1
|
Casper J, Schenk SH, Parhizkar E, Detampel P, Dehshahri A, Huwyler J. Polyethylenimine (PEI) in gene therapy: Current status and clinical applications. J Control Release 2023; 362:667-691. [PMID: 37666302 DOI: 10.1016/j.jconrel.2023.09.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
Polyethlyenimine (PEI) was introduced 1995 as a cationic polymer for nucleic acid delivery. PEI and its derivatives are extensively used in basic research and as reference formulations in the field of polymer-based gene delivery. Despite its widespread use, the number of clinical applications to date is limited. Thus, this review aims to consolidate the past applications of PEI in DNA delivery, elucidate the obstacles that hinder its transition to clinical use, and highlight potential prospects for novel iterations of PEI derivatives. The present review article is divided into three sections. The first section examines the mechanism of action employed by PEI, examining fundamental aspects of cellular delivery including uptake mechanisms, release from endosomes, and transport into the cell nucleus, along with potential strategies for enhancing these delivery phases. Moreover, an in-depth analysis is conducted concerning the mechanism underlying cellular toxicity, accompanied with approaches to overcome this major challenge. The second part is devoted to the in vivo performance of PEI and its application in various therapeutic indications. While systemic administration has proven to be challenging, alternative localized delivery routes hold promise, such as treatment of solid tumors, application as a vaccine, or serving as a therapeutic agent for pulmonary delivery. In the last section, the outcome of completed and ongoing clinical trials is summarized. Finally, an expert opinion is provided on the potential of PEI and its future applications. PEI-based formulations for nucleic acid delivery have a promising potential, it will be an important task for the years to come to introduce innovations that address PEI-associated shortcomings by introducing well-designed PEI formulations in combination with an appropriate route of administration.
Collapse
Affiliation(s)
- Jens Casper
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Susanne H Schenk
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Elahehnaz Parhizkar
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pascal Detampel
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Ali Dehshahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| |
Collapse
|
2
|
Uchida S, Lau CYJ, Oba M, Miyata K. Polyplex designs for improving the stability and safety of RNA therapeutics. Adv Drug Deliv Rev 2023; 199:114972. [PMID: 37364611 DOI: 10.1016/j.addr.2023.114972] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023]
Abstract
Nanoparticle-based delivery systems have contributed to the recent clinical success of RNA therapeutics, including siRNA and mRNA. RNA delivery using polymers has several distinct properties, such as enabling RNA delivery into extra-hepatic organs, modulation of immune responses to RNA, and regulation of intracellular RNA release. However, delivery systems should overcome safety and stability issues to achieve widespread therapeutic applications. Safety concerns include direct damage to cellular components, innate and adaptive immune responses, complement activation, and interaction with surrounding molecules and cells in the blood circulation. The stability of the delivery systems should balance extracellular RNA protection and controlled intracellular RNA release, which requires optimization for each RNA species. Further, polymer designs for improving safety and stability often conflict with each other. This review covers advances in polymer-based approaches to address these issues over several years, focusing on biological understanding and design concepts for delivery systems rather than material chemistry.
Collapse
Affiliation(s)
- Satoshi Uchida
- Department of Advanced Nanomedical Engineering, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan; Medical Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto, 606-0823, Japan; Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan.
