1
|
Chen Z, Gou Q, Yuan Y, Zhang X, Zhao Z, Liao J, Zeng X, Jing H, Jiang S, Zhang W, Zeng H, Huang W, Zou Q, Zhang J. Vaccination with a trivalent Klebsiella pneumoniae vaccine confers protection in a murine model of pneumonia. Vaccine 2024; 42:126217. [PMID: 39163713 DOI: 10.1016/j.vaccine.2024.126217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/01/2024] [Accepted: 08/08/2024] [Indexed: 08/22/2024]
Abstract
Klebsiella pneumoniae (K. pneumoniae) is an opportunistic pathogen and the major cause of healthcare-associated infections, which are increasingly complicated by the prevalence of highly invasive and hyper-virulent K. pneumoniae strains, necessitating the development of alternative strategies for combatting infections caused by this bacterium. In this study, we successfully constructed a fusion antigen called KP-Ag1, comprising three antigens (GlnH, FimA, and KPN_00466) that were previously identified through reverse vaccinology. Immunization with KP-Ag1 formulated with Al(OH)3 adjuvant elicited robust humoral and cellular immune response in mice, and conferred protective immunity in a murine model of K. pneumoniae lung infection. Further analysis of serum IgG subtypes from mice immunized with KP-Ag1 revealed a predominant IgG1 response, indicating that KP-Ag1 predominantly induces a Th2-biased immune response. Additionally, opsonophagocytic killing assay suggested that humoral immune responses play a pivotal role in mediating protection conferred by KP-Ag1. Moreover, KP-Ag1 was found to promote the activation and maturation of BMDCs in vitro, which is essential for subsequent efficient antigen presentation. More importantly, vaccination with KP-Ag1 demonstrated cross-protective efficacy against clinical isolates of K. pneumoniae varying in serotypes, antibiotic resistance, and virulence profiles. Therefore, KP-Ag1 holds promise as a candidate for K. pneumoniae vaccine development.
Collapse
MESH Headings
- Animals
- Klebsiella pneumoniae/immunology
- Klebsiella Infections/prevention & control
- Klebsiella Infections/immunology
- Mice
- Disease Models, Animal
- Antibodies, Bacterial/blood
- Antibodies, Bacterial/immunology
- Bacterial Vaccines/immunology
- Bacterial Vaccines/administration & dosage
- Immunoglobulin G/blood
- Immunoglobulin G/immunology
- Adjuvants, Immunologic/administration & dosage
- Female
- Immunity, Humoral
- Vaccination/methods
- Antigens, Bacterial/immunology
- Pneumonia, Bacterial/prevention & control
- Pneumonia, Bacterial/immunology
- Mice, Inbred BALB C
- Immunity, Cellular
- Cross Protection/immunology
Collapse
Affiliation(s)
- Zhifu Chen
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, PR China
| | - Qiang Gou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, PR China
| | - Yue Yuan
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, PR China
| | - Xiaoli Zhang
- Department of Clinical Hematology, College of Pharmacy, Army Medical University, Chongqing 400038, PR China
| | - Zhuo Zhao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, PR China
| | - Jingwen Liao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, PR China
| | - Xi Zeng
- Department of Pharmacy, General Hospital of Northern Theatre Command, Shenyang 110016, PR China
| | - Haiming Jing
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, PR China
| | - Shichun Jiang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, PR China
| | - Weijun Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, PR China
| | - Hao Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, PR China
| | - Wei Huang
- Department of Medical Laboratory, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, PR China.
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, PR China.
| | - Jinyong Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, PR China.
| |
Collapse
|
2
|
Beig M, Aghamohammad S, Majidzadeh N, Asforooshani MK, Rezaie N, Abed S, Khiavi EHG, Sholeh M. Antibiotic resistance rates in hypervirulent Klebsiella pneumoniae strains: A systematic review and meta-analysis. J Glob Antimicrob Resist 2024; 38:376-388. [PMID: 39069234 DOI: 10.1016/j.jgar.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/26/2024] [Accepted: 06/16/2024] [Indexed: 07/30/2024] Open
Abstract
OBJECTIVES In response to the growing global concerns regarding antibiotic resistance, we conducted a meta-analysis to assess the prevalence of antibiotic resistance in hypervirulent Klebsiella pneumoniae (hvKp) strains. METHODS We conducted a meta-analysis of antibiotic resistance in the hvKp strains. Eligible studies published in English until April 10, 2023, were identified through a systematic search of various databases. After removing duplicates, two authors independently assessed and analysed the relevant publications, and a third author resolved any discrepancies. Data extraction included publication details and key information on antibiotic resistance. Data synthesis employed a random-effects model to account for heterogeneity, and various statistical analyses were conducted using R and the metafor package. RESULTS This meta-analysis of 77 studies from 17 countries revealed the prevalence of antibiotic resistance in hvKp strains. A high resistance rates have been observed against various classes of antibiotics. Ampicillin-sulbactam faced 45.3% resistance, respectively, rendering them largely ineffective. The first-generation cephalosporin cefazolin exhibited a resistance rate of 38.1%, whereas second-generation cefuroxime displayed 26.7% resistance. Third-generation cephalosporins, cefotaxime (65.8%) and ceftazidime (57.1%), and fourth-generation cephalosporins, cefepime (51.3%), showed substantial resistance. The last resort carbapenems, imipenem (45.7%), meropenem (51.0%) and ertapenem (40.6%), were not spared. CONCLUSION This study emphasizes the growing issue of antibiotic resistance in hvKp strains, with notable resistance to both older and newer antibiotics, increasing resistance over time, regional disparities and methodological variations. Effective responses should involve international cooperation, standardized testing and tailored regional interventions.
