1
|
Katkowska M, Kosecka-Strojek M, Wolska-Gębarzewska M, Kwapisz E, Wierzbowska M, Międzobrodzki J, Garbacz K. Emerging Challenges in Methicillin Resistance of Coagulase-Negative Staphylococci. Antibiotics (Basel) 2025; 14:37. [PMID: 39858323 PMCID: PMC11762854 DOI: 10.3390/antibiotics14010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/18/2024] [Accepted: 01/01/2025] [Indexed: 01/27/2025] Open
Abstract
Objective: In the present study, we used phenotypic and molecular methods to determine susceptibility to oxacillin in coagulase-negative staphylococci (CoNS) and estimate the prevalence of strains with low-level resistance to oxacillin, mecA-positive oxacillin-susceptible methicillin-resistant (OS-MRCoNS), and borderline oxacillin-resistant (BORCoNS). Methods: One hundred one CoNS strains were screened for oxacillin and cefoxitin susceptibility using phenotypic (disk diffusion, agar dilution, latex agglutination, and chromagar) and molecular (detection of mecA, mecB, and mecC) methods. Staphylococcal cassette chromosome mec (SCCmec) typing was performed. Results: Sixteen (15.8%) CoNS strains were mecA-positive, and 85 (84.2%) were mec-negative. Seven (6.9%) were classified as OS-MRCoNS, accounting for 43.8% of all mecA-positive strains. Twelve (11.9%) mec-negative strains were classified as borderline oxacillin resistant (BORCoNS). Compared with MRCoNS and BORCoNS, OS-MRCoNS strains demonstrated lower resistance to non-beta-lactams. SCCmec type I cassette was predominant. The disc-diffusion method with oxacillin accurately predicted OS-MRCoNS strains but did not provide reliable results for BORCoNS strains. Meanwhile, the latex agglutination test and CHROMagar culture accurately identified BORCoNS but not OS-MRCoNS. Conclusions: Finally, our findings imply that the recognition of methicillin resistance in CoNS requires a meticulous approach and that further research is needed to develop unified laboratory diagnostic algorithms to prevent the misreporting of borderline CoNS.
Collapse
Affiliation(s)
- Marta Katkowska
- Department of Oral Microbiology, Medical Faculty, Medical University of Gdansk, 80-204 Gdansk, Poland; (M.K.); (E.K.); (M.W.)
| | - Maja Kosecka-Strojek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 31-007 Krakow, Poland; (M.K.-S.); (M.W.-G.); (J.M.)
| | - Mariola Wolska-Gębarzewska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 31-007 Krakow, Poland; (M.K.-S.); (M.W.-G.); (J.M.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 31-007 Krakow, Poland
| | - Ewa Kwapisz
- Department of Oral Microbiology, Medical Faculty, Medical University of Gdansk, 80-204 Gdansk, Poland; (M.K.); (E.K.); (M.W.)
| | - Maria Wierzbowska
- Department of Oral Microbiology, Medical Faculty, Medical University of Gdansk, 80-204 Gdansk, Poland; (M.K.); (E.K.); (M.W.)
| | - Jacek Międzobrodzki
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 31-007 Krakow, Poland; (M.K.-S.); (M.W.-G.); (J.M.)
| | - Katarzyna Garbacz
- Department of Oral Microbiology, Medical Faculty, Medical University of Gdansk, 80-204 Gdansk, Poland; (M.K.); (E.K.); (M.W.)
| |
Collapse
|
2
|
González-Machado C, Alonso-Calleja C, Capita R. Prevalence and types of methicillin-resistant Staphylococcus aureus (MRSA) in meat and meat products from retail outlets and in samples of animal origin collected in farms, slaughterhouses and meat processing facilities. A review. Food Microbiol 2024; 123:104580. [PMID: 39038886 DOI: 10.1016/j.fm.2024.104580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 07/24/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a frequent cause of nosocomial and community infections, in some cases severe and difficult to treat. In addition, there are strains of MRSA that are specifically associated with food-producing animals. For this reason, in recent years special attention has been paid to the role played by foodstuffs of animal origin in infections by this microorganism. With the aim of gaining knowledge on the prevalence and types of MRSA in meat and meat products, a review was undertaken of work published on this topic since 2001, a total of 259 publications, 185 relating to meat samples from retail outlets and 74 to samples of animal origin collected in farms, slaughterhouses and meat processing facilities. Strains of MRSA were detected in 84.3% reports (156 out of 185) from retail outlets and 86.5% reports (64 out of 74) from farms, slaughterhouses and meat processing facilities, although in most of the research this microorganism was detected in under 20% of samples from retail outlets, and under 10% in those from farms, slaughterhouses and meat processing facilities. The meat and meat products most often contaminated with MRSA were pork and chicken. In addition to the mecA gene, it is crucial to take into consideration the mecB and mecC genes, so as to avoid misidentification of strains as MSSA (methicillin-susceptible Staphylococcus aureus). The great variety of methods used for the determination of MRSA highlights the need to develop a standardized protocol for the study of this microorganism in foods.
