1
|
Hassuna NA, Rabea EM, Mahdi WKM, Abdelraheem WM. Biofilm formation and antimicrobial resistance pattern of uropathogenic E. coli ST131 isolated from children with malignant tumors. J Antibiot (Tokyo) 2024; 77:324-330. [PMID: 38438498 PMCID: PMC11058308 DOI: 10.1038/s41429-024-00704-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/13/2023] [Accepted: 01/16/2024] [Indexed: 03/06/2024]
Abstract
The multidrug-resistant clone identified as Escherichia coli sequence type 131 (E. coli ST131) has spread world-wide. This study sought to ascertain the frequency and biofilm formation of E. coli ST131 isolated from children with various malignancies. A total of 60 uropathogenic E. coli (UPEC) isolates from children without cancer and 30 UPEC isolates from children with cancer were assessed in this study. The microdilution method was used to investigate the sensitivity of bacteria to antibiotics. The microtiter plate (MTP) approach was used to phenotypically assess biofilm formation. The lasR, pelA, and lecA biofilm-encoding genes were detected by PCR in biofilm-producing isolates of E. coli. Thirty-seven out of 90 E. coli isolates were found to be ST131 (41.1%), with 17 (56.7%) from cancer-affected children and 20 (33.3%) from children without cancer, respectively (P-value = 0.036). The frequency of antimicrobial resistance was higher in ST131 strains were compared to non-ST131 strains and when they were isolated from healthy children vs. those who had cancer. In contrast to non-ST131 isolates, ST131 isolates were more biofilm-producers. There was a significant difference between the percentage of biofilm producers between the 22 (100%) ST131-O16 isolates and the 13 (86.7%) ST131-O25b isolates (P-value = 0.04). Children with cancer are more likely than children without cancer to develop biofilm forming E. coli ST131, the latter having a higher profile of antibiotic resistance. Interestingly, E. coli ST131 isolates from non-cancer patients had higher levels of overall antibiotic resistance and while more E. coli ST131isolates from cancer patients formed biofilms.
Collapse
Affiliation(s)
- Noha Anwar Hassuna
- Medical Microbiology and Immunology Department, Faculty of Medicine, Minia University, Minia, Egypt.
| | - Eman M Rabea
- Medical Microbiology and Immunology Department, Faculty of Medicine, Minia University, Minia, Egypt
| | - W K M Mahdi
- Medical Microbiology and Immunology Department, Faculty of Medicine, Minia University, Minia, Egypt
| | - Wedad M Abdelraheem
- Medical Microbiology and Immunology Department, Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|
2
|
Müller C, Reuter S, Wille J, Xanthopoulou K, Stefanik D, Grundmann H, Higgins PG, Seifert H. A global view on carbapenem-resistant Acinetobacter baumannii. mBio 2023; 14:e0226023. [PMID: 37882512 PMCID: PMC10746149 DOI: 10.1128/mbio.02260-23] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/12/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE Carbapenem-resistant Acinetobacter baumannii are of increasing public health importance, as they are resistant to last-line antibiotics. International clones with well-characterized resistance genes dominate globally; however, locally, other lineages with different properties may be of importance to consider. This study investigated isolates from a broad geographic origin from 114 hospitals in 47 countries and from five world regions ensuring the greatest possible diversity in an organism known for its propensity for clonal epidemic spread and reflecting the current global epidemiology of carbapenem-resistant A. baumannii. In Latin America, a lineage different from other geographic regions circulates, with a different resistance gene profile. This knowledge is important to adjust local infection prevention measures. In a global world with migration and increasing use of antimicrobials, multidrug-resistant bacteria will continue to adapt and challenge our healthcare systems worldwide.
Collapse
Affiliation(s)
- Carina Müller
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Goldenfelsstr, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Sandra Reuter
- Institute for Infection Prevention and Hospital Epidemiology, Medical Centre–University of Freiburg, Freiburg, Germany
| | - Julia Wille
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Goldenfelsstr, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Kyriaki Xanthopoulou
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Goldenfelsstr, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Danuta Stefanik
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Goldenfelsstr, Cologne, Germany
| | - Hajo Grundmann
- Institute for Infection Prevention and Hospital Epidemiology, Medical Centre–University of Freiburg, Freiburg, Germany
| | - Paul G. Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Goldenfelsstr, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Harald Seifert
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Goldenfelsstr, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| |
Collapse
|
3
|
Mostafa SH, Saleh SE, Khaleel EF, Badi RM, Aboshanab KM, Hamed SM. Phenotypic and Genotypic Analysis of Bacterial Pathogens Recovered from Patients Diagnosed with Fever of Unknown Origin in Egypt. Antibiotics (Basel) 2023; 12:1294. [PMID: 37627714 PMCID: PMC10451874 DOI: 10.3390/antibiotics12081294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Fever of unknown origin (FUO) is a medical term describing fever that lasts for at least three weeks without a diagnosis being reached after extensive diagnostic evaluation. Therefore, this study aimed to identify the common pathogens causing FUO in patients admitted to Abbasia Fever Hospital in Egypt from January 2020 to December 2022, their antimicrobial susceptibility profiles, and associated resistance genes. The study also aimed to investigate the burden of multidrug-resistant (MDR) pathogens and the priority pathogens nominated by the World Health Organization (WHO) for posing the greatest threat to human health due to antibiotic resistance. During the study period, about 726 patients were diagnosed with FUO. After extensive investigations, the cause of the FUO was found to be infectious diseases in 479/726 patients (66.0%). Of them, 257 patients had positive bacterial cultures, including 202 Gram-negative isolates that comprised Klebsiella pneumoniae (85/202; 42.1%), Escherichia coli (71/202; 35.1%), Acinetobacter baumannii (26/202; 12.9%), and Pseudomonas aeruginosa (14/202; 6.9%) and 55 Gram-positive isolates, including Staphylococcus aureus (23/55; 41.8%), Streptococcus pneumoniae (7/55; 12.7%), and Enterococcus spp. (25/55; 45.5%). The MDR phenotype was shown by 68.3% and 65.5% of the Gram-negative and Gram-positive isolates, respectively. Carbapenem resistance (CR) was shown by 43.1% of the Gram-negative isolates. Of the 23 S. aureus isolates obtained from research participants, 15 (65.2%) were methicillin-resistant S. aureus (MRSA). A high-level aminoglycoside resistance (HLAR) phenotype was found in 52.0% of the Enterococcus sp. isolates. The PCR screening of resistance genes in the MDR isolates showed that blaOXA-48 was the most prevalent (84%) among the carbapenemase-coding genes, followed by blaVIM (9%) and then blaIMP (12%). The ESBL-coding genes blaTEM, blaCTX-M,aac(6')-Ib, and blaSHV, were prevalent in 100%, 93.2%, 85,% and 53.4% of the MDR isolates, respectively. This study updates the range of bacteria that cause FUO and emphasizes the burden of multidrug resistance and priority infections in the region. The obtained data is of relevant medical importance for the implementation of evidence-based antimicrobial stewardship programs and tailoring existing empirical treatment guidelines.