Collapse
Affiliation(s)
- Masoumeh Beig
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran; Student Research Committee, Pasteur Institute of Iran, Tehran, Iran
| | | | - Nahal Majidzadeh
- Departments of Biological and Biomedical Sciences, Cancer Biomedical Center, Tehran, Iran
| | - Mahshid Khazani Asforooshani
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran; Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Niloofar Rezaie
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Sahar Abed
- Department of Microbial Biotechnology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | | | - Mohammad Sholeh
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran; Student Research Committee, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
3
|
Monteiro ADSS, Cordeiro SM, Reis JN. Virulence Factors in Klebsiella pneumoniae: A Literature Review. Indian J Microbiol 2024; 64:389-401. [PMID: 39011017 PMCID: PMC11246375 DOI: 10.1007/s12088-024-01247-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/28/2024] [Indexed: 07/17/2024] Open
Abstract
Klebsiella pneumoniae, a member of the autochthonous human gut microbiota, utilizes a variety of virulence factors for survival and pathogenesis. Consequently, it is responsible for several human infections, including urinary tract infections, respiratory tract infections, liver abscess, meningitis, bloodstream infections, and medical device-associated infections. The main studied virulence factors in K. pneumoniae are capsule-associated, fimbriae, siderophores, Klebsiella ferric iron uptake, and the ability to metabolize allantoin. They are crucial for virulence and were associated with specific infections in the mice infection model. Notably, these factors are also prevalent in strains from the same infections in humans. However, the type and quantity of virulence factors may vary between strains, which defines the degree of pathogenicity. In this review, we summarize the main virulence factors investigated in K. pneumoniae from different human infections. We also cover the specific identification genes and their prevalence in K. pneumoniae, especially in hypervirulent strains.
Collapse
Affiliation(s)
- Adriano de Souza Santos Monteiro
- Laboratory of Pathology and Molecular Biology (LPBM), Gonçalo Moniz Research Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia Brazil
| | | | - Joice Neves Reis
- Laboratory of Pathology and Molecular Biology (LPBM), Gonçalo Moniz Research Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia Brazil
- Faculty of Pharmacy, Federal University of Bahia, Salvador, Bahia Brazil
| |
Collapse
|
4
|
Hamed SM, Mohamed HO, Ashour HM, Fahmy LI. Comparative genomic analysis of strong biofilm-forming Klebsiella pneumoniae isolates uncovers novel IS Ecp1-mediated chromosomal integration of a full plasmid-like sequence. Infect Dis (Lond) 2024; 56:91-109. [PMID: 37897710 DOI: 10.1080/23744235.2023.2272624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/12/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND The goal of the current study was to elucidate the genomic background of biofilm formation in Klebsiella pneumoniae. METHODS Clinical isolates were screened for biofilm formation using the crystal violet assay. Antimicrobial resistance (AMR) profiles were assessed by disk diffusion and broth microdilution tests. Biofilm formation was correlated to virulence and resistance genes screened by PCR. Draft genomes of three isolates that form strong biofilm were generated by Illumina sequencing. RESULTS Only the siderophore-coding gene iutA was significantly associated with more pronounced biofilm formation. ST1399-KL43-O1/O2v1 and ST11-KL15-O4 were assigned to the multidrug-resistant strain K21 and the extensively drug-resistant strain K237, respectively. ST1999-KL38-O12 was assigned to K57. Correlated with CRISPR/Cas distribution, more plasmid replicons and prophage sequences were identified in K21 and K237 compared to K57. The acquired AMR genes (blaOXA-48, rmtF, aac(6')-Ib and qnrB) and (blaNDM-1, blaCTX-M, aph(3')-VI, qnrS, and aac(6')-Ib-cr) were found in K237 and K21, respectively. The latter showed a novel ISEcp1-mediated chromosomal integration of replicon type IncM1 plasmid-like structure harboring blaCTX-M-14 and aph(3')-VI that uniquely interrupted rcsC. The plasmid-mediated heavy metal resistance genes merACDEPRT and arsABCDR were spotted in K21, which also exclusively carried the acquired virulence genes mrkABCDF and the hypervirulence-associated genes iucABCD-iutA, and rmpA/A2. Pangenome analysis revealed NTUH-K2044 accessory genes most frequently shared with K21. CONCLUSIONS While less virulent to Galleria mellonella than ST1999 (K57), the strong biofilm former, multidrug-resistant, NDM-producer K. pneumoniae K21 (ST1399-KL43-O1/O2v1) carries a novel chromosomally integrated plasmid-like structure and hypervirulence-associated genes and represents a serious threat to countries in the area.