Collapse
Affiliation(s)
- Camino González-Machado
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071, León, Spain; Institute of Food Science and Technology, University of León, E-24071, León, Spain
| | - Carlos Alonso-Calleja
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071, León, Spain; Institute of Food Science and Technology, University of León, E-24071, León, Spain
| | - Rosa Capita
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071, León, Spain; Institute of Food Science and Technology, University of León, E-24071, León, Spain.
| |
Collapse
|
3
|
González-Machado C, Capita R, Alonso-Calleja C. Methicillin-Resistant Staphylococcus aureus (MRSA) in Dairy Products and Bulk-Tank Milk (BTM). Antibiotics (Basel) 2024; 13:588. [PMID: 39061270 PMCID: PMC11273636 DOI: 10.3390/antibiotics13070588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/17/2024] [Accepted: 06/03/2024] [Indexed: 07/28/2024] Open
Abstract
In order to contribute to an assessment of the role of food in the risks of transmission of methicillin-resistant Staphylococcus aureus (MRSA), a review was undertaken of research on this microorganism in milk and dairy products published from January 2001 to February 2024. A total of 186 publications were selected, 125 for dairy products and 61 for bulk-tank milk (BTM). MRSA was detected in 68.8% of the research into dairy products and 73.8% of investigations relating to BTM, although in most studies the prevalence was less than 5%. Of the set of S. aureus strains isolated, approximately 30% corresponded to MRSA. The foods most extensively contaminated with this microorganism were raw milk and some types of soft cheese. Determination of the mecA gene on its own is known not to suffice for the detection of all MRSA strains. The great diversity of techniques used to study MRSA in milk and dairy products made it difficult to draw comparisons between studies. It would thus be advisable to develop a standardized protocol for the study of this microorganism in foods.
Collapse
Affiliation(s)
- Camino González-Machado
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071 León, Spain
- Institute of Food Science and Technology, University of León, E-24071 León, Spain
| | - Rosa Capita
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071 León, Spain
- Institute of Food Science and Technology, University of León, E-24071 León, Spain
| | - Carlos Alonso-Calleja
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071 León, Spain
- Institute of Food Science and Technology, University of León, E-24071 León, Spain
| |
Collapse
|
4
|
Sifana NO, Melyna, Septiani NLW, Septama AW, Manurung RV, Yuliarto B, Jenie SNA. Detection of Methicillin-Resistant Staphylococcus Aureus using vancomycin conjugated silica-based fluorescent nanoprobe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 307:123643. [PMID: 37979538 DOI: 10.1016/j.saa.2023.123643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 11/05/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023]
Abstract
Methicillin-Resistant Staphylococcus Aureus (MRSA) is a worldwide major pathogenic bacteria that has emerged over the past three decades as the leading cause of nosocomial and community-acquired infections. Biosensors can provide rapid, sensitive, and selective detection of the presence and number of bacteria in various environments. Herein, a novel fluorescence nanoprobe was designed as a biosensor for MRSA detection using dye-incorporated silica nanoparticles (FSiNP). Based on the results of specific surface area analysis using the Brauner Emmett-Teller (BET) method, the surface area of the nanoparticles was obtained at 377.127 m2/g, and the X-ray diffraction (XRD) analysis confirmed that it was in the amorphous phase. Vancomycin, as the bioreceptor, was immobilized on the silica surface through a hydrosilylation reaction, generating the biosensing platform FSiNP-Van. Each modification step was corroborated by the Fourier Transform Infra-Red (FTIR) spectroscopy. The sensing principle was based on the fluorescence-quenching mechanism of FSiNP-Van at 515 nm obtaining a rapid response time of 20 min. The FSiNP-Van nanoprobe provided a wide linear concentration range of 10-106 CFU/mL with a limit of MRSA detection calculated at 1 CFU/mL. The fluorescent nanoprobe demonstrated here is expected to find applications in point-of-care (POC) diagnostics to detect the presence of MRSA bacteria.