| | - Chun Yin Jerry Lau
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Makoto Oba
- Medical Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto, 606-0823, Japan
| | - Kanjiro Miyata
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
3
|
Catarata R, Azim N, Bhattacharya S, Zhai L. Controlled drug release from polyelectrolyte-drug conjugate nanoparticles. J Mater Chem B 2021; 8:2887-2894. [PMID: 32191246 DOI: 10.1039/d0tb00012d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Encapsulating drugs in functional nanoparticles provides controlled and targeted release of drugs. In this study, a general approach for encapsulating hydrophobic drugs in polyelectrolyte nanoparticles was developed for a controlled drug release. Gemcitabine (GEM), an anticancer drug for pancreatic ductal adenocarcinoma (PDAC), was used as a model drug to produce poly(acrylic acid) (PAA)-GEM conjugate nanoparticles to achieve a controlled release of GEM in cells. The PAA-GEM conjugate nanoparticles were fabricated by coupling GEM onto PAA through the formation of amide bonds. The hydrophobic interactions of GEM molecules induced the formation of the nanoparticles with the GEM core and PAA shell. Fabrication conditions such as the PAA/GEM ratio and pH were optimized to achieve high structure stability and drug loading efficiency. The size and surface charge of the nanoparticles were characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS) and zeta potential measurement. The optimized PAA-GEM nanoparticles had a size around 12 nm, 30 nm and 60 nm in dry state, water, and phosphate buffered saline (PBS), respectively. The encapsulation efficiency was 29.29 ± 1.7%, and the loading capacity was 9.44 ± 0.46%. Less than 7% GEM was released from the PAA-GEM nanoparticles after 96 hour incubation in phosphate buffered saline. The cytotoxic efficacy of the PAA-GEM nanoparticles in cancer cells was investigated through viability studies of PANC-1, a human pancreatic cancer cell line. It was found that the PAA-GEM nanoparticles had more than a 48 hour delay of releasing GEM and had the same cytotoxic efficacy in PANC-1 cells as free GEM. The uptake of the PAA-GEM nanoparticles by PANC-1 cells was investigated using PAA-GEM labeled by rhodamine G6. Fluorescence and bright field overlay images indicated that the PAA-GEM nanoparticles were taken up by PANC-1 cells within 2 hours. It is believed that the PAA-GEM nanoparticles were decomposed in PANC-1 cells and GEM was released from the nanoparticles.
Collapse
Affiliation(s)
- Ruginn Catarata
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, USA.
| | - Nilab Azim
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, USA. and Department of Chemistry, University of Central Florida, Orlando, Florida 32816, USA
| | - Santanu Bhattacharya
- Department of Biochemistry and Molecular Biology, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Jacksonville, Florida 32224, USA.
| | - Lei Zhai
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, USA. and Department of Chemistry, University of Central Florida, Orlando, Florida 32816, USA and Department of Material Science and Engineering, University of Central Florida, Orlando, Florida 32816, USA
| |
Collapse
|
4
|
Jackson MA, Patel SS, Yu F, Cottam MA, Glass EB, Hoogenboezem EN, Fletcher RB, Dollinger BR, Patil P, Liu DD, Kelly IB, Bedingfield SK, King AR, Miles RE, Hasty AM, Giorgio TD, Duvall CL. Kupffer cell release of platelet activating factor drives dose limiting toxicities of nucleic acid nanocarriers. Biomaterials 2021; 268:120528. [PMID: 33285438 PMCID: PMC7856291 DOI: 10.1016/j.biomaterials.2020.120528] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/08/2020] [Accepted: 11/04/2020] [Indexed: 01/06/2023]
Abstract
This work establishes that Kupffer cell release of platelet activating factor (PAF), a lipidic molecule with pro-inflammatory and vasoactive signaling properties, dictates dose-limiting siRNA nanocarrier-associated toxicities. High-dose intravenous injection of siRNA-polymer nano-polyplexes (si-NPs) elicited acute, shock-like symptoms in mice, associated with increased plasma PAF and consequently reduced PAF acetylhydrolase (PAF-AH) activity. These symptoms were completely prevented by prophylactic PAF receptor inhibition or Kupffer cell depletion. Assessment of varied si-NP chemistries confirmed that toxicity level correlated to relative uptake of the carrier by liver Kupffer cells and that this toxicity mechanism is dependent on carrier endosome disruptive function. 4T1 tumor-bearing mice, which exhibit increased circulating leukocytes, displayed greater sensitivity to these toxicities. PAF-mediated toxicities were generalizable to commercial delivery reagent in vivo-jetPEI® and an MC3 lipid formulation matched to an FDA-approved nanomedicine. These collective results establish Kupffer cell release of PAF as a key mediator of siRNA nanocarrier toxicity and identify PAFR inhibition as an effective strategy to increase siRNA nanocarrier tolerated dose.