Collapse
Affiliation(s)
- Samira M Hamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Hend O Mohamed
- Department of Biological Control Research, Plant Protection Research Institute, Agricultural Research Center, Giza, Egypt
| | - Hossam M Ashour
- Department of Integrative Biology, College of Arts and Sciences, University of South Florida, St. Petersburg, FL, USA
| | - Lamiaa I Fahmy
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| |
Collapse
|
5
|
Huang J, Chen Y, Li M, Xie S, Tong H, Guo Z, Chen Y. Prognostic models for estimating severity of disease and predicting 30-day mortality of Hypervirulent Klebsiella pneumoniae infections: a bicentric retrospective study. BMC Infect Dis 2023; 23:554. [PMID: 37626308 PMCID: PMC10464203 DOI: 10.1186/s12879-023-08528-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Hypervirulent Klebsiella pneumoniae (hvKP) is emerging globally and can cause various, severe infections in healthy individuals. However, the clinical manifestations of hvKP infections are nonspecific, and there is no gold standard for differentiating hvKP strains. Our objective was to develop prognostic models for estimating severity of disease and predicting 30-day all-cause mortality in patients with hvKP infections. METHODS We enrolled 116 patients diagnosed with hvKP infections and obtained their demographic and clinical data. Taking septic shock and acute respiratory distress syndrome (ARDS) as the primary outcomes for disease severity and 30-day all-cause mortality as the primary outcome for clinical prognosis, we explored the influencing factors and constructed prognostic models. RESULTS The results showed that increased Acute Physiologic and Chronic Health Evaluation (APACHE) II score [odds ratio (OR) = 1.146; 95% confidence interval (CI), 1.059-1.240], decreased albumin (ALB) level (OR = 0.867; 95% CI, 0.758-0.990), diabetes (OR = 9.591; 95% CI, 1.766-52.075) and high procalcitonin (PCT) level (OR = 1.051; 95%CI, 1.005-1.099) were independent risk factors for septic shock. And increased APACHE II score (OR = 1.254; 95% CI, 1.110-1.147), community-acquired pneumonia (CAP) (OR = 11.880; 95% CI, 2.524-55.923), and extrahepatic lesion involved (OR = 14.718; 95% CI, 1.005-215.502) were independent risk factors for ARDS. Prognostic models were constructed for disease severity with these independent risk factors, and the models were significantly correlated with continuous renal replacement therapy (CRRT) duration, vasopressor duration, mechanical ventilator duration and length of ICU stay. The 30-day all-cause mortality rate in our study was 28.4%. Younger age [hazard ratio (HR) = 0.947; 95% CI, 0.923-0.973)], increased APACHE II score (HR = 1.157; 95% CI, 1.110-1.207), and decreased ALB level (HR = 0.924; 95% CI, 0.869-0.983) were the independent risk factors for 30-day all-cause mortality. A prediction model for 30-day mortality was constructed, which had a good validation effect. CONCLUSIONS We developed validated models containing routine clinical parameters for estimating disease severity and predicting 30-day mortality in patients with hvKP infections and confirmed their calibration. The models may assist clinicians in assessing disease severity and estimating the 30-day mortality early.
Collapse
Affiliation(s)
- Jieen Huang
- Department of Intensive Care Medicine, Binhaiwan Central Hospital of Dongguan, No.111, Humen Road, Humen Town, Dongguan City, Guangdong Province, China
| | - Yanzhu Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Ming Li
- Department of Laboratory Medicine, Binhaiwan Central Hospital of Dongguan, Dongguan City, Guangdong Province, China
| | - Shujin Xie
- Department of Laboratory Medicine, Dongguan Tungwah Hospital, No.1, Dongcheng East Road, Dongguan City, Guangdong Province, China
| | - Huasheng Tong
- Department of Emergency Medicine, General Hospital of Southern Theatre Command, No. 919, Renmin North Road, Yuexiu District, Guangzhou City, Guangdong Province, China.
| | - Zhusheng Guo
- Department of Laboratory Medicine, Dongguan Tungwah Hospital, No.1, Dongcheng East Road, Dongguan City, Guangdong Province, China.
| | - Yi Chen
- Department of Intensive Care Medicine, Binhaiwan Central Hospital of Dongguan, No.111, Humen Road, Humen Town, Dongguan City, Guangdong Province, China.