Collapse
Affiliation(s)
- Shimaa H. Mostafa
- Microbiology Lab Department, Abbasia Fever Hospital, Cairo 11566, Egypt;
| | - Sarra E. Saleh
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
| | - Eman F. Khaleel
- Department of Medical Physiology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia; (E.F.K.); (R.M.B.)
| | - Rehab Mustafa Badi
- Department of Medical Physiology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia; (E.F.K.); (R.M.B.)
| | - Khaled M. Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
| | - Samira M. Hamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October, Giza 12451, Egypt;
| |
Collapse
|
4
|
Hamed SM, Elkhatib WF, Brangsch H, Gesraha AS, Moustafa S, Khater DF, Pletz MW, Sprague LD, Neubauer H, Wareth G. Acinetobacter baumannii Global Clone-Specific Resistomes Explored in Clinical Isolates Recovered from Egypt. Antibiotics (Basel) 2023; 12:1149. [PMID: 37508245 PMCID: PMC10376554 DOI: 10.3390/antibiotics12071149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Acinetobacter baumannii (A. baumannii) is a highly problematic pathogen with an enormous capacity to acquire or upregulate antibiotic drug resistance determinants. The genomic epidemiology and resistome structure of 46 A. baumannii clinical isolates were studied using whole-genome sequencing. The isolates were chosen based on reduced susceptibility to at least three classes of antimicrobial compounds and were initially identified using MALDI-TOF/MS, followed by polymerase chain reaction amplification of blaOXA-51-like genes. The susceptibility profiles were determined using a broth microdilution assay. Multi-, extensive-, and pan-drug resistance was shown by 34.8%, 63.0%, and 2.2% of the isolates, respectively. These were most susceptible to colistin (95.7%), amikacin, and trimethoprim/sulfamethoxazole (32.6% each), while only 26.1% of isolates were susceptible to tigecycline. In silico multi-locus sequence typing revealed 8 Pasteur and 22 Oxford sequence types (STs) including four novel STs (STOxf 2805, 2806, 2807, and 2808). The majority of the isolates belonged to Global Clone (GC) 2 (76.4%), GC5 (19.6%), GC4 (6.5%), GC9 (4.3%), and GC7 (2.2%) lineages. An extensive resistome potentially conferring resistance to the majority of the tested antimicrobials was identified in silico. Of all known carbapenem resistance genes, blaOXA-23 was carried by most of the isolates (69.6%), followed by ISAba1-amplified blaADC (56.5%), blaNDM-1 and blaGES-11 (21.7% each), and blaGES-35 (2.2%) genes. A significant correlation was found between carbapenem resistance and carO mutations, which were evident in 35 (76.0%) isolates. A lower proportion of carbapenem resistance was noted for strains possessing both blaOXA-23- and blaGES-11. Amikacin resistance was most probably mediated by armA, aac(6')-Ib9, and aph(3')-VI, most commonly coexisting in GC2 isolates. No mutations were found in pmrABC or lpxACD operons in the colistin-resistant isolates. Tigecycline resistance was associated with adeS (N268Y) and baeS (A436T) mutations. While the lineage-specific distribution of some genes (e.g., blaADC and blaOXA-51-like alleles) was evident, some resistance genes, such as blaOXA-23 and sul1, were found in all GCs. The data generated here highlight the contribution of five GCs in A. baumannii infections in Egypt and enable the comprehensive analysis of GC-specific resistomes, thus revealing the dissemination of the carbapenem resistance gene blaOXA-23 in isolates encompassing all GCs.
Collapse
Affiliation(s)
- Samira M Hamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt
| | - Walid F Elkhatib
- Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Cairo 11566, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Suez 43727, Egypt
| | - Hanka Brangsch
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler Institut, 07743 Jena, Germany
| | - Ahmed S Gesraha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31511, Egypt
| | - Shawky Moustafa
- Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt
| | - Dalia F Khater
- Tanta Laboratory, Animal Health Research Institute, Agricultural Research Center, Tanta 31511, Egypt
| | - Mathias W Pletz
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, 07747 Jena, Germany
| | - Lisa D Sprague
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler Institut, 07743 Jena, Germany
| | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler Institut, 07743 Jena, Germany
| | - Gamal Wareth
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler Institut, 07743 Jena, Germany
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, 07747 Jena, Germany
| |
Collapse
|
5
|
Homenta H, Julyadharma J, Susianti H, Noorhamdani N, Santosaningsih D. Molecular Epidemiology of Clinical Carbapenem-Resistant Acinetobacter baumannii-calcoaceticus complex Isolates in Tertiary Care Hospitals in Java and Sulawesi Islands, Indonesia. Trop Med Infect Dis 2022; 7:tropicalmed7100277. [PMID: 36288018 PMCID: PMC9607243 DOI: 10.3390/tropicalmed7100277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 01/24/2023] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (A. baumannii)-calcoaceticus complex (CRAb-cc) is an important pathogen causing nosocomial infections worldwide; however, molecular epidemiology of the A. baumannii-calcoaceticus complex in Indonesian hospitals is scarce. This study aimed to determine the clonal relatedness of CRAb-cc in two tertiary care hospitals in Malang and Manado in Indonesia. The CRAb-cc isolates from routine clinical cultures in two tertiary care hospitals in Malang and Manado were identified using the Vitek2® system (bioMérieux, Lyon, France). Multi-locus variable-number tandem-repeat analysis (MLVA) typing, multi-locus sequence typing (MLST), clonal complex (CC), and phylogenetic tree analysis were conducted for a subset of isolates. Seventy-three CRAb-cc isolates were collected. The CRAb-cc isolates were frequently found among lower-respiratory-tract specimens. We detected the MLVA type (MT) 1, MT3, and MT4 CRAB-cc isolates belonging to the sequence type (ST) 642, and CC1 was the predominant clone in this study. In conclusion, we identified the clonal relatedness of A. baumannii-calcoaceticus complex isolates in two tertiary care hospitals in Malang and Manado in Indonesia. Further study is required to investigate the clinical importance and distribution of ST642 in Indonesian hospitals for developing prevention and control measures.
