1
|
Yu J, Meneses-Salas E, Johnson JL, Manenti S, Kbaich MA, Chen D, Askari K, He J, Shukla A, Shaji B, Gonzalez-Quintial R, Croker BA, Zhang J, Hoffman H, Kiosses WB, Hedrick C, Pestonjamasp K, Wineinger N, Baccala R, Catz SD. Defective endomembrane dynamics in Rab27a deficiency impairs nucleic acid sensing and cytokine secretion in immune cells. Cell Rep 2024; 43:114598. [PMID: 39126651 DOI: 10.1016/j.celrep.2024.114598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 05/16/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Endosomal Toll-like receptors (eTLRs) are essential for the sensing of non-self through RNA and DNA detection. Here, using spatiotemporal analysis of vesicular dynamics, super-resolution microscopy studies, and functional assays, we show that endomembrane defects associated with the deficiency of the small GTPase Rab27a cause delayed eTLR ligand recognition, defective early signaling, and impaired cytokine secretion. Rab27a-deficient neutrophils show retention of eTLRs in amphisomes and impaired ligand internalization. Extracellular signal-regulated kinase (ERK) signaling and β2-integrin upregulation, early responses to TLR7 and TLR9 ligands, are defective in Rab27a deficiency. CpG-stimulated Rab27a-deficient neutrophils present increased tumor necrosis factor alpha (TNF-α) secretion and decreased secretion of a selected group of mediators, including interleukin (IL)-10. In vivo, CpG-challenged Rab27a-null mice show decreased production of type I interferons (IFNs) and IFN-γ, and the IFN-α secretion defect is confirmed in Rab27a-null plasmacytoid dendritic cells. Our findings have significant implications for immunodeficiency, inflammation, and CpG adjuvant vaccination.
Collapse
Affiliation(s)
- Juan Yu
- Department of Molecular and Cellular Biology, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Elsa Meneses-Salas
- Department of Molecular and Cellular Biology, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jennifer L Johnson
- Department of Molecular and Cellular Biology, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Susanna Manenti
- Department of Molecular and Cellular Biology, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mouad Ait Kbaich
- Department of Molecular and Cellular Biology, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Danni Chen
- Department of Molecular and Cellular Biology, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kasra Askari
- Department of Molecular and Cellular Biology, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jing He
- Department of Molecular and Cellular Biology, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Aparna Shukla
- Department of Molecular and Cellular Biology, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Binchu Shaji
- Department of Molecular and Cellular Biology, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rosana Gonzalez-Quintial
- Department of Autoimmunity & Viral Immunopathology, San Diego BioMed Institute, San Diego, CA 92121, USA
| | - Ben A Croker
- Department of Pediatrics, University of California San Diego; La Jolla, CA 92093, USA
| | - Jinzhong Zhang
- Department of Molecular and Cellular Biology, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hal Hoffman
- Department of Pediatrics, University of California San Diego; La Jolla, CA 92093, USA
| | - William B Kiosses
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Catherine Hedrick
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Kersi Pestonjamasp
- Department of Molecular and Cellular Biology, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nathan Wineinger
- Scripps Research Translational Institute, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Roberto Baccala
- Department of Autoimmunity & Viral Immunopathology, San Diego BioMed Institute, San Diego, CA 92121, USA
| | - Sergio D Catz
- Department of Molecular and Cellular Biology, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
2
|
Andersson P. Preclinical Safety Assessment of Therapeutic Oligonucleotides. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2434:355-370. [PMID: 35213031 DOI: 10.1007/978-1-0716-2010-6_25] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
During the last decade, therapeutic oligonucleotide drugs (OND) have witnessed a tremendous development in chemistry and mechanistic understanding that have translated into successful clinical applications. Depending on the specific OND mechanism, chemistry, and design, the DMPK and toxicity properties can vary significantly between different OND classes and delivery approaches, the latter including lipid formulations or conjugation approaches to enhance productive OND uptake. At the same time, with the only difference between compounds being the nucleobase sequence, ONDs with same mechanism of action, chemistry, and design show relatively consistent behavior, allowing certain extrapolations between compounds within an OND class. This chapter provides a summary of the most common toxicities, the improved mechanistic understanding and the safety assessment activities performed for therapeutic oligonucleotides during the drug discovery and development process. Several of the considerations described for therapeutic applications should also be of value for the scientists mainly using oligonucleotides as research tools to explore various biological processes.