Collapse
Affiliation(s)
- Meredith A Jackson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Shrusti S Patel
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Fang Yu
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Matthew A Cottam
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Evan B Glass
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Ella N Hoogenboezem
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - R Brock Fletcher
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Bryan R Dollinger
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Prarthana Patil
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Danielle D Liu
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Isom B Kelly
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Sean K Bedingfield
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Allyson R King
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Rachel E Miles
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Alyssa M Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA; Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, 37212, USA
| | - Todd D Giorgio
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Craig L Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA.
| |
Collapse
|
5
|
Parhiz H, Khoshnejad M, Myerson JW, Hood E, Patel PN, Brenner JS, Muzykantov VR. Unintended effects of drug carriers: Big issues of small particles. Adv Drug Deliv Rev 2018; 130:90-112. [PMID: 30149885 PMCID: PMC6588191 DOI: 10.1016/j.addr.2018.06.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/11/2018] [Accepted: 06/26/2018] [Indexed: 02/06/2023]
Abstract
Humoral and cellular host defense mechanisms including diverse phagocytes, leukocytes, and immune cells have evolved over millions of years to protect the body from microbes and other external and internal threats. These policing forces recognize engineered sub-micron drug delivery systems (DDS) as such a threat, and react accordingly. This leads to impediment of the therapeutic action, extensively studied and discussed in the literature. Here, we focus on side effects of DDS interactions with host defenses. We argue that for nanomedicine to reach its clinical potential, the field must redouble its efforts in understanding the interaction between drug delivery systems and the host defenses, so that we can engineer safer interventions with the greatest potential for clinical success.
Collapse
Affiliation(s)
- Hamideh Parhiz
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Makan Khoshnejad
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob W Myerson
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth Hood
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Priyal N Patel
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob S Brenner
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Vladimir R Muzykantov
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Targeted Therapeutics and Translational Nanomedicine (CT3N), University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Boraschi D, Italiani P, Palomba R, Decuzzi P, Duschl A, Fadeel B, Moghimi SM. Nanoparticles and innate immunity: new perspectives on host defence. Semin Immunol 2017; 34:33-51. [DOI: 10.1016/j.smim.2017.08.013] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 08/22/2017] [Indexed: 02/07/2023]
|
7
|
Moghimi SM. Nanomedicine safety in preclinical and clinical development: focus on idiosyncratic injection/infusion reactions. Drug Discov Today 2017; 23:1034-1042. [PMID: 29146517 DOI: 10.1016/j.drudis.2017.11.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/20/2017] [Accepted: 11/09/2017] [Indexed: 11/18/2022]
Abstract
Injection/infusion reactions to nanopharmaceuticals (and particulate drug carriers) are idiosyncratic and well documented. The molecular basis of nanoparticle-mediated injection reactions is debatable, with two hypotheses as front-runners. The first is complement-activation-related 'pseudoallergy', where a causal role for nanoparticle-mediated complement activation in injection/infusion reactions is considered. However, the second hypothesis (the rapid phagocytic response hypothesis) states a transitional link from robust clearance of nanoparticles (NPs) from the blood by strategically placed responsive macrophages to adverse hemodynamic and cardiopulmonary reactions, regardless of complement activation. Here, I critically examine and discuss these hypotheses. Current experimentally derived evidence appears to be more in support of the rapid phagocytic response hypothesis than of the 'pseudoallergy' hypothesis.
Collapse
Affiliation(s)
- Seyed Moein Moghimi
- School of Pharmacy, The Faculty of Medical Sciences, King George VI Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; Division of Stratified Medicine, Biomarkers & Therapeutics, Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
8
|
In-vitro in-vivo correlation (IVIVC) in nanomedicine: Is protein corona the missing link? Biotechnol Adv 2017; 35:889-904. [DOI: 10.1016/j.biotechadv.2017.08.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/04/2017] [Accepted: 08/19/2017] [Indexed: 12/17/2022]
|
9
|
Buscema M, Matviykiv S, Mészáros T, Gerganova G, Weinberger A, Mettal U, Mueller D, Neuhaus F, Stalder E, Ishikawa T, Urbanics R, Saxer T, Pfohl T, Szebeni J, Zumbuehl A, Müller B. Immunological response to nitroglycerin-loaded shear-responsive liposomes in vitro and in vivo. J Control Release 2017; 264:14-23. [PMID: 28803115 DOI: 10.1016/j.jconrel.2017.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/06/2017] [Accepted: 08/08/2017] [Indexed: 12/19/2022]
Abstract
Liposomes formulated from the 1,3-diamidophospholipid Pad-PC-Pad are shear-responsive and thus promising nano-containers to specifically release a vasodilator at stenotic arteries. The recommended preclinical safety tests for therapeutic liposomes of nanometer size include the in vitro assessment of complement activation and the evaluation of the associated risk of complement activation-related pseudo-allergy (CARPA) in vivo. For this reason, we measured complement activation by Pad-PC-Pad formulations in human and porcine sera, along with the nanopharmaceutical-mediated cardiopulmonary responses in pigs. The evaluated formulations comprised of Pad-PC-Pad liposomes, with and without polyethylene glycol on the surface of the liposomes, and nitroglycerin as a model vasodilator. The nitroglycerin incorporation efficiency ranged from 25% to 50%. In human sera, liposome formulations with 20mg/mL phospholipid gave rise to complement activation, mainly via the alternative pathway, as reflected by the rises in SC5b-9 and Bb protein complex concentrations. Formulations having a factor of ten lower phospholipid content did not result in measurable complement activation. The weak complement activation induced by Pad-PC-Pad liposomal formulations was confirmed by the results obtained by performing an in vivo study in a porcine model, where hemodynamic parameters were monitored continuously. Our study suggests that, compared to FDA-approved liposomal drugs, Pad-PC-Pad exhibits less or similar risks of CARPA.