| |
Collapse
|
6
|
Namikawa H, Oinuma KI, Yamada K, Kaneko Y, Kakeya H, Shuto T. Predictors of hypervirulent Klebsiella pneumoniae infections: a systematic review and meta-analysis. J Hosp Infect 2023; 134:153-160. [PMID: 36813165 DOI: 10.1016/j.jhin.2023.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/26/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND Hypervirulent Klebsiella pneumoniae (hvKp) infections confer notable morbidity and mortality. Differential diagnosis to determine whether the infections are caused by either the hvKp or classical K. pneumoniae (cKp) strain is particularly important for undertaking optimal clinical care and infection control efforts. AIM To identify and assess the potential predictors of hvKp infections. METHODS PubMed, Web of Science, and Cochrane Library databases were searched for all relevant publications from January 2000 to March 2022. The search terms included a combination of the following terms: (i) Klebsiella pneumoniae or K. pneumoniae and (ii) hypervirulent or hypervirulence. A meta-analysis of factors for which risk ratio was reported in three or more studies was conducted, and at least one statistically significant association was identified. FINDINGS In this systematic review of 11 observational studies, a total of 1392 patients with K. pneumoniae infection and 596 (42.8%) with hvKp strains were evaluated. In the meta-analysis, diabetes mellitus and liver abscess (pooled risk ratio: 2.61 (95% confidence interval: 1.79-3.80) and 9.04 (2.58-31.72), respectively; all P < 0.001) were predictors of hvKp infections. CONCLUSION For patients with a history of the abovementioned predictors, prudent management, including the search for multiple sites of infection and/or metastatic spread and the enforcement of an early and appropriate source control procedure, should be initiated in consideration of the potential presence of hvKp. We believe that this research highlights the urgent need for increasing clinical awareness of the management of hvKp infections.
Collapse
Affiliation(s)
- H Namikawa
- Department of Medical Education and General Practice, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan.
| | - K-I Oinuma
- Department of Bacteriology, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan; Research Center for Infectious Disease Sciences, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan
| | - K Yamada
- Research Center for Infectious Disease Sciences, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan; Department of Infection Control Science, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan
| | - Y Kaneko
- Department of Bacteriology, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan; Research Center for Infectious Disease Sciences, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan
| | - H Kakeya
- Research Center for Infectious Disease Sciences, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan; Department of Infection Control Science, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan
| | - T Shuto
- Department of Medical Education and General Practice, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
7
|
Volozhantsev NV, Borzilov AI, Shpirt AM, Krasilnikova VM, Verevkin VV, Denisenko EA, Kombarova TI, Shashkov AS, Knirel YA, Dyatlov IA. Comparison of the therapeutic potential of bacteriophage KpV74 and phage-derived depolymerase (β-glucosidase) against Klebsiella pneumoniae capsular type K2. Virus Res 2022; 322:198951. [PMID: 36191686 DOI: 10.1016/j.virusres.2022.198951] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/16/2022] [Accepted: 09/29/2022] [Indexed: 12/24/2022]
Abstract
Bacteriophages and phage polysaccharide-degrading enzymes (depolymerases) are garnering attention as possible alternatives to antibiotics. Here, we describe the antimicrobial properties of bacteriophage KpV74 and phage depolymerase Dep_kpv74 specific to the hypervirulent Klebsiella pneumoniae of the K2 capsular type. The depolymerase Dep_kpv74 was identified as a specific glucosidase that cleaved the K2 type capsular polysaccharides of the K. pneumoniae by a hydrolytic mechanism. This depolymerase was effective against thigh soft tissue K. pneumoniae infection in mice without inducing adverse behavioral effects or toxicity. The depolymerase efficiency was similar to or greater than the bacteriophage efficiency. The phage KpV74 had a therapeutic effect only for treating the infection caused by the phage-propagating K. pneumoniae strain and was completely inactive against the infection caused by the K. pneumoniae strain that did not support phage multiplication. The depolymerase was effective in both cases. A mutant resistant to phage and depolymerase was isolated during the treatment of mice with bacteriophage. A confirmed one-base deletion in the flippase-coding wzx gene of this mutant is assumed to affect the polysaccharide capsule, abolishing the KpV74 phage adsorption and reducing the K. pneumoniae virulence.
Collapse
Affiliation(s)
- Nikolay V Volozhantsev
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, City District Serpukhov, Moscow Region, Russia.
| | - Alexander I Borzilov
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, City District Serpukhov, Moscow Region, Russia
| | - Anna M Shpirt
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Valentina M Krasilnikova
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, City District Serpukhov, Moscow Region, Russia
| | - Vladimir V Verevkin
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, City District Serpukhov, Moscow Region, Russia
| | - Egor A Denisenko
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, City District Serpukhov, Moscow Region, Russia
| | - Tatyana I Kombarova
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, City District Serpukhov, Moscow Region, Russia
| | - Alexander S Shashkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Yuriy A Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Ivan A Dyatlov
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, City District Serpukhov, Moscow Region, Russia
| |
Collapse
|
8
|
Bao XL, Tang N, Wang YZ. Severe Klebsiella pneumoniae pneumonia complicated by acute intra-abdominal multiple arterial thrombosis and bacterial embolism: A case report. World J Clin Cases 2022; 10:11101-11110. [PMID: 36338208 PMCID: PMC9631156 DOI: 10.12998/wjcc.v10.i30.11101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/22/2022] [Accepted: 09/12/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Klebsiella pneumoniae (K. pneumoniae) is a clinically common Gram-negative bacillus that can cause community- and hospital-acquired infections and lead to pneumonia, liver abscesses, bloodstream infections, and other infectious diseases; however, severe pneumonia caused by hypervirulent K. pneumoniae (hvKp) complicated by acute intra-abdominal multiple arterial thrombosis and bacterial embolism is rarely seen in the clinical setting and has not been reported in the literature.