Collapse
Affiliation(s)
- Heriyannis Homenta
- Doctoral Program in Medical Science, Faculty of Medicine, Universitas Brawijaya, Malang 65145, Indonesia
- Department of Clinical Microbiology, Faculty of Medicine, Sam Ratulangi University, Manado 95163, Indonesia
| | - Julyadharma Julyadharma
- Laboratory of Clinical Microbiology, Prof. Dr. R. D. Kandou Hospital, Manado 95163, Indonesia
| | - Hani Susianti
- Department of Clinical Pathology, Faculty of Medicine, Brawijaya University, Malang 65145, Indonesia
- Department of Clinical Pathology, Dr. Saiful Anwar Hospital, Malang 65112, Indonesia
| | - Noorhamdani Noorhamdani
- Department of Clinical Microbiology, Faculty of Medicine, Brawijaya University, Malang 65145, Indonesia
| | - Dewi Santosaningsih
- Department of Clinical Microbiology, Faculty of Medicine, Brawijaya University, Malang 65145, Indonesia
- Department of Clinical Microbiology, Dr. Saiful Anwar Hospital, Malang 65112, Indonesia
- Correspondence:
| |
Collapse
|
6
|
Hamed SM, Hussein AFA, Al-Agamy MH, Radwan HH, Zafer MM. Genetic Configuration of Genomic Resistance Islands in Acinetobacter baumannii Clinical Isolates From Egypt. Front Microbiol 2022; 13:878912. [PMID: 35935207 PMCID: PMC9353178 DOI: 10.3389/fmicb.2022.878912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
In Acinetobacter baumannii (A. baumannii), a wide repertoire of resistance genes is often carried within genomic resistance islands (RIs), particularly in high-risk global clones (GCs). As the first in Egypt, the current study aimed at exploring the diversity and genetic configuration of RIs in the clinical isolates of A. baumannii. For this purpose, draft genomes of 18 isolates were generated by Illumina sequencing. Disk diffusion susceptibility profiling revealed multidrug resistance (MDR) and extensive drug resistance (XDR) phenotypes in 27.7 and 72.2%, respectively. The highest susceptibility was noted for tigecycline (100.0%) followed by colistin (94.4%), for which an MIC50 of 0.25 μg/ml was recorded by the broth microdilution assay. Sequence typing (ST) showed that the majority of the isolates belonged to high-risk global clones (GC1, GC2, and GC9). A novel Oxford sequence type (ST2329) that also formed a novel clonal complex was submitted to the PubMLST database. A novel blaADC variant (blaADC−258) was also identified in strain M18 (ST85Pas/1089Oxf). In addition to a wide array of resistance determinants, whole-genome sequencing (WGS) disclosed at least nine configurations of genomic RIs distributed over 16/18 isolates. GC2 isolates accumulated the largest number of RIs (three RIs/isolate) followed by those that belong to GC1 (two RIs/isolate). In addition to Tn6022 (44.4%), the comM gene was interrupted by AbaR4 (5.5%) and three variants of A. baumanniigenomic resistance island 1(AbGRI)-type RIs (44.4%), including AbaR4b (16.6%) and two novel configurations of AbGRI1-like RIs (22.2%). Three of which (AbaR4, AbaR4b, and AbGRI1-like-2) carried blaOXA−23 within Tn2006. With less abundance (38.8%), IS26-bound RIs were detected exclusively in GC2 isolates. These included a short version of AbGRI2 (AbGRI2-15) carrying the genes blaTEM−1 and aphA1 and two variants of AbGRI3 RIs carrying up to seven resistance genes [mphE-msrE-armA-sul1-aadA1-catB8-aacA4]. Confined to GC1 (22.2%), sulfonamide resistance was acquired by an ISAba1 bracketed GIsul2 RI. An additional RI (RI-PER-7) was also identified on a plasmid carried by strain M03. Among others, RI-PER-7 carried the resistance genes armA and blaPER−7. Here, we provided a closer view of the diversity and genetic organization of RIs carried by a previously unexplored population of A. baumannii.
Collapse
Affiliation(s)
- Samira M. Hamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Amira F. A. Hussein
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed H. Al-Agamy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Hesham H. Radwan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mai M. Zafer
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
- *Correspondence: Mai M. Zafer
| |
Collapse
|
7
|
Lynch JP, Clark NM, Zhanel GG. Infections Due to Acinetobacter baumannii-calcoaceticus Complex: Escalation of Antimicrobial Resistance and Evolving Treatment Options. Semin Respir Crit Care Med 2022; 43:97-124. [PMID: 35172361 DOI: 10.1055/s-0041-1741019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Bacteria within the genus Acinetobacter (principally A. baumannii-calcoaceticus complex [ABC]) are gram-negative coccobacilli that most often cause infections in nosocomial settings. Community-acquired infections are rare, but may occur in patients with comorbidities, advanced age, diabetes mellitus, chronic lung or renal disease, malignancy, or impaired immunity. Most common sites of infections include blood stream, skin/soft-tissue/surgical wounds, ventilator-associated pneumonia, orthopaedic or neurosurgical procedures, and urinary tract. Acinetobacter species are intrinsically resistant to multiple antimicrobials, and have a remarkable ability to acquire new resistance determinants via plasmids, transposons, integrons, and resistance islands. Since the 1990s, antimicrobial resistance (AMR) has escalated dramatically among ABC. Global spread of multidrug-resistant (MDR)-ABC strains reflects dissemination of a few clones between hospitals, geographic regions, and continents; excessive antibiotic use amplifies this spread. Many isolates are resistant to all antimicrobials except colistimethate sodium and tetracyclines (minocycline or tigecycline); some infections are untreatable with existing antimicrobial agents. AMR poses a serious threat to effectively treat or prevent ABC infections. Strategies to curtail environmental colonization with MDR-ABC require aggressive infection-control efforts and cohorting of infected patients. Thoughtful antibiotic strategies are essential to limit the spread of MDR-ABC. Optimal therapy will likely require combination antimicrobial therapy with existing antibiotics as well as development of novel antibiotic classes.
