Technology Sydney, City Campus, Ultimo, NSW 2007, Australia; (T.Z.); (P.R.C.)
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia
- Correspondence: ; Tel.: +61-2-9514-4127
| |
Collapse
|
25
|
Phenotypic antimicrobial resistance in Escherichia coli strains isolated from swine husbandries in North Western Germany - temporal patterns in samples from laboratory practice from 2006 to 2017. BMC Vet Res 2020; 16:37. [PMID: 32013971 PMCID: PMC6998819 DOI: 10.1186/s12917-020-2268-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 01/27/2020] [Indexed: 12/31/2022] Open
Abstract
Background Since 2011, antibiotic usage has decreased continuously in livestock in Germany. Whether this is accompanied by a reduction in bacterial antimicrobial resistance has not been proven so far. In this study 3054 Escherichia coli (E. coli) isolates from pigs which had suffered from disease on 2161 farms in North Western Germany were evaluated retrospectively from 2006 to 2017 for trends in their antimicrobial resistance pattern. Data were substantially related to the “pre-reduction period” and were therefore suggested as a basis for this task. Minimal inhibitory concentrations for selected antimicrobial substances were evaluated for E. coli strains isolated from different organs of diseased swine sampled for routine diagnostic. In total, 81% of E. coli were isolated from faeces or the gastrointestinal tract, 11% from the genito-urinary tract and 8% from other organs. Susceptibility testing and classification of isolates in accordance with clinical cut-offs followed the Clinical and Laboratory Standards Institute (CLSI). If no clinical cut-offs were available for the respective combination of species, substance and organ, other published clinical cut-offs were used. Results Differences in susceptibility patterns between isolates from the gastrointestinal and genito-urinary tract were found for most substances. Isolates from the genito-urinary tract were less frequently resistant to ampicillin, apramycin, colistin, neomycin, spectinomycin and tetracycline and more frequently resistant to enrofloxacin and florfenicol. A multifactorial logistic regression model revealed time-dependent decreases in frequency of resistant isolates for neomycin, spectinomycin and tetracycline. For colistin, the highest percentage of resistant isolates with 16.0% was found in 2015 followed by a decrease to the level of 2009–2010 in 2017. A decrease in frequencies of ampicillin-resistant isolates was dependent on the age-group and time period. Irrespective of the year, less than 15% E. coli isolates were resistant to apramycin, cephalosporins, colistin, enrofloxacin, florfenicol, gentamicin and neomycin. Conclusion An overall time-dependent decrease in the percentage of resistant E. coli isolates was found for some substances. These data from diseased animals indicate an impact of a general reduction in antibiotic usage on development of bacterial antimicrobial resistance in the field and can support the decision-making of swine practitioners for treatment options in swine.
Collapse
|
26
|
Vandael F, Filippitzi ME, Dewulf J, Daeseleire E, Eeckhout M, Devreese M, Croubels S. Oral group medication in pig production: characterising medicated feed and drinking water systems. Vet Rec 2019; 185:405. [PMID: 31427411 DOI: 10.1136/vr.105495] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/19/2019] [Accepted: 07/25/2019] [Indexed: 11/04/2022]
Abstract
Despite common use of oral group medication in pig rearing, the homogeneity, stability and carry-over of frequently used medicinal products in feed and drinking water are largely unknown. Therefore, a field study was performed on 52 Belgian pig farms, characterising preparation and administration of medicinal products via these systems, and farmers' user experiences with medicated feed and medicated drinking water. The study showed that medicated drinking water is more commonly used than medicated feed, since 90.4 per cent of the farms sometimes use medicated drinking water and 69.2 per cent of the farms sometimes use medicated feed. The drinking water quality is evaluated at least once a year on only 30.7 per cent of the farms. Separate pipelines for medicated and non-medicated circuits were not present in any of the farms using medicated feed and in 27.7 per cent of the farms using medicated drinking water. With drinking water medication, 63.5 per cent of the farmers reported encountering practical problems, often related to solubility issues and precipitation of the active compounds. In contrast, medicated feed is bought ready-to-use from the feed manufacturer in 68.2 per cent of the cases, thus reducing the number of practical problems experienced by the farmer. This study shows room for improvement of oral group treatment, developing appropriate pharmaceutical formulations for drinking water medication, quality control of drinking water, using separate pipeline circuits, and cleaning and disinfecting protocols.