Collapse
Affiliation(s)
- Nining Oktafina Sifana
- Master Program of Nanotechnology, Graduate School, Institut Teknologi Bandung, Ganesha 10, Bandung 40132, Indonesia; Advanced Functional Material Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, Jawa Barat 41032, Indonesia
| | - Melyna
- Master Program of Analytical Chemistry, Institut Teknologi Bandung, Ganesha 10, Bandung 40132, Indonesia
| | - Ni Luh Wulan Septiani
- Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), Kawasan Puspiptek, South Tangerang 15134, Indonesia; BRIN and ITB Collaboration Research Center for Biosensor and Biodevices, Jl. Ganesha 10, Bandung, Jawa Barat 40132, Indonesia
| | - Abdi Wira Septama
- Research Centre for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Kawasan Puspiptek, South Tangerang, Banten 15134, Indonesia
| | - Robeth Viktoria Manurung
- BRIN and ITB Collaboration Research Center for Biosensor and Biodevices, Jl. Ganesha 10, Bandung, Jawa Barat 40132, Indonesia; Research Centre for Electronics, National Research and Innovation Agency (BRIN), Komplek LIPI Gd. 20, Jl. Cisitu Lama, Dago, Kecamatan Coblong, Bandung, Jawa Barat 40135, Indonesia
| | - Brian Yuliarto
- Master Program of Nanotechnology, Graduate School, Institut Teknologi Bandung, Ganesha 10, Bandung 40132, Indonesia; Advanced Functional Material Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, Jawa Barat 41032, Indonesia; BRIN and ITB Collaboration Research Center for Biosensor and Biodevices, Jl. Ganesha 10, Bandung, Jawa Barat 40132, Indonesia.
| | - S N Aisyiyah Jenie
- BRIN and ITB Collaboration Research Center for Biosensor and Biodevices, Jl. Ganesha 10, Bandung, Jawa Barat 40132, Indonesia; Research Centre for Chemistry, National Research and Innovation Agency (BRIN), Kawasan PUSPIPTEK, Building 452, Serpong, South Tangerang, Banten 15314, Indonesia.
| |
Collapse
|
5
|
Abusheraida NSA, AlBaker AAH, Aljabri ASA, Abdelrahman HA, Al-Mana H, Wilson GJ, Anan KA, Eltai NO. Rapid Visual Detection of Methicillin-Resistant Staphylococcus aureus in Human Clinical Samples via Closed LAMP Assay Targeting mecA and spa Genes. Microorganisms 2024; 12:157. [PMID: 38257983 PMCID: PMC10819026 DOI: 10.3390/microorganisms12010157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
The emergence of antimicrobial resistance (AMR), particularly methicillin-resistant Staphylococcus aureus (MRSA), poses a significant global health threat as these bacteria increasingly become resistant to the most available therapeutic options. Thus, developing an efficient approach to rapidly screen MRSA directly from clinical specimens has become vital. In this study, we establish a closed-tube loop-mediated isothermal amplification (LAMP) method incorporating hydroxy-naphthol blue (HNB) colorimetric dye assay to directly detect MRSA from clinical samples based on the presence of mecA and spa genes. In total, 125 preidentified S. aureus isolates and 93 clinical samples containing S. aureus were sourced from the microbiology laboratory at Hamad General Hospital (HGH). The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were computed based on conventional PCR. The assay demonstrated 100% specificity, 91.23% sensitivity, 0.90 Cohen Kappa (CK), 100% PPV, and 87.8% NPV for the clinical samples, while clinical isolates exhibited 100% specificity, 97% sensitivity, 0.926 CK, 100% PPV, and 88.89% NPV. Compared to cefoxitin disk diffusion, LAMP provided 100% specificity and sensitivity, 1.00 CK, and 100% for PPV and NPV. The study revealed that the closed-tube LAMP incorporating (HNB) dye is a rapid technique with a turnaround time of less than 1 h and high specificity and sensitivity.
Collapse
Affiliation(s)
- Noora S. A. Abusheraida
- College of Health Science, Qatar University, Doha P.O. Box 2713, Qatar; (N.S.A.A.); (A.A.H.A.); (A.S.A.A.)
| | - Asraa A. H. AlBaker
- College of Health Science, Qatar University, Doha P.O. Box 2713, Qatar; (N.S.A.A.); (A.A.H.A.); (A.S.A.A.)
| | - Asmaa S. A. Aljabri
- College of Health Science, Qatar University, Doha P.O. Box 2713, Qatar; (N.S.A.A.); (A.A.H.A.); (A.S.A.A.)
| | - Hana A. Abdelrahman
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (H.A.A.); (H.A.-M.)
| | - Hassan Al-Mana
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (H.A.A.); (H.A.-M.)
| | - Godwin J. Wilson
- Laboratory Medicine and Pathology, Hamad General Hospital, Doha P.O. Box 3050, Qatar;
| | | | - Nahla O. Eltai
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (H.A.A.); (H.A.-M.)