Collapse
Affiliation(s)
- Patrik Andersson
- Safety Innovation, Safety Sciences, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
3
|
Xu M, Li N, Fan X, Zhou Y, Bi S, Shen A, Wang B. Differential Effects of Toll-Like Receptor Signaling on the Activation of Immune Responses in the Upper Respiratory Tract. Microbiol Spectr 2022; 10:e0114421. [PMID: 35196817 PMCID: PMC8865572 DOI: 10.1128/spectrum.01144-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/28/2022] [Indexed: 11/20/2022] Open
Abstract
Vaccination through the upper respiratory tract (URT) is highly effective for the prevention of respiratory infectious diseases. Toll-like receptor (TLR)-based adjuvants are immunostimulatory and considered potential adjuvant candidates. However, the patterns of immune response to different TLRs at the URT have not been revealed. In this study, SPF mice were preexposed to TLR agonists intranasally to simulate the status of humans. Inflammatory response to TLR agonists and TLR signal-mediated adaptive immune responses were analyzed. The results revealed that similar to human tonsils, inflammatory response to stimulation with TLR4 or TLR2 agonist was attenuated in agonist-exposed mice but not in mice without this exposure. In contrast, TLR9 or TLR3 agonist preexposure did not affect the inflammatory response to restimulation by matching agonists. For the adaptive immune response, after agonist preexposure the antibody response to antigens adjuvanted with TLR4 or TLR2 agonist was substantially restricted, whereas, both antibody and T cell responses to antigens adjuvanted with TLR9 or TLR3 agonist were activated as robustly as in mice without agonist exposure. Moreover, we demonstrate that the mechanisms underlying the differential activation of TLRs are regulated at the level of TLR expression in innate and adaptive immune cells. These results indicate that TLRs on the cell surface (TLR4 and 2) and in the endolysosomal compartments (TLR9 and 3) display distinct immune response patterns. The findings provide important information for the use of TLR agonists as mucosal adjuvants and enhance our understanding of immune responses to bacterial and viral infections in the respiratory mucosa. IMPORTANCE Agonists of TLRs are potential adjuvant candidates for mucosal vaccination. We demonstrated that the TLR-mediated inflammatory and antibody responses in the URT of SPF mice exposed to extracellular TLR agonists were substantially restricted. In contrast, inflammatory and adaptive immune responses, including B and T cell activation, were not desensitized in mice exposed to intracellular TLR agonists. The distinct responsive patterns of extra and intracellular TLRs regulated at TLR expression in immune cells. The results indicated that TLRs differentially impact the innate and adaptive immune response in the URT, which contributes to the selection of TLR-based mucosal adjuvants and helps understand the difference between the immune response in bacterial and viral infections.
Collapse
Affiliation(s)
- Meiyi Xu
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Ning Li
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xin Fan
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ya Zhou
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Shuai Bi
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Adong Shen
- Beijing Pediatric Research Institute, Beijing Children's Hospital, National Center for Children's Health, Beijing, China
| | - Beinan Wang
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Szumilas N, Corneth OBJ, Lehmann CHK, Schmitt H, Cunz S, Cullen JG, Chu T, Marosan A, Mócsai A, Benes V, Zehn D, Dudziak D, Hendriks RW, Nitschke L. Siglec-H-Deficient Mice Show Enhanced Type I IFN Responses, but Do Not Develop Autoimmunity After Influenza or LCMV Infections. Front Immunol 2021; 12:698420. [PMID: 34497606 PMCID: PMC8419311 DOI: 10.3389/fimmu.2021.698420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/27/2021] [Indexed: 12/02/2022] Open
Abstract
Siglec-H is a DAP12-associated receptor on plasmacytoid dendritic cells (pDCs) and microglia. Siglec-H inhibits TLR9-induced IFN-α production by pDCs. Previously, it was found that Siglec-H-deficient mice develop a lupus-like severe autoimmune disease after persistent murine cytomegalovirus (mCMV) infection. This was due to enhanced type I interferon responses, including IFN-α. Here we examined, whether other virus infections can also induce autoimmunity in Siglec-H-deficient mice. To this end we infected Siglec-H-deficient mice with influenza virus or with Lymphocytic Choriomeningitis virus (LCMV) clone 13. With both types of viruses we did not observe induction of autoimmune disease in Siglec-H-deficient mice. This can be explained by the fact that both types of viruses are ssRNA viruses that engage TLR7, rather than TLR9. Also, Influenza causes an acute infection that is rapidly cleared and the chronicity of LCMV clone 13 may not be sufficient and may rather suppress pDC functions. Siglec-H inhibited exclusively TLR-9 driven type I interferon responses, but did not affect type II or type III interferon production by pDCs. Siglec-H-deficient pDCs showed impaired Hck expression, which is a Src-family kinase expressed in myeloid cells, and downmodulation of the chemokine receptor CCR9, that has important functions for pDCs. Accordingly, Siglec-H-deficient pDCs showed impaired migration towards the CCR9 ligand CCL25. Furthermore, autoimmune-related genes such as Klk1 and DNase1l3 are downregulated in Siglec-H-deficient pDCs as well. From these findings we conclude that Siglec-H controls TLR-9-dependent, but not TLR-7 dependent inflammatory responses after virus infections and regulates chemokine responsiveness of pDCs.