Collapse
Affiliation(s)
- Femke Vandael
- Department of Pharmacology, Toxicology and Biochemistry, Laboratory of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | | | - Jeroen Dewulf
- Department of Reproduction, Obstetrics and Herd Health, Veterinary Epidemiology Unit, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Els Daeseleire
- Technology and Food Science Unit, ILVO, Merelbeke, Belgium
| | - Mia Eeckhout
- Department of Food Technology, Food Safety and Health, Ghent University Faculty of Bioscience Engineering, Ghent, Belgium
| | - Mathias Devreese
- Department of Pharmacology, Toxicology and Biochemistry, Laboratory of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Siska Croubels
- Department of Pharmacology, Toxicology and Biochemistry, Laboratory of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
27
|
Tenhagen BA, Werner N, Käsbohrer A, Kreienbrock L. [Transmission pathways for resistant bacteria between animals and humans: antibiotics resistance in the One Health context]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2019; 61:515-521. [PMID: 29616289 DOI: 10.1007/s00103-018-2717-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
People and animals share the same environment and antibiotics are used in both. Thus, antibiotics resistance is a major common issue for human and veterinary medicine. The potential impact of antibiotics use in animals on resistance in humans is frequently the focus of debate. In this paper the transmission pathways of resistant bacteria between animals and humans are described and the question is addressed whether a reduction in antibiotics use in animals contributes to the improvement of the resistance situation in humans. Direct contact between humans and animals, transmission of bacteria via food, and indirect transmission via emissions in the environment and the subsequent exposure of humans via the environment are the major transmission routes to be considered. It can thus be established that the relevance of these various transmission routes varies significantly among bacterial species. Furthermore, despite numerous investigations, the exact significance of transmission pathways and the bacteria transferred for the resistance situation in humans cannot yet be precisely quantified. There is evidence that antibiotics use in animals fosters the spread of resistant organisms in animals. Recent studies also suggest that there might be a relationship between antibiotics use in animals and the occurrence of resistance in humans. However, this relationship is complex, and for a better understanding of it and the role of the various transmission pathways, further collaborative studies between veterinary and medical science are needed.
Collapse
Affiliation(s)
- Bernd-Alois Tenhagen
- Fachgruppe Epidemiologie, Zoonosen und Antibiotikaresistenz, Bundesinstitut für Risikobewertung, Max-Dohrn-Str. 8-10, 10589, Berlin, Deutschland.
| | - Nicole Werner
- Institut für Biometrie, Epidemiologie und Informationsverarbeitung, WHO Collaborating Centre for Research and Training for Health at the Human-Animal-Environment Interface, Tierärztliche Hochschule Hannover, Hannover, Deutschland
| | - Annemarie Käsbohrer
- Fachgruppe Epidemiologie, Zoonosen und Antibiotikaresistenz, Bundesinstitut für Risikobewertung, Max-Dohrn-Str. 8-10, 10589, Berlin, Deutschland.,Institut für Öffentliches Veterinärwesen, Veterinärmedizinische Universität Wien, Wien, Österreich
| | - Lothar Kreienbrock
- Institut für Biometrie, Epidemiologie und Informationsverarbeitung, WHO Collaborating Centre for Research and Training for Health at the Human-Animal-Environment Interface, Tierärztliche Hochschule Hannover, Hannover, Deutschland
| |
Collapse
|
28
|
Barbosa Da Silva A, Back M, Daguer H, Palmeira M, Antunes De Sá Ploêncio L, Molognoni L, Peripolli V, Bianchi I. Carry-over and contamination of veterinary drugs in feed production lines for poultry and pigs. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36:740-751. [DOI: 10.1080/19440049.2019.1585580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- André Barbosa Da Silva
- Brazilian Ministry of Agriculture, Livestock an d Food Supply (MAPA), São José, SC, Brazil
- Federal Catarinense Institute (IFC), Araquari Campus, Araquari, SC, Brazil
| | - Marcos Back
- Agronomist Engineer, Pró Sete Engineering, Criciúma, SC, Brazil
| | - Heitor Daguer
- Brazilian Ministry of Agriculture, Livestock an d Food Supply (MAPA), São José, SC, Brazil
| | - Maila Palmeira
- Federal Catarinense Institute (IFC), Araquari Campus, Araquari, SC, Brazil
| | | | - Luciano Molognoni
- Brazilian Ministry of Agriculture, Livestock an d Food Supply (MAPA), São José, SC, Brazil
| | - Vanessa Peripolli
- Federal Catarinense Institute (IFC), Araquari Campus, Araquari, SC, Brazil
| | - Ivan Bianchi
- Federal Catarinense Institute (IFC), Araquari Campus, Araquari, SC, Brazil
| |
Collapse
|
29
|