Collapse
Affiliation(s)
- Joseph P Lynch
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology; Department of Medicine; The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Nina M Clark
- Division of Infectious Diseases, Department of Medicine, Loyola University Medical Center, Maywood, Illinois
| | - George G Zhanel
- Department of Medical Microbiology/Infectious Diseases, University of Manitoba, Max Rady College of Medicine, Winnipeg, Manitoba, Canada
| |
Collapse
|
8
|
Abstract
Infection by multidrug-resistant (MDR) Acinetobacter baumannii is one of the major causes of hospital-acquired infections worldwide. The ability of A. baumannii to survive in adverse conditions as well as its extensive antimicrobial resistance make it one of the most difficult to treat pathogens associated with high mortality rates. The aim of this study was to investigate MDR A. baumannii that has spread among pediatric cancer patients in the Children’s Cancer Hospital Egypt 57357. Whole-genome sequencing was used to characterize 31 MDR A. baumannii clinical isolates. Phenotypically, the isolates were MDR, with four isolates showing resistance to the last-resort antibiotic colistin. Multilocus sequence typing showed the presence of eight clonal groups, two of which were previously reported to cause outbreaks in Egypt, and one novel sequence type (ST), Oxf-ST2246. Identification of the circulating plasmids showed the presence of two plasmid lineages in the isolates, strongly governed by sequence type. A large number of antimicrobial genes with a range of resistance mechanisms were detected in the isolates, including β-lactamases and antibiotic efflux pumps. Analysis of insertion sequences (ISs) revealed the presence of ISAba1 and ISAba125 in all the samples, which amplify β-lactamase expression, causing extensive carbapenem resistance. Mutation analysis was used to decipher underlying mutations responsible for colistin resistance and revealed novel mutations in several outer membrane proteins, in addition to previously reported mutations in pmrB. Altogether, understanding the transmissibility of A. baumannii as well as its resistance and virulence mechanisms will help develop novel treatment options for better management of hospital-acquired infections. IMPORTANCEAcinetobacter baumannii represents a major health threat, in particular among immunocompromised cancer patients. The rise in carbapenem-resistant A. baumannii, and the development of resistance to the last-resort antimicrobial agent colistin, complicates the management of A. baumannii outbreaks and increases mortality rates. Here, we investigate 31 multidrug resistant A. baumannii isolates from pediatric cancer patients in Children’s Cancer Hospital Egypt (CCHE) 57357 via whole-genome sequencing. Multilocus sequence typing (MLST) showed the presence of eight clonal groups including a novel sequence type. In silico detection of antimicrobial-resistant genes and virulence factors revealed a strong correlation between certain virulence genes and mortality as well as several point mutations in outer membrane proteins contributing to colistin resistance. Detection of CRISPR/Cas sequences in the majority of the samples was strongly correlated with the presence of prophage sequences and associated with failure of bacteriophage therapy. Altogether, understanding the genetic makeup of circulating A. baumannii is essential for better management of outbreaks.
Collapse
|
9
|
Li Z, Xie J, Yang J, Liu S, Ding Z, Hao J, Ding Y, Zeng Z, Liu J. Pathogenic Characteristics and Risk Factors for ESKAPE Pathogens Infection in Burn Patients. Infect Drug Resist 2021; 14:4727-4738. [PMID: 34795489 PMCID: PMC8594746 DOI: 10.2147/idr.s338627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/28/2021] [Indexed: 12/14/2022] Open
Abstract
Objective This study aimed to determine the clinical manifestations, antimicrobial resistance, molecular characteristics, and risk factors for ESKAPE pathogens infection in burn patients. Methods A retrospective study of 187 burn patients infected with ESKAPE pathogens was conducted at the Department of Plastic and Burn Surgery of the Affiliated Hospital of Southwest Medical University (Luzhou, China) from October 2018 to June 2021. All strains were identified using a MicroScan WalkAway 96 Plus System, and antimicrobial susceptibilities were determined using the VITEK system or the disk diffusion method. The antimicrobial resistance genes of multi-drug resistant ESKAPE (MDR-ESKAPE) were detected by polymerase chain reaction (PCR). The multivariable logistic regression analysis was used to estimate the risk factors for ESKAPE infection and MDR-ESKAPE infection. Results A total of 255 strains were isolated in various types of clinical specimens from 187 burn patients, of which 47.5% were ESKAPE pathogens (121/255). Among these, MDR-ESKAPE pathogens accounted for 55% (67/121). Additionally, aph3ʹIII, mecA, blaSHV, blaTEM, blaPDC, and blaSHV were the most prevalent genes detected in Enterococcus faecalis, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp., respectively. The independent risk factors for ESKAPE infection were total body surface area (TBSA) >30–50% (odds ratio [OR] = 10.428; 95% confidence interval [CI], 2.047 to 53.108), TBSA >50% (OR = 15.534; 95% CI, 1.489 to 162.021), and parenteral nutrition (OR = 3.597; 95% CI, 1.098 to 11.787). No independent risk factors were found for MDR-ESKAPE infection. Conclusion Clinical staff should be alert to the risk of nosocomial infection with ESKAPE pathogens in burn patients receiving parenteral nutrition and under TBSA >30%. Full attention should also be paid to the ESKAPE resistance, strict adherence to infection control protocols for the rational use of antimicrobial agents, and enhanced clinical standardization of antimicrobial agents management.