CASE SUMMARY A 51-year-old man was hospitalized with fever and dyspnea. Persistent mild pain in the middle and upper abdomen began at dawn on the 3rd day following admission and developed into persistent severe pain in the left upper abdomen 8 h later. Based on chest computed tomography (CT), bronchoscopy, bronchoalveolar lavage fluid metagenomic next-generation sequencing, abdominal aortic CT angiography (CTA), and culture of the superior mesenteric artery embolus, adult community-acquired severe hvKp pneumonia complicated by acute intra-abdominal multiple arterial thrombosis and bacterial embolism was diagnosed. Notably, he recovered and was discharged from the hospital after receiving effective meropenem anti-infection, endovascular contact thrombolytic, and systemic anticoagulant therapies and undergoing percutaneous thrombus aspiration. Ten days later, the patient returned to the hospital for abdominal CTA examination, which indicated blocked initial common pathway of the celiac trunk and superior mesenteric artery, and local stenosis. Therefore, celiac trunk artery stenting was performed in Chongqing Hospital, and postoperative recovery was good.
CONCLUSION We report a case of hvKp severe pneumonia complicated by acute intra-abdominal multiple arterial thrombosis and bacterial embolism and suggest that clinicians should consider the possibility of a Gram-negative bacillus infection and conduct effective pathogen detection in a timely fashion when managing patients with severe community-acquired pneumonia before obtaining bacteriologic and drug sensitivity results. At the same time, when patients have severe pulmonary infection complicated by severe abdominal pain, an acute mesenteric artery embolism should be considered to avoid delays in treatment.
Collapse
Affiliation(s)
- Xiao-Li Bao
- Department of Respiratory and Critical Care Medicine, Chongqing University Fuling Hospital, Chongqing 408000, China
| | - Nan Tang
- Department of Respiratory and Critical Care Medicine, Chongqing University Fuling Hospital, Chongqing 408000, China
| | - Yang-Zhong Wang
- Department of Respiratory and Critical Care Medicine, Chongqing University Fuling Hospital, Chongqing 408000, China
| |
Collapse
|
9
|
Altayb HN, Elbadawi HS, Baothman O, Kazmi I, Alzahrani FA, Nadeem MS, Hosawi S, Chaieb K. Genomic Analysis of Multidrug-Resistant Hypervirulent (Hypermucoviscous) Klebsiella pneumoniae Strain Lacking the Hypermucoviscous Regulators (rmpA/rmpA2). Antibiotics (Basel) 2022; 11:antibiotics11050596. [PMID: 35625240 PMCID: PMC9137517 DOI: 10.3390/antibiotics11050596] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 12/28/2022] Open
Abstract
Hypervirulent K. pneumoniae (hvKP) strains possess distinct characteristics such as hypermucoviscosity, unique serotypes, and virulence factors associated with high pathogenicity. To better understand the genomic characteristics and virulence profile of the isolated hvKP strain, genomic data were compared to the genomes of the hypervirulent and typical K. pneumoniae strains. The K. pneumoniae strain was isolated from a patient with a recurrent urinary tract infection, and then the string test was used for the detection of the hypermucoviscosity phenotype. Whole-genome sequencing was conducted using Illumina, and bioinformatics analysis was performed for the prediction of the isolate resistome, virulome, and phylogenetic analysis. The isolate was identified as hypermucoviscous, type 2 (K2) capsular polysaccharide, ST14, and multidrug-resistant (MDR), showing resistance to ciprofloxacin, ceftazidime, cefotaxime, trimethoprim-sulfamethoxazole, cephalexin, and nitrofurantoin. The isolate possessed four antimicrobial resistance plasmids (pKPN3-307_type B, pECW602, pMDR, and p3K157) that carried antimicrobial resistance genes (ARGs) (blaOXA-1,blaCTX-M-15, sul2, APH(3″)-Ib, APH(6)-Id, and AAC(6′)-Ib-cr6). Moreover, two chromosomally mediated ARGs (fosA6 and SHV-28) were identified. Virulome prediction revealed the presence of 19 fimbrial proteins, one aerobactin (iutA) and two salmochelin (iroE and iroN). Four secretion systems (T6SS-I (13), T6SS-II (9), T6SS-III (12), and Sci-I T6SS (1)) were identified. Interestingly, the isolate lacked the known hypermucoviscous regulators (rmpA/rmpA2) but showed the presence of other RcsAB capsule regulators (rcsA and rcsB). This study documented the presence of a rare MDR hvKP with hypermucoviscous regulators and lacking the common capsule regulators, which needs more focus to highlight their epidemiological role.