| |
Collapse
|
6
|
Santos ICD, Barbosa LN, Sposito PH, Silva KRD, Caldart ET, Costa LMB, Martins LA, Gonçalves DD. Presence and Resistance Profile of Staphylococcus spp. Isolated from Slaughtered Pigs. Vector Borne Zoonotic Dis 2023; 23:576-582. [PMID: 37695815 DOI: 10.1089/vbz.2022.0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023] Open
Abstract
Background: The objective of this study was to isolate Staphylococcus spp. and to characterize the resistance profile in nasal samples from pigs slaughtered for consumption. Material and Methods: Intranasal swabs were collected from 100 pigs immediately after bleeding in a slaughterhouse located in the largest pork production region in Brazil, these samples were cultured and isolated to identify Staphylococcus spp. in coagulase positive (CoPS) and coagulase negative (CoNS) and molecular identification of Staphylococcus aureus and then subjected to the disk-diffusion test to identify the bacterial resistance profile and search for the mecA gene. Results: Of the 100 samples collected, it was possible to isolate 79 Staphylococcus spp., of these, 72.15% were classified as CoNS and 27.85% of the isolates classified as CoPS. Among the CoPS isolates, 77.27% were identified as S. aureus. Through the disk-diffusion test, it was possible to verify isolates resistant to clindamycin and erythromycin (98.73%), chloramphenicol (93.67%), and doxycycline (89.87%). There was amplification of the mecA gene in 30.38% of Staphylococcus spp. Conclusion: The results of this study highlight the need for the careful use of antibiotics in swine production, in addition to aiming at continuous surveillance in relation to the rate of multiresistant microorganisms within these environments, focused on large industrial centers; such results also indicate the importance of understanding, through future studies, possible pathways to transmission of these microorganisms directly, or indirectly, through meat products derived from these pigs, which can be considered neglected diffusers of variants of Staphylococcus spp. resistant to antibiotics or carriers of important resistance genes related to One Health.
Collapse
Affiliation(s)
| | | | - Paulo Henrique Sposito
- Médico Veterinário do Ministério da Agricultura, Pecuária e Abastecimento, MAPA/DF, Brasilia, Brasil
| | | | | | | | | | | |
Collapse
|
7
|
Yamin D, Uskoković V, Wakil AM, Goni MD, Shamsuddin SH, Mustafa FH, Alfouzan WA, Alissa M, Alshengeti A, Almaghrabi RH, Fares MAA, Garout M, Al Kaabi NA, Alshehri AA, Ali HM, Rabaan AA, Aldubisi FA, Yean CY, Yusof NY. Current and Future Technologies for the Detection of Antibiotic-Resistant Bacteria. Diagnostics (Basel) 2023; 13:3246. [PMID: 37892067 PMCID: PMC10606640 DOI: 10.3390/diagnostics13203246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Antibiotic resistance is a global public health concern, posing a significant threat to the effectiveness of antibiotics in treating bacterial infections. The accurate and timely detection of antibiotic-resistant bacteria is crucial for implementing appropriate treatment strategies and preventing the spread of resistant strains. This manuscript provides an overview of the current and emerging technologies used for the detection of antibiotic-resistant bacteria. We discuss traditional culture-based methods, molecular techniques, and innovative approaches, highlighting their advantages, limitations, and potential future applications. By understanding the strengths and limitations of these technologies, researchers and healthcare professionals can make informed decisions in combating antibiotic resistance and improving patient outcomes.