Collapse
Affiliation(s)
- Zhaoyinqian Li
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jingling Xie
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jiaxin Yang
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Siyi Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Zixuan Ding
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jingchen Hao
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Yinhuan Ding
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Zhangrui Zeng
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| |
Collapse
|
10
|
Abozahra R, Abdelhamid SM, Elsheredy AG, Abdulwahab KE, Baraka K. Genotyping and Molecular Characterization of Carbapenem-resistant Acinetobacter baumannii Strains Isolated from Intensive Care Unit Patients. MICROBIOLOGY AND BIOTECHNOLOGY LETTERS 2021; 49:239-248. [DOI: 10.48022/mbl.2008.08012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 01/03/2025]
|
11
|
El-Kholy A, El-Mahallawy HA, Elsharnouby N, Abdel Aziz M, Helmy AM, Kotb R. Landscape of Multidrug-Resistant Gram-Negative Infections in Egypt: Survey and Literature Review. Infect Drug Resist 2021; 14:1905-1920. [PMID: 34079301 PMCID: PMC8163635 DOI: 10.2147/idr.s298920] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/26/2021] [Indexed: 12/19/2022] Open
Abstract
Purpose This article is the first to review published reports on the prevalence of multidrug-resistant (MDR) gram-negative infections in Egypt and gain insights into antimicrobial resistance (AMR) surveillance and susceptibility testing capabilities of Egyptian medical centers. Materials and Methods A literature review and online survey were conducted. Results The online survey and literature review reported high prevalence of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae (19–85.24% of E. coli, and 10–87% of K. pneumoniae), carbapenem-resistant Enterobacteriaceae (35–100% of K. pneumoniae and 13.8–100% of E. coli), carbapenem-resistant Acinetobacter baumannii (10–100%), and carbapenem-resistant Pseudomonas aeruginosa (15–70%) in Egypt. Risk factors for MDR Gram-negative infections were ventilated patients (67.4%), prolonged hospitalization (53.5%) and chronic disease (34.9%). Although antimicrobial surveillance capabilities were deemed at least moderate in most centers, lack of access to rapid AMR diagnostics, lack of use of local epidemiological data in treatment decision-making, lack of antimicrobial stewardship (AMS) programs, and lack of risk prediction tools were commonly reported by respondents. Conclusion This survey has highlighted the presence of knowledge gaps as well as limitations in the surveillance and monitoring capabilities of AMR in Egypt, with most laboratories lacking rapid diagnostics and molecular testing. Future efforts in Egypt should focus on tackling these issues via nationwide initiatives, including understanding the AMR trends in the country, capacity building of laboratories and their staff to correctly and timely identify AMR, and introducing newer antimicrobials for targeting emerging resistance mechanisms in Gram-negative species.
Collapse
Affiliation(s)
- Amani El-Kholy
- Department of Clinical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hadir A El-Mahallawy
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Noha Elsharnouby
- Department of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | | | - Ramy Kotb
- Pfizer Africa & Middle East Medical Affairs, Dubai, United Arab Emirates
| |
Collapse
|
12
|
Wasfi R, Rasslan F, Hassan SS, Ashour HM, Abd El-Rahman OA. Co-Existence of Carbapenemase-Encoding Genes in Acinetobacter baumannii from Cancer Patients. Infect Dis Ther 2021; 10:291-305. [PMID: 33180321 PMCID: PMC7954895 DOI: 10.1007/s40121-020-00369-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 10/24/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Acinetobacter baumannii is an opportunistic pathogen, which can acquire new resistance genes. Infections by carbapenem-resistant A. baumannii (CRAB) in cancer patients cause high mortality. METHODS CRAB isolates from cancer patients were screened for carbapenemase-encoding genes that belong to Ambler classes (A), (B), and (D), followed by genotypic characterization by enterobacterial-repetitive-Intergenic-consensus-polymerase chain reaction (ERIC-PCR) and multilocus-sequence-typing (MLST). RESULTS A total of 94.1% of CRAB isolates co-harbored more than one carbapenemase-encoding gene. The genes blaNDM, blaOXA-23-like, and blaKPC showed the highest prevalence, with rates of 23 (67.7%), 19 (55.9%), and 17 (50%), respectively. ERIC-PCR revealed 19 patterns (grouped into 9 clusters). MLST analysis identified different sequence types (STs) (ST-268, ST-195, ST-1114, and ST-1632) that belong to the highly resistant easily spreadable International clone II (IC II). Genotype diversity indicated the dissemination of carbapenem-hydrolyzing, β-lactamase-encoding genes among genetically unrelated isolates. We observed a high prevalence of metallo-β-lactamase (MBL)-encoding genes (including the highly-resistant blaNDM gene that is capable of horizontal gene transfer) and of isolates harboring multiple carbapenemase-encoding genes from different classes. CONCLUSION The findings are alarming and call for measures to prevent and control the spread of MBL-encoding genes among bacteria causing infections in cancer patients and other immunocompromised patient populations.
Collapse
Affiliation(s)
- Reham Wasfi
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Fatma Rasslan
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Safaa S Hassan
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Hossam M Ashour
- Department of Integrative Biology, College of Arts and Sciences, University of South Florida, St. Petersburg, FL, USA.
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Ola A Abd El-Rahman
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
13
|
Molecular characterization and antibiotic resistance of Acinetobacter baumannii in cerebrospinal fluid and blood. PLoS One 2021; 16:e0247418. [PMID: 33617547 PMCID: PMC7899338 DOI: 10.1371/journal.pone.0247418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 02/07/2021] [Indexed: 01/22/2023] Open
Abstract
The increasing prevalence of carbapenem-resistant Acinetobacter baumannii (CRAB) caused nosocomial infections generate significant comorbidity and can cause death among patients. Current treatment options are limited. These infections pose great difficulties for infection control and clinical treatment. To identify the antimicrobial resistance, carbapenemases and genetic relatedness of Acinetobacter baumannii isolates from cerebrospinal fluid (CSF) and blood, a total of 50 nonrepetitive CSF isolates and 44 blood isolates were collected. The resistance phenotypes were determined, and polymerase chain reaction (PCR) was performed to examine the mechanisms of carbapenem resistance. Finally, multilocus sequence typing (MLST) was conducted to determine the genetic relatedness of these isolates. It was observed that 88 of the 94 collected isolates were resistant to imipenem or meropenem. Among them, the blaOXA-23 gene was the most prevalent carbapenemase gene, with an observed detection rate of 91.5% (86/94), followed by the blaOXA-24 gene with a 2.1% detection rate (2/94). Among all carbapenem-resistant Acinetobacter baumannii (CRAB) observations, isolates with the blaOXA-23 gene were resistant to both imipenem and meropenem. Interestingly, isolates positive for the blaOXA-24 gene but negative for the blaOXA-23 gene showed an imipenem-sensitive but meropenem-resistant phenotype. The MLST analysis identified 21 different sequence types (STs), with ST195, ST540 and ST208 most frequently detected (25.5%, 12.8% and 11.7%, respectively). 80 of the 94 isolates (85.1%) were clustered into CC92 which showed a carbapenem resistance phenotype (except AB13). Five novel STs were detected, and most of them belong to CRAB. In conclusion, these findings provide additional observations and epidemiological data of CSF and blood A. baumannii strains, which may improve future infection-control measures and aid in potential clinical treatments in hospitals and other clinical settings.