Collignon PJ, McEwen SA. One Health-Its Importance in Helping to Better Control Antimicrobial Resistance. Trop Med Infect Dis 2019; 4:E22. [PMID: 30700019 PMCID: PMC6473376 DOI: 10.3390/tropicalmed4010022] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/18/2019] [Accepted: 01/23/2019] [Indexed: 01/21/2023] Open
Abstract
Approaching any issue from a One Health perspective necessitates looking at the interactions of people, domestic animals, wildlife, plants, and our environment. For antimicrobial resistance this includes antimicrobial use (and abuse) in the human, animal and environmental sectors. More importantly, the spread of resistant bacteria and resistance determinants within and between these sectors and globally must be addressed. Better managing this problem includes taking steps to preserve the continued effectiveness of existing antimicrobials such as trying to eliminate their inappropriate use, particularly where they are used in high volumes. Examples are the mass medication of animals with critically important antimicrobials for humans, such as third generation cephalosporins and fluoroquinolones, and the long term, in-feed use of antimicrobials, such colistin, tetracyclines and macrolides, for growth promotion. In people it is essential to better prevent infections, reduce over-prescribing and over-use of antimicrobials and stop resistant bacteria from spreading by improving hygiene and infection control, drinking water and sanitation. Pollution from inadequate treatment of industrial, residential and farm waste is expanding the resistome in the environment. Numerous countries and several international agencies have now included a One Health Approach within their action plans to address antimicrobial resistance. Necessary actions include improvements in antimicrobial use, better regulation and policy, as well as improved surveillance, stewardship, infection control, sanitation, animal husbandry, and finding alternatives to antimicrobials.
Collapse
Affiliation(s)
- Peter J Collignon
- Infectious Diseases and Microbiology, Canberra Hospital, Garran, ACT 2605, Australia.
- Medical School, Australian National University, Acton ACT 2601, Australia.
| | - Scott A McEwen
- Department of Population Medicine, University of Guelph, Guelph N1G 2W1, Canada.
| |
Collapse
|
30
|
Hemme M, Ruddat I, Hartmann M, Werner N, van Rennings L, Käsbohrer A, Kreienbrock L. Antibiotic use on German pig farms - A longitudinal analysis for 2011, 2013 and 2014. PLoS One 2018; 13:e0199592. [PMID: 29969477 PMCID: PMC6029768 DOI: 10.1371/journal.pone.0199592] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 06/11/2018] [Indexed: 12/03/2022] Open
Abstract
To study antibiotic use in livestock in a temporal context with the development of antimicrobial resistance, long-term changes in antibiotic use must be mapped and their possible causes must be explored. Therefore, the present work assesses the changes in antibiotic use over time in German livestock husbandry. In addition, factors associated with antibiotic use were analyzed to identify possible strategies for further reducing antimicrobial usage. For 2011, 2013 and 2014, antibiotic usage data were collected and examined within the VetCAb project. Three hundred participating pig holdings provided information on their antibiotic use based on obligatory application and delivery forms (ADFs) filled in by their veterinarian as well as information on their current stabling capacities for each production type held. Data on sow, piglet, weaner and fattening pig holdings were described separately, using the semi-annual treatment frequency (TF) to measure antibiotic consumption. Multiple linear mixed models were used to investigate the effects of time, farm size, region and farm management category on the treatment frequency. The study yielded significant time changes with p-values below 0.001 in antibiotic administration with a decreasing median TF in piglets from 3.8 in the first half of 2011 (IQR = 1.1-10.6) to 1.7 in the second half of 2014 (IQR = 0.2-4.5) and in fattening pigs from 5.1 in the first half of 2011 (IQR = 0.2-15.4) to 0.7 in the second half of 2014 (IQR = 0.1-6.7). Meanwhile the TF fluctuated between 8.2 and 12.2 in weaners during the observational period (IQRs between zero (lower quartile) and 37.9 (upper quartile)). Piglet, weaner and fattening pig holdings belonging to the upper third of the holdings in size used significantly more antibiotics than the other holdings investigated. Particularly for weaner and fattening pig holdings, a higher TF was noted for farms without breeding units. The region was only a significant factor in weaners. In conclusion, for 2011, 2013 and 2014, the present study shows a clear reduction in antibiotic treatment frequency in German pig holdings. In addition, the association with various factors such as herd size and farm organization on the antibiotic usage frequency is indisputable. Therefore, these factors should be included in monitoring systems and considered when evaluating intervention measures.