Collapse
Affiliation(s)
- Dina Yamin
- Al-Karak Public Hospital, Karak 61210, Jordan;
- Institute for Research in Molecular Medicine, University Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, University Malaysia Kelantan, Kota Bharu 16100, Kelantan, Malaysia;
| | - Vuk Uskoković
- TardigradeNano LLC., Irvine, CA 92604, USA;
- Department of Mechanical Engineering, San Diego State University, San Diego, CA 92182, USA
| | - Abubakar Muhammad Wakil
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, University Malaysia Kelantan, Kota Bharu 16100, Kelantan, Malaysia;
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri 600104, Borno, Nigeria
| | - Mohammed Dauda Goni
- Public Health and Zoonoses Research Group, Faculty of Veterinary Medicine, University Malaysia Kelantan, Pengkalan Chepa 16100, Kelantan, Malaysia;
| | - Shazana Hilda Shamsuddin
- Department of Pathology, School of Medical Sciences, University Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Fatin Hamimi Mustafa
- Department of Electronic & Computer Engineering, Faculty of Electrical Engineering, University Teknologi Malaysia, Johor Bharu 81310, Johor, Malaysia;
| | - Wadha A. Alfouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait;
- Microbiology Unit, Department of Laboratories, Farwania Hospital, Farwania 85000, Kuwait
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia;
- Department of Infection Prevention and Control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, Al-Madinah 41491, Saudi Arabia
| | - Rana H. Almaghrabi
- Pediatric Department, Prince Sultan Medical Military City, Riyadh 12233, Saudi Arabia;
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| | - Mona A. Al Fares
- Department of Internal Medicine, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia;
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Nawal A. Al Kaabi
- College of Medicine and Health Science, Khalifa University, Abu Dhabi 127788, United Arab Emirates;
- Sheikh Khalifa Medical City, Abu Dhabi Health Services Company (SEHA), Abu Dhabi 51900, United Arab Emirates
| | - Ahmad A. Alshehri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia;
| | - Hamza M. Ali
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Madinah 41411, Saudi Arabia;
| | - Ali A. Rabaan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | | | - Chan Yean Yean
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, University Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Nik Yusnoraini Yusof
- Institute for Research in Molecular Medicine, University Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
8
|
Azzam A, Khaled H, Mosa M, Refaey N, AlSaifi M, Elsisi S, Elagezy FK, Mohsen M. Epidemiology of clinically isolated methicillin-resistant Staphylococcus aureus (MRSA) and its susceptibility to linezolid and vancomycin in Egypt: a systematic review with meta-analysis. BMC Infect Dis 2023; 23:263. [PMID: 37101125 PMCID: PMC10134521 DOI: 10.1186/s12879-023-08202-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/28/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Methicillin-resistant Staphylococcus aureus (MRSA) is a major nosocomial pathogen that causes severe morbidity and mortality worldwide. For the establishment of national strategies to combat MRSA infection in each country, accurate and current statistics characterizing the epidemiology of MRSA are essential. The purpose of this study was to determine the prevalence of MRSA among Staphylococcus aureus clinical isolates in Egypt. In addition, we aimed to compare different diagnostic methods for MRSA and determine the pooled resistance rate of linezolid and vancomycin to MRSA. To address this knowledge gap, we conducted a systematic review with meta-analysis. METHODS A comprehensive literature search from inception to October 2022 of the following databases was performed: MEDLINE [PubMed], Scopus, Google Scholar, and Web of Science. The review was conducted following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) Statement. Based on the random effects model, results were reported as proportions with a 95% confidence interval (CI). Analyses of the subgroups were conducted. A sensitivity analysis was conducted to test the robustness of the results. RESULTS A total of sixty-four (64) studies were included in the present meta-analysis, with a total sample size of 7171 subjects. The overall prevalence of MRSA was 63% [95% CI: 55-70]. Fifteen (15) studies used both PCR and cefoxitin disc diffusion for MRSA detection, with a pooled prevalence rate of 67% [95% CI: 54-79] and 67% [95% CI: 55-80], respectively. While nine (9) studies used both PCR and Oxacillin disc diffusion for MRSA detection, the pooled prevalences were 60% [95% CI: 45-75] and 64% [95% CI: 43-84], respectively. Furthermore, MRSA appeared to be less resistant to linezolid than vancomycin, with a pooled resistance rate of 5% [95% CI: 2-8] to linezolid and 9% [95% CI: 6-12] to vancomycin, respectively. CONCLUSION Our review highlights Egypt's high MRSA prevalence. The cefoxitin disc diffusion test results were found to be consistent with PCR identification of the mecA gene. A prohibition on antibiotic self-medication and efforts to educate healthcare workers and patients about the proper use of antimicrobials may be required to prevent further increases.
Collapse
Affiliation(s)
- Ahmed Azzam
- Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University, Cairo, Egypt.