Collapse
|
14
|
Vijayakumar S, Wattal C, J K O, Bhattacharya S, Vasudevan K, Anandan S, Walia K, Veeraraghavan B. Insights into the complete genomes of carbapenem-resistant Acinetobacter baumannii harbouring bla OXA-23, bla OXA-420 and bla NDM-1 genes using a hybrid-assembly approach. Access Microbiol 2020; 2:acmi000140. [PMID: 32974602 PMCID: PMC7497828 DOI: 10.1099/acmi.0.000140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 05/10/2020] [Indexed: 12/20/2022] Open
Abstract
Carbapenem resistance in Acinetobacter baumannii is due to blaOXA-23, which is endemic in India. Recently, the sporadic presence of blaOXA-58 as well as the occurrence of dual carbapenemases were observed. The mobility as well as the dissemination of these resistance genes were mainly mediated by various mobile genetic elements. The present study was aimed at characterizing the genetic arrangement of blaOXA-23, blaNDM-1 and blaOXA-58 identified in two complete genomes of carbapenem-resistant A. baumannii (CRAB). Complete genomes obtained using a hybrid-assembly approach revealed the accurate arrangement of Tn2006 with blaOXA-23, ISAba125 with blaNDM and ISAba3 with blaOXA-58. In addition, the association of IntI1 integrase with the blaCARB-2 gene and several virulence factors required for type-IV pili assembly, motility and biofilm formation have been identified. The current study provided deeper insight into the complete characterization of insertion sequences and transposons associated with the carbapenem-resistant genes using short reads of IonTorrent PGM and long reads of MinIon in A. baumannii.
Collapse
Affiliation(s)
| | | | - Oberoi J K
- Sir Ganga Ram Hospital, New Delhi, India
| | | | | | | | - Kamini Walia
- Indian Council of Medical Research, New Delhi, India
| | | |
Collapse
|
15
|
Genovese C, La Fauci V, D'Amato S, Squeri A, Anzalone C, Costa GB, Fedele F, Squeri R. Molecular epidemiology of antimicrobial resistant microorganisms in the 21th century: a review of the literature. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:256-273. [PMID: 32420962 PMCID: PMC7569612 DOI: 10.23750/abm.v91i2.9176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/10/2020] [Indexed: 12/26/2022]
Abstract
Healthcare-associated infections (HAIs) are the most frequent and severe complication acquired in healthcare settings with high impact in terms of morbidity, mortality and costs. Many bacteria could be implicated in these infections, but, expecially multidrug resistance bacteria could play an important role. Many microbial typing technologies have been developed until to the the bacterial whole-genome sequencing and the choice of a molecular typing method therefore will depend on the skill level and resources of the laboratory and the aim and scale of the investigation. In several studies the molecular investigation of pathogens involved in HAIs was performed with many microorganisms identified as causative agents such as Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, Clostridium difficile, Acinetobacter spp., Enterobacter spp., Enterococcus spp., Staphylococcus aureus and several more minor species. Here, we will describe the most and least frequently reported clonal complex, sequence types and ribotypes with their worldwide geographic distribution for the most important species involved in HAIs.
Collapse
Affiliation(s)
- Cristina Genovese
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy.
| | - Vincenza La Fauci
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy.
| | - Smeralda D'Amato
- Postgraduate Medical School in Hygiene and Preventive Medicine, University of Messina, Italy.
| | - Andrea Squeri
- Department of Human Pathology of the adult and developmental age Gaetano Barresi, University of Messina, Messina, Italy.
| | - Carmelina Anzalone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy.
| | - Gaetano Bruno Costa
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy.
| | - Francesco Fedele
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy.
| | | |
Collapse
|
16
|
Hamidian M, Nigro SJ. Emergence, molecular mechanisms and global spread of carbapenem-resistant Acinetobacter baumannii. Microb Genom 2020; 5. [PMID: 31599224 PMCID: PMC6861865 DOI: 10.1099/mgen.0.000306] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Acinetobacter baumannii is a nosocomial pathogen that has emerged as a global threat because of high levels of resistance to many antibiotics, particularly those considered to be last-resort antibiotics, such as carbapenems. Although alterations in the efflux pump and outer membrane proteins can cause carbapenem resistance, the main mechanism is the acquisition of carbapenem-hydrolyzing oxacillinase-encoding genes. Of these, oxa23 is by far the most widespread in most countries, while oxa24 and oxa58 appear to be dominant in specific regions. Historically, much of the global spread of carbapenem resistance has been due to the dissemination of two major clones, known as global clones 1 and 2, although new lineages are now common in some parts of the world. The analysis of all publicly available genome sequences performed here indicates that ST2, ST1, ST79 and ST25 account for over 71 % of all genomes sequenced to date, with ST2 by far the most dominant type and oxa23 the most widespread carbapenem resistance determinant globally, regardless of clonal type. Whilst this highlights the global spread of ST1 and ST2, and the dominance of oxa23 in both clones, it could also be a result of preferential selection of carbapenem-resistant strains, which mainly belong to the two major clones. Furthermore, ~70 % of the sequenced strains have been isolated from five countries, namely the USA, PR China, Australia, Thailand and Pakistan, with only a limited number from other countries. These genomes are a vital resource, but it is currently difficult to draw an accurate global picture of this important superbug, highlighting the need for more comprehensive genome sequence data and genomic analysis.