Collapse
Affiliation(s)
- Nadine Szumilas
- Division of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Odilia B J Corneth
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Christian H K Lehmann
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, University of Erlangen-Nürnberg, Erlangen, Germany.,Medical Immunology Campus Erlangen (MICE), University of Erlangen-Nürnberg, Erlangen, Germany
| | - Heike Schmitt
- First Department of Medicine, University Hospital Erlangen, Erlangen, Germany
| | - Svenia Cunz
- Division of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Jolie G Cullen
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Talyn Chu
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Anita Marosan
- Department of Immune Modulation, University Hospital Erlangen, Erlangen, Germany
| | - Attila Mócsai
- Semmelweis University School of Medicine, Budapest, Hungary
| | - Vladimir Benes
- Genomics Core Facility, EMBL Heidelberg, Heidelberg, Germany
| | - Dietmar Zehn
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, University of Erlangen-Nürnberg, Erlangen, Germany.,Medical Immunology Campus Erlangen (MICE), University of Erlangen-Nürnberg, Erlangen, Germany
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Lars Nitschke
- Division of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany.,Medical Immunology Campus Erlangen (MICE), University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
5
|
Kapoor T, Corrado M, Pearce EL, Pearce EJ, Grosschedl R. MZB1 enables efficient interferon α secretion in stimulated plasmacytoid dendritic cells. Sci Rep 2020; 10:21626. [PMID: 33318509 PMCID: PMC7736851 DOI: 10.1038/s41598-020-78293-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 11/23/2020] [Indexed: 12/19/2022] Open
Abstract
MZB1 is an endoplasmic reticulum (ER)-resident protein that plays an important role in the humoral immune response by enhancing the interaction of the μ immunoglobulin (Ig) heavy chain with the chaperone GRP94 and by augmenting the secretion of IgM. Here, we show that MZB1 is also expressed in plasmacytoid dendritic cells (pDCs). Mzb1−/− pDCs have a defect in the secretion of interferon (IFN) α upon Toll-like receptor (TLR) 9 stimulation and a reduced ability to enhance B cell differentiation towards plasma cells. Mzb1−/− pDCs do not properly expand the ER upon TLR9 stimulation, which may be accounted for by an impaired activation of ATF6, a regulator of the unfolded protein response (UPR). Pharmacological inhibition of ATF6 cleavage in stimulated wild type pDCs mimics the diminished IFNα secretion by Mzb1−/− pDCs. Thus, MZB1 enables pDCs to secrete high amounts of IFNα by mitigating ER stress via the ATF6-mediated UPR.
Collapse
Affiliation(s)
- Tanya Kapoor
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Mauro Corrado
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Erika L Pearce
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Edward J Pearce
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Rudolf Grosschedl
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany.
| |
Collapse
|
6
|
Thio CLP, Lai ACY, Chi PY, Webster G, Chang YJ. Toll-like receptor 9-dependent interferon production prevents group 2 innate lymphoid cell-driven airway hyperreactivity. J Allergy Clin Immunol 2019; 144:682-697.e9. [PMID: 30914379 DOI: 10.1016/j.jaci.2019.03.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/29/2019] [Accepted: 03/08/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND Group 2 innate lymphoid cells (ILC2s) are important mediators of allergic asthma. Bacterial components, such as unmethylated CpG DNA, a Toll-like receptor (TLR) 9 agonist, are known to possess beneficial immunomodulatory effects in patients with T cell-mediated chronic asthma. However, their roles in regulating ILC2s remain unclear. OBJECTIVE We sought to determine the role of TLR9 activation in regulating ILC2 function and to evaluate the therapeutic utility of an immunomodulatory microparticle containing natural TLR9 ligand (MIS416). METHODS We evaluated the immunomodulatory effects of CpG A in IL-33-induced airway hyperreactivity (AHR) and airway inflammation. The roles of interferons were examined in vivo and in vitro by using signal transducer and activator of transcription 1 (Stat1)-/- mice and neutralizing antibodies against IFN-γ and IFN-α/β receptor subunit 1, and their cellular sources were identified. The therapeutic utility of MIS416 was investigated in the Alternaria alternata model of allergic asthma and in humanized NSG mice. RESULTS We show that TLR9 activation by CpG A suppresses IL-33-mediated AHR and airway inflammation through inhibition of ILC2s. Activation of TLR9 leads to production of IFN-α, which drives IFN-γ production by natural killer cells. Importantly, IFN-γ is essential for TLR9-driven suppression, and IFN-α cannot compensate for impaired IFN-γ signaling. We further show that IFN-γ directly inhibits ILC2 function through a STAT1-dependent mechanism. Finally, we demonstrate the therapeutic potential of MIS416 in A alternata-induced airway inflammation and validated these findings in human subjects. CONCLUSION TLR9 activation alleviates ILC2-driven AHR and airway inflammation through direct suppression of cell function. Microparticle-based delivery of TLR9 ligands might serve as a therapeutic strategy for asthma treatment.