Collapse
Affiliation(s)
- Marzia Buscema
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Sofiya Matviykiv
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Tamás Mészáros
- Nanomedicine Research and Education Center, Institute of Pathophysiology, Semmelweis University Budapest, Hungary; SeroScience Ltd., Budapest, Hungary
| | - Gabriela Gerganova
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | | | - Ute Mettal
- Department of Chemistry, University of Fribourg, Fribourg, Switzerland
| | - Dennis Mueller
- Department of Chemistry, University of Fribourg, Fribourg, Switzerland
| | - Frederik Neuhaus
- Department of Chemistry, University of Fribourg, Fribourg, Switzerland
| | - Etienne Stalder
- Department of Chemistry, University of Fribourg, Fribourg, Switzerland
| | | | | | - Till Saxer
- Cardiology Division, University Hospital of Geneva, Geneva, Switzerland
| | - Thomas Pfohl
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - János Szebeni
- Nanomedicine Research and Education Center, Institute of Pathophysiology, Semmelweis University Budapest, Hungary; SeroScience Ltd., Budapest, Hungary; Department of Nanobiotechnology and Regenerative Medicine, Faculty of Health, Miskolc University, Miskolc, Hungary
| | - Andreas Zumbuehl
- Department of Chemistry, University of Fribourg, Fribourg, Switzerland
| | - Bert Müller
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland.
| |
Collapse
|
10
|
Wibroe PP, Anselmo AC, Nilsson PH, Sarode A, Gupta V, Urbanics R, Szebeni J, Hunter AC, Mitragotri S, Mollnes TE, Moghimi SM. Bypassing adverse injection reactions to nanoparticles through shape modification and attachment to erythrocytes. NATURE NANOTECHNOLOGY 2017; 12:589-594. [PMID: 28396605 DOI: 10.1038/nnano.2017.47] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 02/27/2017] [Indexed: 05/18/2023]
Abstract
Intravenously injected nanopharmaceuticals, including PEGylated nanoparticles, induce adverse cardiopulmonary reactions in sensitive human subjects, and these reactions are highly reproducible in pigs. Although the underlying mechanisms are poorly understood, roles for both the complement system and reactive macrophages have been implicated. Here, we show the dominance and importance of robust pulmonary intravascular macrophage clearance of nanoparticles in mediating adverse cardiopulmonary distress in pigs irrespective of complement activation. Specifically, we show that delaying particle recognition by macrophages within the first few minutes of injection overcomes adverse reactions in pigs using two independent approaches. First, we changed the particle geometry from a spherical shape (which triggers cardiopulmonary distress) to either rod- or disk-shape morphology. Second, we physically adhered spheres to the surface of erythrocytes. These strategies, which are distinct from commonly leveraged stealth engineering approaches such as nanoparticle surface functionalization with poly(ethylene glycol) and/or immunological modulators, prevent robust macrophage recognition, resulting in the reduction or mitigation of adverse cardiopulmonary distress associated with nanopharmaceutical administration.