| | - Heba Khaled
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Maha Mosa
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Neveen Refaey
- Department of Physical Therapy for Women's Health, Faculty of Physical Therapy, Cairo University, Cairo, Egypt
| | - Mohammed AlSaifi
- Department of Orthopedic and Trauma, Faculty of Medicine, 21 September University for Medicine and Applied Sciences, Sana, Yemen
| | - Sarah Elsisi
- Department of Clinical Pharmacy Surgery, Alexandria Main University Hospital, Alexandria, Egypt
| | - Fatma Khaled Elagezy
- Department of Biotechnology, Faculty of Fisheries and Aquaculture Sciences, Kafrelsheikh University, Kafr el-Sheikh, Egypt
| | - May Mohsen
- Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
9
|
Haindongo EH, Ndakolo D, Hedimbi M, Vainio O, Hakanen A, Vuopio J. Antimicrobial resistance prevalence of Escherichia coli and Staphylococcus aureus amongst bacteremic patients in Africa: a systematic review. J Glob Antimicrob Resist 2023; 32:35-43. [PMID: 36526264 DOI: 10.1016/j.jgar.2022.11.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Antimicrobial resistance (AMR) is a global concern among infectious diseases. Bloodstream infections can potentially become life-threatening if they become untreatable with conventional antimicrobials. This review aims to provide an understanding of the AMR prevalence and trends of common bacteremic pathogens, namely Escherichia coli and Staphylococcus aureus in the World Health Organization (WHO) Africa region. METHODS PubMed and Google Scholar were searched using relevant keywords for published human studies (excluding case reports and reviews) reporting bacteremic AMR data on the pathogens of interest between 2008 and 2019. Two reviewers independently screened the articles against a pre-defined eligibility criterion. Data extraction and analysis were achieved with different platforms: Covidence, Excel, R version 3.6.3, and QGIS v3.4.5. The pooled prevalence, 95% confidence intervals, and I2 index (a measure of heterogeneity) were calculated for the various pathogen-antibiotic combinations. RESULTS Five hundred sixty-two papers were retrieved, with 27 papers included in the final analysis. Only 23.4% (11/47) of member states of the WHO African region had reports on AMR in bacteremia. The Clinical and Laboratory Standards Institute (CLSI) (78.5%) was the most common standard used in the region. For E. coli, the pooled resistance was: cefotaxime (42%), imipenem (4%), meropenem (0%), and colistin (0%). For S. aureus, the calculated pooled resistance was cloxacillin (34%), oxacillin (12%), and vancomycin (0%). There was a high degree of variation across studies (I2 > 90%). CONCLUSION The pooled resistance rates indicate a concerning degree of methicillin-resistant and Extended Spectrum-ß-lactamase-producing pathogens. The paucity of AMR data also presents challenges for a comprehensive understanding of the situation in the region. Continent-wide and standardized surveillance efforts therefore need strengthening.
Collapse
Affiliation(s)
- Erastus Hanganeni Haindongo
- School of Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Windhoek, Namibia; Institute of Biomedicine, University of Turku, Turku, Finland.
| | - Diana Ndakolo
- School of Pharmacy, Faculty of Health Sciences, University of Namibia, Windhoek, Namibia; Pharmaceutical Services, Ministry of Health and Social Services, Namibia
| | - Marius Hedimbi
- School of Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Windhoek, Namibia; Graduate School of Business and Postgraduate, International University of Management, Namibia
| | - Olli Vainio
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Antti Hakanen
- Institute of Biomedicine, University of Turku, Turku, Finland; Clinical Microbiology Laboratory, Turku University Hospital, Turku, Finland
| | - Jaana Vuopio
- Institute of Biomedicine, University of Turku, Turku, Finland; Clinical Microbiology Laboratory, Turku University Hospital, Turku, Finland
| |
Collapse
|
10
|
Rakonjac B, Lepšanović Z, Šuljagić V, Jovčić B, Kojić M, Larsen AR, Đurić M, Ćirković I. Predominance of t355/ST152/SCCmec V clonal type among PVL-positive MRSA isolates in a tertiary care hospital in Belgrade, Serbia. PLoS One 2022; 17:e0273474. [PMID: 36074767 PMCID: PMC9455871 DOI: 10.1371/journal.pone.0273474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/09/2022] [Indexed: 11/19/2022] Open
Abstract
Epidemiology of methicillin-resistant Staphylococcus aureus (MRSA) is continually changing. Frequency of genotypes typical for community-associated MRSA (CA-MRSA) is increasing in hospitals, as well as resistance to antimicrobial agents. Moreover, different clones predominate in different geographic regions, and temporal shifts occur in the predominant clonal type. The aim of this study was to estimate the prevalence of MRSA, CA-MRSA and PVL-positive MRSA isolates from patients hospitalised in the Military Medical Academy (MMA) and from outpatients, and to perform genotyping of PVL-positive MRSA isolates. MRSA isolates were obtained by standard microbiological techniques. PVL-positive MRSA were detected by single PCR. Determination of SCCmec types in MRSA isolates was done using multiplex PCR and genotyping of PVL-positive MRSA by PFGE, MLST and spa typing. The prevalence of MRSA among S. aureus isolates from different clinical specimens was 43.4%. In outpatients the prevalence of MRSA was 3.2%. SCCmec types specific for CA-MRSA were found in 26% of MRSA isolates from hospitalised patients. In groups, hospitalised patients and outpatients, the prevalence of PVL-positive MRSA isolates was 4%, and all of them harboured SCCmec type V genetic element. PFGE revealed minor differences between four groups of PVL-positive MRSA isolates, but all of them belonged to ST152, and all except one were of the t355 spa type. High prevalence of MRSA and CA-MRSA in MMA, especially the presence of PVL-positive CA-MRSA, represent a serious health threat for patients. Genotype t355/ST152/SCCmec V is the dominant MRSA clone among PVL-positive CA-MRSA.
