1
|
Bermudez T, Schmitz JE, Boswell M, Humphries R. Novel technologies for the diagnosis of urinary tract infections. J Clin Microbiol 2025:e0030624. [PMID: 39760497 DOI: 10.1128/jcm.00306-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
Urinary tract infections (UTIs) impose a substantial burden on patient quality of life and urine testing accounts for the majority of workload in many clinical microbiology laboratories. Traditional UTI diagnosis relies on symptoms, urinalysis, and culture which are interpreted based on historical guidelines. This approach, while foundational, presents limitations, particularly in complex cases. Low-level bacteriuria and the presence of fastidious organisms are often overlooked or entirely missed in standard urine culture, stressing the need for novel diagnostic methods and technologies. This mini-review summarizes the existing state of UTI diagnostics in 2024 and covers current and upcoming technologies including rapid molecular-based pathogen identification, next-generation sequencing, and advanced antimicrobial susceptibility testing. However, these methods represent unique challenges, and as they are implemented, they will require the field to adapt to new concepts to avoid misdiagnosis and overtreatment.
Collapse
Affiliation(s)
- Tomas Bermudez
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jonathan E Schmitz
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Malcolm Boswell
- Independent MicroDx Consultancy Services, Tuson, Arizona, USA
| | - Romney Humphries
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
2
|
Espinoza EM, Røise JJ, He M, Li IC, Agatep AK, Udenyi P, Han H, Jackson N, Kerr DL, Chen D, Stentzel MR, Ruan E, Riley L, Murthy N. A self-immolative linker that releases thiols detects penicillin amidase and nitroreductase with high sensitivity via absorption spectroscopy. Chem Commun (Camb) 2022; 58:3166-3169. [PMID: 35170593 PMCID: PMC9097719 DOI: 10.1039/d1cc05322a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article reports the synthesis and characterization of a novel self-immolative linker, based on thiocarbonates, which releases a free thiol upon activation via enzymes. We demonstrate that thiocarbonate self-immolative linkers can be used to detect the enzymes penicillin G amidase (PGA) and nitroreductase (NTR) with high sensitivity using absorption spectroscopy. Paired with modern thiol amplification technology, the detection of PGA and NTR were achieved at concentrations of 160 nM and 52 nM respectively. In addition, the PGA probe was shown to be compatible with both biological thiols and enzymes present in cell lysates.
Collapse
Affiliation(s)
- Eli M Espinoza
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Joachim J Røise
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA.
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Maomao He
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - I-Che Li
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Alvin K Agatep
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Patrick Udenyi
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hesong Han
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Nicole Jackson
- School of Public Health, Division of Infectious Diseases and Vaccinology, University of California Berkeley, Berkeley, CA, USA.
| | - D Lucas Kerr
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Dake Chen
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Michael R Stentzel
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Emily Ruan
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Lee Riley
- School of Public Health, Division of Infectious Diseases and Vaccinology, University of California Berkeley, Berkeley, CA, USA.
| | - Niren Murthy
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA.
- Innovative Genomics Institute (IGI), 2151 Berkeley Way, Berkeley, CA, 94704, USA
| |
Collapse
|
3
|
Muir RK, Guerra M, Bogyo MM. Activity-Based Diagnostics: Recent Advances in the Development of Probes for Use with Diverse Detection Modalities. ACS Chem Biol 2022; 17:281-291. [PMID: 35026106 DOI: 10.1021/acschembio.1c00753] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abnormal enzyme expression and activity is a hallmark of many diseases. Activity-based diagnostics are a class of chemical probes that aim to leverage this dysregulated metabolic signature to produce a detectable signal specific to diseased tissue. In this Review, we highlight recent methodologies employed in activity-based diagnostics that provide exquisite signal sensitivity and specificity in complex biological systems for multiple disease states. We divide these examples based upon their unique signal readout modalities and highlight those that have advanced into clinical trials.