Collapse
Affiliation(s)
- Peter Popp Wibroe
- Nanomedicine Laboratory, Centre for Pharmaceutical Nanotechnology and Nanotoxicology, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Aaron C Anselmo
- Department of Chemical Engineering and Center for Bioengineering, University of California at Santa Barbara, Santa Barbara, California 93106, USA
| | - Per H Nilsson
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway
- K.G. Jebsen IRC, University of Oslo, 0372 Oslo, Norway
- Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, 391 82 Kalmar, Sweden
| | - Apoorva Sarode
- Department of Chemical Engineering and Center for Bioengineering, University of California at Santa Barbara, Santa Barbara, California 93106, USA
| | - Vivek Gupta
- College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York 11439, USA
| | - Rudolf Urbanics
- Nanomedicine Research and Education Center, Semmelweis University, Budapest &SeroScience Ltd, Budapest, Hungary
| | - Janos Szebeni
- Nanomedicine Research and Education Center, Semmelweis University, Budapest &SeroScience Ltd, Budapest, Hungary
| | - Alan Christy Hunter
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | - Samir Mitragotri
- Department of Chemical Engineering and Center for Bioengineering, University of California at Santa Barbara, Santa Barbara, California 93106, USA
| | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway
- K.G. Jebsen IRC, University of Oslo, 0372 Oslo, Norway
- Reserach Laboratory, Nordland Hospital, 8092 Bodø, Norway
- K.G. Jebsen TREC, University of Tromsø, 9037 Tromsø, Norway
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Seyed Moein Moghimi
- Nanomedicine Laboratory, Centre for Pharmaceutical Nanotechnology and Nanotoxicology, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
- Nano-Science Center, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
- School of Medicine, Pharmacy and Health, Durham University, Queen's Campus, Stockton-on-Tees TS17 6BH, UK
| |
Collapse
|
11
|
Hall A, Lächelt U, Bartek J, Wagner E, Moghimi SM. Polyplex Evolution: Understanding Biology, Optimizing Performance. Mol Ther 2017; 25:1476-1490. [PMID: 28274797 DOI: 10.1016/j.ymthe.2017.01.024] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/25/2017] [Accepted: 01/25/2017] [Indexed: 02/06/2023] Open
Abstract
Polyethylenimine (PEI) is a gold standard polycationic transfectant. However, the highly efficient transfecting activity of PEI and many of its derivatives is accompanied by serious cytotoxic complications and safety concerns at innate immune levels, which impedes the development of therapeutic polycationic nucleic acid carriers in general and their clinical applications. In recent years, the dilemma between transfection efficacy and adverse PEI activities has been addressed from in-depth investigations of cellular processes during transfection and elucidation of molecular mechanisms of PEI-mediated toxicity and translation of these integrated events to chemical engineering of novel PEI derivatives with an improved benefit-to-risk ratio. This review addresses these perspectives and discusses molecular events pertaining to dynamic and multifaceted PEI-mediated cytotoxicity, including membrane destabilization, mitochondrial dysfunction, and perturbations of glycolytic flux and redox homeostasis as well as chemical strategies for the generation of better tolerated polycations. We further examine the effect of PEI and its derivatives on complement activation and interaction with Toll-like receptors. These perspectives are intended to lay the foundation for an improved understanding of interlinked mechanisms controlling transfection and toxicity and their translation for improved engineering of polycation-based transfectants.
Collapse
Affiliation(s)
- Arnaldur Hall
- Genome Integrity Unit, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Ulrich Lächelt
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität, 81377 Munich, Germany; Nanosystems Initiative Munich, 80799 Munich, Germany
| | - Jiri Bartek
- Genome Integrity Unit, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, 171 65 Solna, Sweden
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität, 81377 Munich, Germany; Nanosystems Initiative Munich, 80799 Munich, Germany.
| | - Seyed Moein Moghimi
- School of Medicine, Pharmacy and Health, Durham University, Queen's Campus, Stockton-on-Tees TS17 6BH, UK.
| |
Collapse
|
12
|
Fülöp TG, Metselaar JM, Storm G, Szebeni J. The role of thromboxane A2 in complement activation-related pseudoallergy. EUROPEAN JOURNAL OF NANOMEDICINE 2017. [DOI: 10.1515/ejnm-2016-0039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractComplement activation-related pseudoallergy (CARPA) is a hypersensitivity reaction occurring upon intravenous administration of numerous liposomal therapeutics, other nonbiological complex drugs and biologicals. It has a complex molecular and cellular mechanism that involves the production, actions and interactions of numerous vasoactive mediators in blood, including thromboxane A
Collapse
|