Collapse
Affiliation(s)
- Hisham N. Altayb
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (O.B.); (I.K.); (F.A.A.); (M.S.N.); (S.H.); (K.C.)
- Centre for Artificial Intelligence in Precision Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: ; Tel.: +0096-6549087515
| | - Hana S. Elbadawi
- Microbiology and Parasitology Department, Soba University Hospital, University of Khartoum, Khartoum 11115, Sudan;
| | - Othman Baothman
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (O.B.); (I.K.); (F.A.A.); (M.S.N.); (S.H.); (K.C.)
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (O.B.); (I.K.); (F.A.A.); (M.S.N.); (S.H.); (K.C.)
| | - Faisal A. Alzahrani
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (O.B.); (I.K.); (F.A.A.); (M.S.N.); (S.H.); (K.C.)
- Centre for Artificial Intelligence in Precision Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Fahd Medical Research Center, Embryonic Stem Cells Unit, Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (O.B.); (I.K.); (F.A.A.); (M.S.N.); (S.H.); (K.C.)
| | - Salman Hosawi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (O.B.); (I.K.); (F.A.A.); (M.S.N.); (S.H.); (K.C.)
- Centre for Artificial Intelligence in Precision Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Kamel Chaieb
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (O.B.); (I.K.); (F.A.A.); (M.S.N.); (S.H.); (K.C.)
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environmental and Products, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| |
Collapse
|
10
|
Su C, Wu T, Meng B, Yue C, Sun Y, He L, Bian T, Liu Y, Huang Y, Lan Y, Li J. High Prevalence of Klebsiella pneumoniae Infections in AnHui Province: Clinical Characteristic and Antimicrobial Resistance. Infect Drug Resist 2021; 14:5069-5078. [PMID: 34880632 PMCID: PMC8645949 DOI: 10.2147/idr.s336451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/29/2021] [Indexed: 01/04/2023] Open
Abstract
Background Klebsiella pneumoniae (K. pneumoniae) causes community-acquired and hospital-acquired pneumonia. The mortality rates of invasive infections caused by hypervirulent K. pneumoniae (HvKP) are extremely high. However, the microbiological characteristics and clinical manifestations of K. pneumoniae in AnHui province still remain unclear. Purpose To show the high prevalence of HvKP infections regarding clinical characteristics and antimicrobial resistance in Anhui province. Patients and Methods A retrospective analysis was conducted to study the clinical data of 115 strains of K. pneumoniae from July 2019 to March 2020 in The First Affiliated Hospital of AnHui Medical University. The virulence genes, capsular types, carbapenemase genes, and molecular subtypes of these hypervirulent isolates were detected. Results Overall, 59.1% (68/115) cases were HvKP infections, mainly from the department of intensive care unit (ICU, n=14, 20.6%) and the department of respiratory and critical care (n=13, 19.1%). K2 was the most prevalent capsular serotype (n=26), followed by K1 (n=21). The results of MLST identification of 68 strains showed that ST23 (n=15, 22.1%) was the most common type of ST, followed by ST11 and ST65 (n=12, 17.6%), ST86 (n=9, 13.2%), and ST412 (n=6, 8.8%). Among 68 hvKP strains, 12 isolates were carbapenem resistant, and all except two harboured KPC. Conclusion The high incidence of carbapenemase producing HvKP in the Anhui province, especially the higher mortality of HvKP, should be paid more attention. Meanwhile, epidemiological surveillance and clinical treatment strategies should be continuously determined and implemented.
Collapse
Affiliation(s)
- Cong Su
- Department of Infection Management, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Ting Wu
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Bao Meng
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Chengcheng Yue
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Yating Sun
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Lingling He
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Tingting Bian
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Yanyan Liu
- Anhui Center for Surveillance of Bacterial Resistance, Hefei, People's Republic of China.,Institute of Bacterial Resistance, Anhui Medical University, Hefei, People's Republic of China
| | - Ying Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Yanhu Lan
- Institute of Bacterial Resistance, Anhui Medical University, Hefei, People's Republic of China
| | - Jiabin Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China.,Anhui Center for Surveillance of Bacterial Resistance, Hefei, People's Republic of China.,Institute of Bacterial Resistance, Anhui Medical University, Hefei, People's Republic of China.,Department of Infectious Diseases, The Chaohu Hospital of Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
11
|
Zafer MM, El Bastawisie MM, Wassef M, Hussein AF, Ramadan MA. Epidemiological features of nosocomial Klebsiella pneumoniae: virulence and resistance determinants. Future Microbiol 2021; 17:27-40. [PMID: 34877876 DOI: 10.2217/fmb-2021-0092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Aim: The authors aimed to examine antibiotic resistance genes and representative virulence determinants among 100 Klebsiella pneumoniae isolates with an emphasis on capsular serotypes and clonality of some of the isolates. Methods: PCR amplification of (rmpA, rmpA2, iutA, iroN and IncHI1B plasmid) and (NDM, OXA-48, KPC, CTX-M-15, VIM, IMP, SPM) was conducted. Wzi sequencing and multilocus sequence typing (MLST) were performed. Results: K2 was the only detected serotype in the authors' collection. RMPA2 was the most common capsule-associated virulence gene detected. All studied isolates harbored OXA-48-like (100%) and NDM (43%) (n = 43). ST147 was the most common sequence type. Conclusion: This work provides insight into the evolution of the coexistence of virulence and resistance genes in a tertiary healthcare setting in Cairo, Egypt.