Collapse
Affiliation(s)
- Ryan K. Muir
- Department of Pathology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Matteo Guerra
- Department of Pathology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Matthew M. Bogyo
- Department of Pathology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, United States
| |
Collapse
|
4
|
Raphael E, Glymour MM, Chambers HF. Trends in prevalence of extended-spectrum beta-lactamase-producing Escherichia coli isolated from patients with community- and healthcare-associated bacteriuria: results from 2014 to 2020 in an urban safety-net healthcare system. Antimicrob Resist Infect Control 2021; 10:118. [PMID: 34380549 PMCID: PMC8359060 DOI: 10.1186/s13756-021-00983-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/14/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The prevalence of infections caused by extended-spectrum beta-lactamase producing Escherichia coli (ESBL-E. coli) is increasing worldwide, but the setting in which this increase is occurring is not well defined. We compared trends and risk factors for ESBL-E. coli bacteriuria in community vs healthcare settings. METHODS We collected electronic health record data on all patients with E. coli isolated from urine cultures in a safety-net public healthcare system from January 2014 to March 2020. All analyses were stratified by healthcare-onset/associated (bacteriuria diagnosed > 48 h after hospital admission or in an individual hospitalized in the past 90 days or in a skilled nursing facility resident, N = 1277) or community-onset bacteriuria (bacteriuria diagnosed < 48 h after hospital admission or in an individual seen in outpatient clinical settings without a hospitalization in the past 90 days, N = 7751). We estimated marginal trends from logistic regressions to evaluate annual change in prevalence of ESBL-E. coli bacteriuria among all bacteriuria. We evaluated risk factors using logistic regression models. RESULTS ESBL-E. coli prevalence increased in both community-onset (0.91% per year, 95% CI 0.56%, 1.26%) and healthcare-onset/associated (2.31% per year, CI 1.01%, 3.62%) bacteriuria. In multivariate analyses, age > 65 (RR 1.88, CI 1.17, 3.05), male gender (RR 2.12, CI 1.65, 2.73), and Latinx race/ethnicity (RR 1.52, CI 0.99, 2.33) were associated with community-onset ESBL-E. coli. Only male gender (RR 1.53, CI 1.03, 2.26) was associated with healthcare-onset/associated ESBL-E. coli. CONCLUSIONS ESBL-E. coli bacteriuria frequency increased at a faster rate in healthcare-associated settings than in the community between 2014 and 2020. Male gender was associated with ESBL-E. coli bacteriuria in both settings, but additional risks-age > 65 and Latinx race/ethnicity-were observed only in the community.
Collapse
Affiliation(s)
- Eva Raphael
- Department of Epidemiology and Biostatistics , University of California, San Francisco, San Francisco, CA, USA.
- Department of Family and Community Medicine , University of California, San Francisco, San Francisco, CA, USA.
- Zuckerberg San Francisco General Hospital, 995 Potrero Avenue, Ward 83, San Francisco, CA, 94110, USA.
| | - M Maria Glymour
- Department of Family and Community Medicine , University of California, San Francisco, San Francisco, CA, USA
| | - Henry F Chambers
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- Zuckerberg San Francisco General Hospital, 1001 Potrero Avenue, San Francisco, CA, 94110, USA.
| |
Collapse
|
5
|
Jackson N, Borges CA, Tarlton NJ, Resendez A, Milton AK, de Boer TR, Butcher CR, Murthy N, Riley LW. A rapid, antibiotic susceptibility test for multidrug-resistant, Gram-negative bacterial uropathogens using the biochemical assay, DETECT. J Microbiol Methods 2021; 182:106160. [PMID: 33548393 DOI: 10.1016/j.mimet.2021.106160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/04/2021] [Accepted: 01/31/2021] [Indexed: 12/26/2022]
Abstract
The increasing prevalence of extended spectrum β-lactamases (ESBLs) and plasmid-mediated AmpC (pAmpC) β-lactamases among Enterobacterales threatens our ability to treat urinary tract infections (UTIs). These organisms are resistant to most β-lactam antibiotics and are frequently multidrug-resistant (MDR). Consequently, they are often resistant to antibiotics used to empirically treat UTIs. The lack of rapid diagnostic and antibiotic susceptibility tests (AST) makes clinical management of UTIs caused by such organisms difficult, as standard culture and susceptibility assays require several days. We have adapted a biochemical detection assay, termed dual-enzyme trigger-enabled cascade technology (DETECT) for rapid detection of resistance (time-to-result of 3 h) to other antibiotics commonly used in treatment of UTIs. DETECT is activated by the presence of CTX-M and pAmpC β-lactamases. In this proof-of-concept study, the adapted DETECT assay (AST-DETECT) has been performed on pure-cultures of Klebsiella pneumoniae and Escherichia coli (48 isolates) expressing ESBL or pAmpC β-lactamases to perform AST for ciprofloxacin (sensitivity 96.9%, specificity 100%, accuracy 97.9%) nitrofurantoin (sensitivity 95.7%, specificity 91.7%, accuracy 94%) and trimethoprim/sulfamethoxazole (sensitivity 83.3%, specificity 100%, accuracy 89.4%). These results suggest that AST-DETECT may be adapted as a potential diagnostic platform to rapidly detect multidrug-resistant E. coli and K. pneumoniae that cause UTI.
Collapse
Affiliation(s)
- Nicole Jackson
- School of Public Health, Department of Infectious Diseases and Vaccinology, University of California Berkeley, Berkeley, CA, USA.
| | - Clarissa A Borges
- School of Public Health, Department of Infectious Diseases and Vaccinology, University of California Berkeley, Berkeley, CA, USA
| | - Nicole J Tarlton
- Department of Microbiology, BioAmp Diagnostics, Inc., San Carlos, CA, USA
| | - Angel Resendez
- Department of Chemistry, BioAmp Diagnostics, Inc., San Carlos, CA, USA
| | | | - Tara R de Boer
- Department of Chemistry, BioAmp Diagnostics, Inc., San Carlos, CA, USA
| | - Cheyenne R Butcher
- School of Public Health, Department of Infectious Diseases and Vaccinology, University of California Berkeley, Berkeley, CA, USA
| | - Niren Murthy
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Lee W Riley
- School of Public Health, Department of Infectious Diseases and Vaccinology, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|