Collapse
Affiliation(s)
| | - Zorica Lepšanović
- Military Medical Academy, Belgrade, Serbia
- Medical Faculty, University of Defence, Belgrade, Serbia
| | - Vesna Šuljagić
- Military Medical Academy, Belgrade, Serbia
- Medical Faculty, University of Defence, Belgrade, Serbia
| | - Branko Jovčić
- Institute of Molecular Genetics and Genetic Engineering, Univerity of Belgrade, Belgrade, Serbia
| | - Milan Kojić
- Institute of Molecular Genetics and Genetic Engineering, Univerity of Belgrade, Belgrade, Serbia
| | - Anders Rhod Larsen
- Department of Microbiological Surveillance and Research, Statens Serum Institut, Copenhagen, Denmark
| | | | - Ivana Ćirković
- University of Belgrade-Faculty of Medicine, Institute of Microbiology and Immunology, Belgrade, Serbia
- * E-mail:
| |
Collapse
|
11
|
Leucyl-tRNA Synthetase Inhibitor, D-Norvaline, in Combination with Oxacillin, Is Effective against Methicillin-Resistant Staphylococcus aureus. Antibiotics (Basel) 2022; 11:antibiotics11050683. [PMID: 35625327 PMCID: PMC9137938 DOI: 10.3390/antibiotics11050683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a pathogenic bacterium that causes severe diseases in humans. For decades, MRSA has acquired substantial resistance against conventional antibiotics through regulatory adaptation, thereby posing a challenge for treating MRSA infection. One of the emerging strategies to combat MRSA is the combinatory use of antibacterial agents. Based on the dramatic change in phospholipid fatty acid (PLFA) composition of MRSA in previous results, this study investigated branched-chain amino acid derivatives (precursors of fatty acid synthesis of cell membrane) and discovered the antimicrobial potency of D-norvaline. The compound, which can act synergistically with oxacillin, is among the three leucine-tRNA synthetase inhibitors with high potency to inhibit MRSA cell growth and biofilm formation. PLFA analysis and membrane properties revealed that D-norvaline decreased the overall amount of PLFA, increasing the fluidity and decreasing the hydrophobicity of the bacterial cell membrane. Additionally, we observed genetic differences to explore the response to D-norvaline. Furthermore, deletion mutants and clinically isolated MRSA strains were treated with D-norvaline. The study revealed that D-norvaline, with low concentrations of oxacillin, was effective in killing several MRSA strains. In summary, our findings provide a new combination of aminoacyl-tRNA synthetase inhibitor D-norvaline and oxacillin, which is effective against MRSA.
Collapse
|
12
|
Ma M, Chu M, Tao L, Li J, Li X, Huang H, Qu K, Wang H, Li L, Du T. First Report of Oxacillin Susceptible mecA-Positive Staphylococcus aureus in a Children's Hospital in Kunming, China. Infect Drug Resist 2021; 14:2597-2606. [PMID: 34262304 PMCID: PMC8275014 DOI: 10.2147/idr.s317670] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/25/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose The present study investigated the prevalence characteristics of oxacillin susceptible mecA-positive Staphylococcus aureus (OS-MRSA) in a children's hospital in Kunming from January 2019 to December 2020. Methods A total of 499 S. aureus strains were included in the study and tested for oxacillin susceptibility using the VITEK 2 Compact automated antimicrobial susceptibility test system. All oxacillin-susceptible strains were detected mecA and mecC by polymerase chain reaction (PCR). E-test was used to compare the minimum inhibitory concentration (MIC) values of methicillin-susceptible S. aureus (MSSA), methicillin-resistant S. aureus (MRSA), and OS-MRSA for oxacillin, cefoxitin, penicillin, vancomycin, erythromycin, and clindamycin. Molecular typing of OS-MRSA was performed by MLST and SCCmec typing. Toxin genes were detected by PCR. Results Forty-five OS-MRSA strains were detected, for an overall rate of 9.02% (45/499). The MICs of MSSA, OS-MRSA, and MRSA against oxacillin were concentrated at 0.38, 0.38, and 12 μg/mL, respectively; the cefoxitin MICs of MSSA and MRSA were concentrated at 2 and 32 μg/mL respectively; and MICs of OS-MRSA were concentrated at 2 and 8 μg/mL; penicillin, vancomycin and erythromycin MICs against MSSA, OS-MRSA, and MRSA showed same centralized points and were 32, 1, and 256 μg/mL, respectively; the MICs of clindamycin against MSSA were 0.5 μg/mL, while that against OS-MRSA and MRSA were concentrated at 256 μg/mL. Molecular typing of OS-MRSA was dominated by ST59-SCCmec IV. The carrier rates of hemolysin genes (hl-a, hl-d) and fibrinogen-binding clumping factor genes (clfA, clfB) were 100% in OS-MRSA, followed by 40% (18/45) for enterotoxin genes (sea, seb). Conclusion OS-MRSA has a high detection rate in children, and main molecular typing is ST59-SCCmecIV in Kunming. The identification ability of automated antibacterial drug sensitivity test detection systems for OS-MRSA is very limited. A combination of phenotypic analysis and molecular detection should be used to improve OS-MRSA identification.