Collapse
Affiliation(s)
- Mai M Zafer
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
| | - Maha M El Bastawisie
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
| | - Mona Wassef
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Amira Fa Hussein
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohammed A Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
12
|
Shankar C, Basu S, Lal B, Shanmugam S, Vasudevan K, Mathur P, Ramaiah S, Anbarasu A, Veeraraghavan B. Aerobactin Seems To Be a Promising Marker Compared With Unstable RmpA2 for the Identification of Hypervirulent Carbapenem-Resistant Klebsiella pneumoniae: In Silico and In Vitro Evidence. Front Cell Infect Microbiol 2021; 11:709681. [PMID: 34589442 PMCID: PMC8473682 DOI: 10.3389/fcimb.2021.709681] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/04/2021] [Indexed: 12/22/2022] Open
Abstract
Background The incidence of hypervirulent (hv) carbapenem-resistant (CR) Klebsiella pneumoniae (Kp) is increasing globally among various clones and is also responsible for nosocomial infections. The CR-hvKp is formed by the uptake of a virulence plasmid by endemic high-risk clones or by the uptake of plasmids carrying antimicrobial resistance genes by the virulent clones. Here, we describe CR-hvKp from India belonging to high-risk clones that have acquired a virulence plasmid and are phenotypically unidentified due to lack of hypermucoviscosity. Methods Twenty-seven CRKp isolates were identified to possess rmpA2 by whole-genome sequencing; and resistance and virulence determinants were characterized. By in silico protein modeling (and validation), protein backbone stability analysis, and coarse dynamics study, the fitness of RmpA, RmpA2, and aerobactin-associated proteins-IucA and IutA, were determined to establish a reliable marker for clinical identification of CR-hvKp. Results The CR-hvKp belonged to multidrug-resistant (MDR) high-risk clones such as CG11, CG43, ST15, and ST231 and carried OXA-232 as the predominant carbapenemase followed by NDM. The virulence plasmid belonged to IncHI1B replicon type and carried frameshifted and truncated rmpA and rmpA2. This resulted in a lack of hypermucoviscous phenotype. However, functional aerobactin was expressed in all high-risk clones. In silico analysis portrayed that IucA and IutA were more stable than classical RmpA. Furthermore, IucA and IutA had lower conformational fluctuations in the functional domains than the non-functional RmpA2, which increases the fitness cost of the latter for its maintenance and expression among CR-hvKp. Hence, RmpA and RmpA2 are likely to be lost among CR-hvKp owing to the increased fitness cost while coding for essential antimicrobial resistance and virulence factors. Conclusion Increasing incidence of convergence of AMR and virulence is observed among K. pneumoniae globally, which warrants the need for reliable markers for identifying CR-hvKp. The presence of non-functional RmpA2 among high-risk clones highlights the significance of molecular identification of CR-hvKp. The negative string test due to non-functional RmpA2 among CR-hvKp isolates challenges phenotypic screening and faster identification of this pathotype. This can potentially be counteracted by projecting aerobactin as a stable, constitutively expressed, and functional marker for rapidly evolving CR-hvKp.
Collapse
Affiliation(s)
- Chaitra Shankar
- Department of Clinical Microbiology, Christian Medical College and Hospital, Vellore, India
| | - Soumya Basu
- Medical & Biological Computing Laboratory, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, India
| | - Binesh Lal
- Department of Clinical Microbiology, Christian Medical College and Hospital, Vellore, India
| | - Sathiya Shanmugam
- Department of Clinical Microbiology, Christian Medical College and Hospital, Vellore, India
| | - Karthick Vasudevan
- Department of Clinical Microbiology, Christian Medical College and Hospital, Vellore, India
| | - Purva Mathur
- Department of Laboratory Medicine, Jai Prakash Narayan Apex, Trauma Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Sudha Ramaiah
- Medical & Biological Computing Laboratory, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, India
| | - Anand Anbarasu
- Medical & Biological Computing Laboratory, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, India
| | - Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College and Hospital, Vellore, India
| |
Collapse
|
13
|
Abstract
Hypervirulent Klebsiella pneumoniae (hvKp) is an evolving pathotype with higher virulence than classical K. pneumoniae (cKp) and is characterized by community-acquired, multiple sites of infections and young and healthy hosts. hvKP infections were primarily found in East Asia and have been increasingly reported worldwide over the past few decades. To better understand the clinical challenges faced by China with hvKP, this review will provide a summary and discussion focused on recognizing hvKP strains and prevalence of antibiotic-resistant hypervirulent strains in China and the mechanisms of acquiring antimicrobial resistance. Compared with cKP, hvKP is likely to cause serious disseminated infections, leading to a higher mortality. However, sensitive and specific clinical microbiology laboratory tests are still not available. Given the limited published data due to the clinical difficulty in differentiating hvKP from cKP, extrapolation of the previous data may not be applicable for the management of hvKP. A consensus definition of hvKP is needed. Furthermore, an increasing number of reports have described hvKp strains with antimicrobial resistance acquisition, increasing the challenges for management of hvKP. China, as an epidemic country, is also facing these challenges. Quite a number of studies from China have reported antibiotic-resistant hvKP strains, including extended-spectrum β-lactamase (ESBL), and carbapenem-, tigecycline-, and colistin-resistant strains. hvKP infections, especially those of antimicrobial-resistant strains, pose to be a great threat for public health in China. Therefore, an immediate response to recognize the hypervirulent strains and provide optimal treatments, especially those with resistance determinants, is an urgent priority for China.