Collapse
Affiliation(s)
- Malin Hemme
- Department of Biometry, Epidemiology and Information Processing, WHO Collaborating Centre for Research and Training for Health in the Human-Animal-Environment Interface, University for Veterinary Medicine, Hannover, Germany
| | - Inga Ruddat
- Department of Biometry, Epidemiology and Information Processing, WHO Collaborating Centre for Research and Training for Health in the Human-Animal-Environment Interface, University for Veterinary Medicine, Hannover, Germany
| | - Maria Hartmann
- Department of Biometry, Epidemiology and Information Processing, WHO Collaborating Centre for Research and Training for Health in the Human-Animal-Environment Interface, University for Veterinary Medicine, Hannover, Germany
| | - Nicole Werner
- Department of Biometry, Epidemiology and Information Processing, WHO Collaborating Centre for Research and Training for Health in the Human-Animal-Environment Interface, University for Veterinary Medicine, Hannover, Germany
| | - Lisa van Rennings
- Department of Biometry, Epidemiology and Information Processing, WHO Collaborating Centre for Research and Training for Health in the Human-Animal-Environment Interface, University for Veterinary Medicine, Hannover, Germany
| | - Annemarie Käsbohrer
- Federal Institute for Risk Assessment, Berlin, Germany
- Institute for Veterinary Public Health, Veterinary University Vienna, Vienna, Austria
| | - Lothar Kreienbrock
- Department of Biometry, Epidemiology and Information Processing, WHO Collaborating Centre for Research and Training for Health in the Human-Animal-Environment Interface, University for Veterinary Medicine, Hannover, Germany
| |
Collapse
|
31
|
Filippitzi ME, Chantziaras I, Devreese M, Dewulf J. Probabilistic risk model to assess the potential for resistance selection following the use of anti-microbial medicated feed in pigs. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018; 35:1266-1277. [DOI: 10.1080/19440049.2018.1461257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Maria Eleni Filippitzi
- Veterinary Epidemiology Unit, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Ilias Chantziaras
- Porcine Health Management Unit, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Mathias Devreese
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Jeroen Dewulf
- Veterinary Epidemiology Unit, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
32
|
McEwen SA, Collignon PJ. Antimicrobial Resistance: a One Health Perspective. Microbiol Spectr 2018; 6:10.1128/microbiolspec.arba-0009-2017. [PMID: 29600770 PMCID: PMC11633550 DOI: 10.1128/microbiolspec.arba-0009-2017] [Citation(s) in RCA: 544] [Impact Index Per Article: 77.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Indexed: 11/20/2022] Open
Abstract
One Health is the collaborative effort of multiple health science professions to attain optimal health for people, domestic animals, wildlife, plants, and our environment. The drivers of antimicrobial resistance include antimicrobial use and abuse in human, animal, and environmental sectors and the spread of resistant bacteria and resistance determinants within and between these sectors and around the globe. Most of the classes of antimicrobials used to treat bacterial infections in humans are also used in animals. Given the important and interdependent human, animal, and environmental dimensions of antimicrobial resistance, it is logical to take a One Health approach when addressing this problem. This includes taking steps to preserve the continued effectiveness of existing antimicrobials by eliminating their inappropriate use and by limiting the spread of infection. Major concerns in the animal health and agriculture sectors are mass medication of animals with antimicrobials that are critically important for humans, such as third-generation cephalosporins and fluoroquinolones, and the long-term, in-feed use of medically important antimicrobials, such as colistin, tetracyclines, and macrolides, for growth promotion. In the human sector it is essential to prevent infections, reduce over-prescribing of antimicrobials, improve sanitation, and improve hygiene and infection control. Pollution from inadequate treatment of industrial, residential, and farm waste is expanding the resistome in the environment. Numerous countries and several international agencies have included a One Health approach within their action plans to address antimicrobial resistance. Necessary actions include improvements in antimicrobial use regulation and policy, surveillance, stewardship, infection control, sanitation, animal husbandry, and alternatives to antimicrobials. WHO recently has launched new guidelines on the use of medically important antimicrobials in food-producing animals, recommending that farmers and the food industry stop using antimicrobials routinely to promote growth and prevent disease in healthy animals. These guidelines aim to help preserve the effectiveness of antimicrobials that are important for human medicine by reducing their use in animals.