Collapse
Affiliation(s)
- Mingbiao Ma
- Department of Clinical Laboratory, Kunming Children's Hospital, Kunming, Yunnan, People's Republic of China.,Department of Clinical Laboratory, Children's Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, People's Republic of China.,Yunnan Key Laboratory of Children's Major Disease Research, Kunming Children's Hospital, Kunming, Yunnan, People's Republic of China
| | - Minjun Chu
- Department of Clinical Laboratory, Kunming Children's Hospital, Kunming, Yunnan, People's Republic of China.,Department of Clinical Laboratory, Children's Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Lvyan Tao
- Yunnan Key Laboratory of Children's Major Disease Research, Kunming Children's Hospital, Kunming, Yunnan, People's Republic of China.,Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming, Yunnan, People's Republic of China.,Kunming Key Laboratory of Children Infection and Immunity, Kunming Children's Hospital, Kunming, Yunnan, People's Republic of China
| | - Jue Li
- Department of Clinical Laboratory, Kunming Children's Hospital, Kunming, Yunnan, People's Republic of China.,Department of Clinical Laboratory, Children's Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Xiaojuan Li
- Department of Clinical Laboratory, Kunming Children's Hospital, Kunming, Yunnan, People's Republic of China.,Department of Clinical Laboratory, Children's Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Hailin Huang
- Department of Clinical Laboratory, Kunming Children's Hospital, Kunming, Yunnan, People's Republic of China.,Department of Clinical Laboratory, Children's Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Kexuan Qu
- Department of Blood Transfusion, Kunming Children's Hospital, Kunming, Yunnan, People's Republic of China
| | - Haiping Wang
- Department of Clinical Laboratory, Kunming Children's Hospital, Kunming, Yunnan, People's Republic of China.,Department of Clinical Laboratory, Children's Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Li Li
- Yunnan Key Laboratory of Children's Major Disease Research, Kunming Children's Hospital, Kunming, Yunnan, People's Republic of China.,Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming, Yunnan, People's Republic of China.,Kunming Key Laboratory of Children Infection and Immunity, Kunming Children's Hospital, Kunming, Yunnan, People's Republic of China
| | - Tingyi Du
- Department of Clinical Laboratory, Kunming Children's Hospital, Kunming, Yunnan, People's Republic of China.,Department of Clinical Laboratory, Children's Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, People's Republic of China.,Yunnan Key Laboratory of Children's Major Disease Research, Kunming Children's Hospital, Kunming, Yunnan, People's Republic of China
| |
Collapse
|
13
|
Selective Capture and Identification of Methicillin-Resistant Staphylococcus aureus by Combining Aptamer-Modified Magnetic Nanoparticles and Mass Spectrometry. Int J Mol Sci 2021; 22:ijms22126571. [PMID: 34207373 PMCID: PMC8234742 DOI: 10.3390/ijms22126571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022] Open
Abstract
A nucleic acid aptamer that specifically recognizes methicillin-resistant Staphylococcus aureus (MRSA) has been immobilized on magnetic nanoparticles to capture the target bacteria prior to mass spectrometry analysis. After the MRSA species were captured, they were further eluted from the nanoparticles and identified using matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). The combination of aptamer-based capture/enrichment and MS analysis of microorganisms took advantage of the selectivity of both techniques and should enhance the accuracy of MRSA identification. The capture and elution efficiencies for MRSA were optimized by examining factors such as incubation time, temperature, and elution solvents. The aptamer-modified magnetic nanoparticles showed a capture rate of more than 90% under the optimized condition, whereas the capture rates were less than 11% for non-target bacteria. The as-prepared nanoparticles exhibited only a 5% decrease in the capture rate and a 9% decrease in the elution rate after 10 successive cycles of utilization. Most importantly, the aptamer-modified nanoparticles revealed an excellent selectivity towards MRSA in bacterial mixtures. The capture of MRSA at a concentration of 102 CFU/mL remained at a good percentage of 82% even when the other two species were at 104 times higher concentration (106 CFU/mL). Further, the eluted MRSA bacteria were successfully identified using MALDI mass spectrometry.
Collapse
|