Collapse
Affiliation(s)
| | | | - Po-Yu Chi
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Gill Webster
- Innate Immunotherapeutics, Auckland, New Zealand
| | - Ya-Jen Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
7
|
Bi E, Li R, Bover LC, Li H, Su P, Ma X, Huang C, Wang Q, Liu L, Yang M, Lin Z, Qian J, Fu W, Liu YJ, Yi Q. E-cadherin expression on multiple myeloma cells activates tumor-promoting properties in plasmacytoid DCs. J Clin Invest 2018; 128:4821-4831. [PMID: 30277474 DOI: 10.1172/jci121421] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 08/21/2018] [Indexed: 12/21/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) play a key role in antiviral responses by producing type-1 IFNs. However, recent studies showed that pDCs induce immune suppression and promote tumor growth in human ovarian cancer and myeloma. The molecular mechanisms underlying pDC acquisition of these properties are unknown. Here we show that human pDCs activated by CpG inhibited growth and induced apoptosis in myeloma cells via secreted IFN-α, but direct contact with myeloma cells converted pDCs into tumor-promoting cells by suppressing pDC IFN-α production. E-cadherin, expressed on both myeloma cells and pDCs, mediated these effects via a homophilic interaction - activation of E-cadherin signaling upregulated and activated TNFAIP3 to interact with TLR9, resulting in TLR9 ubiquitination and degradation, and inhibition of IFN-α production in pDCs. These findings were supported by an in vivo study in which pDC depletion induced tumor regression and better survival in the Vk*MYC myeloma mouse model. Furthermore, IFNAR1 expression level positively correlated to overall survival of patients with multiple myeloma (MM), and the IFN-α level in patient bone marrow was significantly lower than that in marrow of healthy individuals. This study reveals a novel mechanism underlying how MM tumors educate pDCs in their microenvironment and provides new targets for improving the treatment of MM.
Collapse
Affiliation(s)
- Enguang Bi
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Rong Li
- Department of Hematology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Laura C Bover
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Haiyan Li
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Pan Su
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Xingzhe Ma
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Chunjian Huang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Qiang Wang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Lintao Liu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Maojie Yang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Zhijuan Lin
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jianfei Qian
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Weijun Fu
- Department of Hematology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | | | - Qing Yi
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
8
|
Mahla RS, Reddy MC, Prasad DVR, Kumar H. Sweeten PAMPs: Role of Sugar Complexed PAMPs in Innate Immunity and Vaccine Biology. Front Immunol 2013; 4:248. [PMID: 24032031 PMCID: PMC3759294 DOI: 10.3389/fimmu.2013.00248] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 08/09/2013] [Indexed: 12/12/2022] Open
Abstract
Innate sensors play a critical role in the early innate immune responses to invading pathogens through sensing of diverse biochemical signatures also known as pathogen associated molecular patterns (PAMPs). These biochemical signatures primarily consist of a major family of biomolecules such as proteins, lipids, nitrogen bases, and sugar and its complexes, which are distinct from host molecules and exclusively expressed in pathogens and essential to their survival. The family of sensors known as pattern recognition receptors (PRRs) are germ-line encoded, evolutionarily conserved molecules, and consist of Toll-like receptors (TLRs), RIG-I-like receptors (RLRs), NOD-like receptors (NLRs), C-type lectin-like receptors (CLRs), and DNA sensors. Sensing of PAMP by PRR initiates the cascade of signaling leading to the activation of transcription factors, such as NF-κB and interferon regulatory factors (IRFs), resulting in a variety of cellular responses, including the production of interferons (IFNs) and pro-inflammatory cytokines. In this review, we discuss sensing of different types of glycosylated PAMPs such as β-glucan (a polymeric sugar) or lipopolysaccharides, nucleic acid, and so on (sugar complex PAMPs) by different families of sensors, its role in pathogenesis, and its application in development of potential vaccine and vaccine adjuvants.
Collapse
Affiliation(s)
- Ranjeet Singh Mahla
- Laboratory of Immunology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) , Bhopal , India
| | | | | | | |
Collapse
|