Collapse
Affiliation(s)
- Scott A McEwen
- Department of Population Medicine, University of Guelph, Guelph, Canada N1G 2W1
| | - Peter J Collignon
- Infectious Diseases and Microbiology, Canberra Hospital, Canberra, Australia and Medical School, Australian National University, Acton, Australia
| |
Collapse
|
33
|
Murphy D, Ricci A, Auce Z, Beechinor JG, Bergendahl H, Breathnach R, Bureš J, Duarte Da Silva JP, Hederová J, Hekman P, Ibrahim C, Kozhuharov E, Kulcsár G, Lander Persson E, Lenhardsson JM, Mačiulskis P, Malemis I, Markus-Cizelj L, Michaelidou-Patsia A, Nevalainen M, Pasquali P, Rouby JC, Schefferlie J, Schlumbohm W, Schmit M, Spiteri S, Srčič S, Taban L, Tiirats T, Urbain B, Vestergaard EM, Wachnik-Święcicka A, Weeks J, Zemann B, Allende A, Bolton D, Chemaly M, Fernandez Escamez PS, Girones R, Herman L, Koutsoumanis K, Lindqvist R, Nørrung B, Robertson L, Ru G, Sanaa M, Simmons M, Skandamis P, Snary E, Speybroeck N, Ter Kuile B, Wahlström H, Baptiste K, Catry B, Cocconcelli PS, Davies R, Ducrot C, Friis C, Jungersen G, More S, Muñoz Madero C, Sanders P, Bos M, Kunsagi Z, Torren Edo J, Brozzi R, Candiani D, Guerra B, Liebana E, Stella P, Threlfall J, Jukes H. EMA and EFSA Joint Scientific Opinion on measures to reduce the need to use antimicrobial agents in animal husbandry in the European Union, and the resulting impacts on food safety (RONAFA). EFSA J 2017; 15:e04666. [PMID: 32625259 PMCID: PMC7010070 DOI: 10.2903/j.efsa.2017.4666] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
EFSA and EMA have jointly reviewed measures taken in the EU to reduce the need for and use of antimicrobials in food-producing animals, and the resultant impacts on antimicrobial resistance (AMR). Reduction strategies have been implemented successfully in some Member States. Such strategies include national reduction targets, benchmarking of antimicrobial use, controls on prescribing and restrictions on use of specific critically important antimicrobials, together with improvements to animal husbandry and disease prevention and control measures. Due to the multiplicity of factors contributing to AMR, the impact of any single measure is difficult to quantify, although there is evidence of an association between reduction in antimicrobial use and reduced AMR. To minimise antimicrobial use, a multifaceted integrated approach should be implemented, adapted to local circumstances. Recommended options (non-prioritised) include: development of national strategies; harmonised systems for monitoring antimicrobial use and AMR development; establishing national targets for antimicrobial use reduction; use of on-farm health plans; increasing the responsibility of veterinarians for antimicrobial prescribing; training, education and raising public awareness; increasing the availability of rapid and reliable diagnostics; improving husbandry and management procedures for disease prevention and control; rethinking livestock production systems to reduce inherent disease risk. A limited number of studies provide robust evidence of alternatives to antimicrobials that positively influence health parameters. Possible alternatives include probiotics and prebiotics, competitive exclusion, bacteriophages, immunomodulators, organic acids and teat sealants. Development of a legislative framework that permits the use of specific products as alternatives should be considered. Further research to evaluate the potential of alternative farming systems on reducing AMR is also recommended. Animals suffering from bacterial infections should only be treated with antimicrobials based on veterinary diagnosis and prescription. Options should be reviewed to phase out most preventive use of antimicrobials and to reduce and refine metaphylaxis by applying recognised alternative measures.
Collapse
|