Collapse
Affiliation(s)
- Mohammad Hamidian
- The ithree institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Steven J Nigro
- Communicable Diseases Branch, Health Protection NSW, St Leonards, NSW 2065, Australia
| |
Collapse
|
17
|
El-Badawy MF, El-Far SW, Althobaiti SS, Abou-Elazm FI, Shohayeb MM. The First Egyptian Report Showing the Co-Existence of bla NDM-25, bla OXA-23, bla OXA-181, and bla GES-1 Among Carbapenem-Resistant K. pneumoniae Clinical Isolates Genotyped by BOX-PCR. Infect Drug Resist 2020; 13:1237-1250. [PMID: 32425561 PMCID: PMC7196799 DOI: 10.2147/idr.s244064] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 04/04/2020] [Indexed: 12/18/2022] Open
Abstract
Background and Objective The emergence of carbapenem-resistant K. pneumoniae (CRKP) continues to escalate and is alarming because of the emergence of pan drug-resistant strains. The objective of this study was to investigate the existence of 12 carbapenemase genes among CRKP clinical isolates. Methods Ninety-six Klebsiella spp. clinical isolates were collected. The isolates were identified phenotypically and genotypically. These isolates were screened for susceptibility to 24 different antibiotics. The modified Hodge test (MHT) and the Carba Nordmann/Poirel (NP) test were used to phenotypically screen carbapenem-resistant strains for carbapenemase production. Phenotypic characterization of carbapenemases was performed using the combined disk synergy test (CDST). Additionally, the presence of 12 carbapenemase genes in CRKP isolates was investigated. The DNA sequence of bla NDM and bla GES genes was determined. The BOX-PCR technique was used to determine the clonal relationship between CRKP isolates. Results All carbapenem-resistant isolates were related to K. pneumoniae. Susceptibility testing showed that 19.79% (19/96) of the collected isolates were carbapenem-resistant. Of the CRKP isolates, 68.42% (13/19) tested positive for the MHT and Carba NP test. CDST showed that 42.11% (8/19), 63.16% (12/19), 47.37% (9/19), and 73.68% (14/19) of the CRKP isolates tested positive for the inhibitory effect of clavulanic acid, sulbactam, phenylboronic acid, and tazobactam, respectively, while 84.21% (16/19) and 68.42% (13/16) tested positive for the inhibitory effect of EDTA and mercaptopropionic acid, respectively. It was found that 10.53% (2/19) of the isolates tested positive for the inhibitory effect of sodium chloride. Molecular investigation of carbapenemases showed that 26.32% (5/19), 73.68% (14/19), 21.05% (4/19), 10.53% (2/19), and 5.26% (1/19) of the isolates tested positive for bla NDM, bla OXA-48, bla OXA-181, bla OXA-51, and bla OXA-23, respectively. None of the isolates tested positive for bla OXA-40 and bla OXA-58. Two allelic variants of bla NDM (bla NDM-1 and bla NDM-25) were detected. BOX-PCR revealed high clonal relatedness between CRKP isolates. Conclusion MHT was more sensitive than Carba NP test for evaluating carbapenemase production and class D carbapenemase genes were the most prevalent of the 12 carbapenemase genes that were evaluated.
Collapse
Affiliation(s)
- Mohamed F El-Badawy
- Division of Pharmaceutical Microbiology, Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif, Kingdom of Saudi Arabia.,Department of Microbiology and Immunology, Faculty of Pharmacy, Misr University for Science and Technology, 6th of October City, Egypt
| | - Shaymaa W El-Far
- Division of Pharmaceutical Microbiology, Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif, Kingdom of Saudi Arabia
| | | | - Fatma I Abou-Elazm
- Department of Microbiology and Immunology, Faculty of Pharmacy, Misr University for Science and Technology, 6th of October City, Egypt
| | - Mohamed M Shohayeb
- Department of Microbiology and Biotechnology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| |
Collapse
|
18
|
Dandachi I, Chaddad A, Hanna J, Matta J, Daoud Z. Understanding the Epidemiology of Multi-Drug Resistant Gram-Negative Bacilli in the Middle East Using a One Health Approach. Front Microbiol 2019; 10:1941. [PMID: 31507558 PMCID: PMC6716069 DOI: 10.3389/fmicb.2019.01941] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 08/07/2019] [Indexed: 12/16/2022] Open
Abstract
In the last decade, extended-spectrum cephalosporin and carbapenem resistant Gram-negative bacilli (GNB) have been extensively reported in the literature as being disseminated in humans but also in animals and the environment. These resistant organisms often cause treatment challenges due to their wide spectrum of antibiotic resistance. With the emergence of colistin resistance in animals and its subsequent detection in humans, the situation has worsened. Several studies reported the transmission of resistant organisms from animals to humans. Studies from the middle east highlight the spread of resistant organisms in hospitals and to a lesser extent in livestock and the environment. In view of the recent socio-economical conflicts that these countries are facing in addition to the constant population mobilization; we attempt in this review to highlight the gaps of the prevalence of resistance, antibiotic consumption reports, infection control measures and other risk factors contributing in particular to the spread of resistance in these countries. In hospitals, carbapenemases producers appear to be dominant. In contrast, extended spectrum beta lactamases (ESBL) and colistin resistance are becoming a serious problem in animals. This is mainly due to the continuous use of colistin in veterinary medicine even though it is now abandoned in the human sphere. In the environment, despite the small number of reports, ESBL and carbapenemases producers were both detected. This highlights the importance of the latter as a bridge between humans and animals in the transmission chain. In this review, we note that in the majority of the Middle Eastern area, little is known about the level of antibiotic consumption especially in the community and animal farms. Furthermore, some countries are currently facing issues with immigrants, poverty and poor living conditions which has been imposed by the civil war crisis. This all greatly facilitates the dissemination of resistance in all environments. In the one health concept, this work re-emphasizes the need to have global intervention measures to avoid dissemination of antibiotic resistance in humans, animals and the environment in Middle Eastern countries.