Collapse
|
14
|
Mukherjee S, Mitra S, Dutta S, Basu S. Neonatal Sepsis: The Impact of Carbapenem-Resistant and Hypervirulent Klebsiella pneumoniae. Front Med (Lausanne) 2021; 8:634349. [PMID: 34179032 PMCID: PMC8225938 DOI: 10.3389/fmed.2021.634349] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/26/2021] [Indexed: 01/12/2023] Open
Abstract
The convergence of a vulnerable population and a notorious pathogen is devastating, as seen in the case of sepsis occurring during the first 28 days of life (neonatal period). Sepsis leads to mortality, particularly in low-income countries (LICs) and lower-middle-income countries (LMICs). Klebsiella pneumoniae, an opportunistic pathogen is a leading cause of neonatal sepsis. The success of K. pneumoniae as a pathogen can be attributed to its multidrug-resistance and hypervirulent-pathotype. Though the WHO still recommends ampicillin and gentamicin for the treatment of neonatal sepsis, K. pneumoniae is rapidly becoming untreatable in this susceptible population. With escalating rates of cephalosporin use in health-care settings, the increasing dependency on carbapenems, a "last resort antibiotic," has led to the emergence of carbapenem-resistant K. pneumoniae (CRKP). CRKP is reported from around the world causing outbreaks of neonatal infections. Carbapenem resistance in CRKP is largely mediated by highly transmissible plasmid-encoded carbapenemase enzymes, including KPC, NDM, and OXA-48-like enzymes. Further, the emergence of a more invasive and highly pathogenic hypervirulent K. pneumoniae (hvKP) pathotype in the clinical context poses an additional challenge to the clinicians. The deadly package of resistance and virulence has already limited therapeutic options in neonates with a compromised defense system. Although there are reports of CRKP infections, a review on neonatal sepsis due to CRKP/ hvKP is scarce. Here, we discuss the current understanding of neonatal sepsis with a focus on the global impact of the CRKP, provide a perspective regarding the possible acquisition and transmission of the CRKP and/or hvKP in neonates, and present strategies to effectively identify and combat these organisms.
Collapse
Affiliation(s)
- Subhankar Mukherjee
- Division of Bacteriology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shravani Mitra
- Division of Bacteriology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shanta Dutta
- Division of Bacteriology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Sulagna Basu
- Division of Bacteriology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
15
|
A global perspective on the convergence of hypervirulence and carbapenem resistance in Klebsiella pneumoniae. J Glob Antimicrob Resist 2021; 25:26-34. [PMID: 33667703 DOI: 10.1016/j.jgar.2021.02.020] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/03/2021] [Accepted: 02/19/2021] [Indexed: 12/31/2022] Open
Abstract
Hypervirulence and carbapenem resistance have emerged as two distinct evolutionary directions for Klebsiella pneumoniae, which pose a great threat in clinical settings. Multiple virulence factors contribute to hypervirulence, and the mechanisms of carbapenem resistance are complicated. However, more and more K. pneumoniae strains have been identified in recent years integrating both phenotypes, resulting in devastating clinical outcomes. Hypervirulent and carbapenem-resistant K. pneumoniae (CR-hvKP) emerged in the early 2010s and thereafter have become increasingly prevalent. CR-hvKP are primarily prevalent in Asia, especially China, but are reported all over the world. Mechanisms for the emergence of CR-hvKP can be summarised by three patterns: (i) carbapenem-resistant K. pneumoniae (CRKP) acquiring a hypervirulent phenotype; (ii) hypervirulent K. pneumoniae (hvKP) acquiring a carbapenem-resistant phenotype; and (iii) K. pneumoniae acquiring both a carbapenem resistance and hypervirulence hybrid plasmid. With their global dissemination, continued surveillance of the emergence of CR-hvKP should be more highly prioritised.
Collapse
|