Collapse
Affiliation(s)
- Iman Dandachi
- Faculty of Medicine and Medical Sciences, Clinical Microbiology Laboratory, University of Balamand, Beirut, Lebanon
| | - Amer Chaddad
- Faculty of Medicine and Medical Sciences, Clinical Microbiology Laboratory, University of Balamand, Beirut, Lebanon
| | - Jason Hanna
- Faculty of Medicine and Medical Sciences, Clinical Microbiology Laboratory, University of Balamand, Beirut, Lebanon
| | - Jessika Matta
- Faculty of Medicine and Medical Sciences, Clinical Microbiology Laboratory, University of Balamand, Beirut, Lebanon
| | - Ziad Daoud
- Faculty of Medicine and Medical Sciences, Clinical Microbiology Laboratory, University of Balamand, Beirut, Lebanon
- Division of Clinical Microbiology, Saint George Hospital University Medical Center, Beirut, Lebanon
| |
Collapse
|
19
|
Molecular epidemiology and genetic characterisation of carbapenem-resistant Acinetobacter baumannii isolates from Guangdong Province, South China. J Glob Antimicrob Resist 2018; 17:84-89. [PMID: 30445207 DOI: 10.1016/j.jgar.2018.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/21/2018] [Accepted: 11/05/2018] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES Carbapenem-resistant Acinetobacter baumannii (CRAB) has become a worldwide issue. This study aimed to characterise the epidemiology and genetic relationships of A. baumannii isolates in Guangdong Province, China. METHODS CRAB isolates were collected from five municipal hospitals from June-December 2017. The 16S-23S rRNA intergenic spacer region was used for confirmation of strain identity. Antimicrobial susceptibility testing and the CarbAcineto NP test were performed to analyse the resistance spectrum and carbapenemase production of the isolates. PCR-based assays were used to detect β-lactamase genes and related mobile genetic elements. Genetic diversity among the isolates was analysed by enterobacterial repetitive intergenic consensus (ERIC)-PCR, multilocus sequence typing (MLST) and multiplex PCR. RESULTS A total of 122 isolates were confirmed as A. baumannii; all were resistant to the tested antibiotics except for tigecycline and colistin. The CarbAcineto NP test showed that 93.4% of the isolates produced a carbapenemase. blaOXA-23-like and extended-spectrum β-lactamase-encoding genes were found by PCR in 94.3% and 91.8% of the isolates, respectively. Furthermore, the genetic environment of blaOXA-23-like was mainly associated with transposons Tn2008 (46.1%), Tn2006 (27.0%) and Tn2009 (20.9%). MLST identified six existing sequence types (STs) and three novel STs, of which ST195 (35.7%) and ST208 (32.1%) were the most common, belonging to clonal group 92 and European clone II. CONCLUSION This study suggests that co-production of β-lactamases was the major resistance mechanism of CRAB isolates. Dissemination of blaOXA-23-like may be facilitated by transposable elements. ST195 and ST208 were the predominant epidemic types of A. baumannii in Guangdong Province.
Collapse
|
20
|
Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res 2018; 3:124. [PMID: 30345391 PMCID: PMC6192448 DOI: 10.12688/wellcomeopenres.14826.1] [Citation(s) in RCA: 1741] [Impact Index Per Article: 248.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2018] [Indexed: 12/29/2022] Open
Abstract
The
PubMLST.org website hosts a collection of open-access, curated databases that integrate population sequence data with provenance and phenotype information for over 100 different microbial species and genera. Although the PubMLST website was conceived as part of the development of the first multi-locus sequence typing (MLST) scheme in 1998 the software it uses, the Bacterial Isolate Genome Sequence database (BIGSdb, published in 2010), enables PubMLST to include all levels of sequence data, from single gene sequences up to and including complete, finished genomes. Here we describe developments in the BIGSdb software made from publication to June 2018 and show how the platform realises microbial population genomics for a wide range of applications. The system is based on the gene-by-gene analysis of microbial genomes, with each deposited sequence annotated and curated to identify the genes present and systematically catalogue their variation. Originally intended as a means of characterising isolates with typing schemes, the synthesis of sequences and records of genetic variation with provenance and phenotype data permits highly scalable (whole genome sequence data for tens of thousands of isolates) means of addressing a wide range of functional questions, including: the prediction of antimicrobial resistance; likely cross-reactivity with vaccine antigens; and the functional activities of different variants that lead to key phenotypes. There are no limitations to the number of sequences, genetic loci, allelic variants or schemes (combinations of loci) that can be included, enabling each database to represent an expanding catalogue of the genetic variation of the population in question. In addition to providing web-accessible analyses and links to third-party analysis and visualisation tools, the BIGSdb software includes a RESTful application programming interface (API) that enables access to all the underlying data for third-party applications and data analysis pipelines.
Collapse
Affiliation(s)
- Keith A Jolley
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | - James E Bray
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | | |
Collapse
|
21
|
Abdulzahra AT, Khalil MAF, Elkhatib WF. First report of colistin resistance among carbapenem-resistant Acinetobacter baumannii isolates recovered from hospitalized patients in Egypt. New Microbes New Infect 2018; 26:53-58. [PMID: 30224972 PMCID: PMC6138847 DOI: 10.1016/j.nmni.2018.08.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 07/29/2018] [Accepted: 08/03/2018] [Indexed: 12/25/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogen that poses an increasing threat in the health-care community. Colistin is one of the promising options for treatment of multidrug-resistant A. baumannii. The current study investigated the emergence of colistin resistance among carbapenem-resistant strains of A. baumannii in Egypt. It involved identification of clinically recovered A. baumannii isolates using the VITEK-2 system, and screening of their antimicrobial susceptibilities using broth microdilution techniques. Characterizations of carbapenemase and 16S rRNA methyltransferase genes were performed using PCR. Colistin-resistance determinants were characterized by sequencing. Carbapenem-resistant A. baumannii isolates (n = 40) showed resistance to amoxicillin-clavulanic acid, cefotaxime, gentamicin and amikacin. Most isolates revealed resistance to ciprofloxacin (95%; n = 38) and co-trimoxazole (92.5%; n = 37). Resistance to tobramycin and doxycycline was 80% (n = 32) and 62.5% (n = 25), respectively. Only two A. baumannii isolates demonstrated colistin resistance. Carbapenemase activity was tested by modified Hodge test and 78% of isolates were positive. All isolates carried blaOXA-51-like genes whereas bla-OXA-23 was detected in 80% (n = 32) of isolates. Among 16S rRNA methylase genes, armA was detected in 22.5% (n = 9) of the isolates. Analyses of lpxA, lpxC, lpxD and pmrCAB genetic sequences suggest that colistin resistance could be attributed to mutations in pmrCAB genes. Alarmingly, colistin resistance was associated with high levels of resistance to other antimicrobials. The current findings represent a serious health-care problem capable of restraining future therapeutic options.
Collapse
Affiliation(s)
- Amani T Abdulzahra
- Department of Microbiology & Immunology, Faculty of Pharmacy, Ain Shams University, African Union Organization St Abbassia, Cairo, Egypt
| | - Mahmoud A F Khalil
- Department of Microbiology and Immunology, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| | - Walid F Elkhatib
- Department of Microbiology & Immunology, Faculty of Pharmacy, Ain Shams University, African Union Organization St Abbassia, Cairo, Egypt
| |
Collapse
|