1
|
Tong Y, Childs-Disney JL, Disney MD. Targeting RNA with small molecules, from RNA structures to precision medicines: IUPHAR review: 40. Br J Pharmacol 2024; 181:4152-4173. [PMID: 39224931 DOI: 10.1111/bph.17308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/10/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024] Open
Abstract
RNA plays important roles in regulating both health and disease biology in all kingdoms of life. Notably, RNA can form intricate three-dimensional structures, and their biological functions are dependent on these structures. Targeting the structured regions of RNA with small molecules has gained increasing attention over the past decade, because it provides both chemical probes to study fundamental biology processes and lead medicines for diseases with unmet medical needs. Recent advances in RNA structure prediction and determination and RNA biology have accelerated the rational design and development of RNA-targeted small molecules to modulate disease pathology. However, challenges remain in advancing RNA-targeted small molecules towards clinical applications. This review summarizes strategies to study RNA structures, to identify small molecules recognizing these structures, and to augment the functionality of RNA-binding small molecules. We focus on recent advances in developing RNA-targeted small molecules as potential therapeutics in a variety of diseases, encompassing different modes of actions and targeting strategies. Furthermore, we present the current gaps between early-stage discovery of RNA-binding small molecules and their clinical applications, as well as a roadmap to overcome these challenges in the near future.
Collapse
Affiliation(s)
- Yuquan Tong
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida, USA
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| | - Jessica L Childs-Disney
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| | - Matthew D Disney
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida, USA
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| |
Collapse
|
2
|
Shearer V, Yu CH, Han X, Sczepanski JT. The clinical potential of l-oligonucleotides: challenges and opportunities. Chem Sci 2024:d4sc05157b. [PMID: 39479156 PMCID: PMC11514577 DOI: 10.1039/d4sc05157b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/19/2024] [Indexed: 11/02/2024] Open
Abstract
Chemically modified nucleotides are central to the development of biostable research tools and oligonucleotide therapeutics. In this context, l-oligonucleotides, the synthetic enantiomer of native d-nucleic acids, hold great promise. As enantiomers, l-oligonucleotides share the same physical and chemical properties as their native counterparts, yet their inverted l-(deoxy)ribose sugars afford them orthogonality towards the stereospecific environment of biology. Notably, l-oligonucleotides are highly resistant to degradation by cellular nucleases, providing them with superior biostability. As a result, l-oligonucleotides are being increasingly utilized for the development of diverse biomedical technologies, including molecular imaging tools, diagnostic biosensors, and aptamer-based therapeutics. Herein, we present recent such examples that highlight the clinical potential of l-oligonucleotides. Additionally, we provide our perspective on the remaining challenges and practical considerations currently associated with the use of l-oligonucleotides and explore potential solutions that will lead to the broader adoption of l-oligonucleotides in clinical applications.
Collapse
Affiliation(s)
- Victoria Shearer
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
| | - Chen-Hsu Yu
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
| | - Xuan Han
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
| | | |
Collapse
|
3
|
Riera-Tur I, Hinterdobler J, Maaske A, Sadewasser A, Schell M, Sekar J, Michel S, Klar R, Jaschinski F. Characterization of the TLR9-Activating Potential of LNA-Modified Antisense Oligonucleotides. Nucleic Acid Ther 2024; 34:257-271. [PMID: 39018509 DOI: 10.1089/nat.2024.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024] Open
Abstract
Early characterization of the immunostimulatory potential of therapeutic antisense oligonucleotides (ASOs) is crucial. At present, little is known about the toll-like receptor 9 (TLR9)-mediated immunostimulatory potential of third-generation locked nucleic acid (LNA)-modified ASOs. In this study, we have systematically investigated the TLR9-activating potential of LNA-modified oligonucleotides using different mouse and human cell culture systems. Although it has been reported that LNA modifications as well as cytosine methylation of 5'-cytosine-phosphate-guanine-3' (CpG) motifs can reduce TLR9 stimulation by phosphorothioate (PTO)-modified oligonucleotides, we identified CpG-containing LNA gapmers with substantial TLR9-stimulatory activity. We further identified immunostimulatory LNA gapmers without CpG motifs. Unexpectedly, methylation of cytosines only within the CpG motif did not necessarily reduce but could even increase TLR9 activation. In contrast, systematic methylation of all cytosines reduced or even abrogated TLR9 activation in most cases. Context dependently, the introduction of LNA-modifications into the flanks could either increase or decrease TLR9 stimulation. Overall, our results indicate that TLR9-dependent immunostimulatory potential is an individual feature of an oligonucleotide and needs to be investigated on a case-by-case basis.
Collapse
Affiliation(s)
| | | | - André Maaske
- Secarna Pharmaceuticals GmbH & Co. KG, Planegg, Germany
| | | | - Monika Schell
- Secarna Pharmaceuticals GmbH & Co. KG, Planegg, Germany
| | - Janani Sekar
- Secarna Pharmaceuticals GmbH & Co. KG, Planegg, Germany
| | - Sven Michel
- Secarna Pharmaceuticals GmbH & Co. KG, Planegg, Germany
| | - Richard Klar
- Secarna Pharmaceuticals GmbH & Co. KG, Planegg, Germany
| | | |
Collapse
|
4
|
Kong C, Yin G, Wang X, Sun Y. In Utero Gene Therapy and its Application in Genetic Hearing Loss. Adv Biol (Weinh) 2024; 8:e2400193. [PMID: 39007241 DOI: 10.1002/adbi.202400193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/03/2024] [Indexed: 07/16/2024]
Abstract
For monogenic genetic diseases, in utero gene therapy (IUGT) shows the potential for early prevention against irreversible and lethal pathological changes. Moreover, animal models have also demonstrated the effectiveness of IUGT in the treatment of coagulation disorders, hemoglobinopathies, neurogenetic disorders, and metabolic and pulmonary diseases. For major alpha thalassemia and severe osteogenesis imperfecta, in utero stem cell transplantation has entered the phase I clinical trial stage. Within the realm of the inner ear, genetic hearing loss significantly hampers speech, cognitive, and intellectual development in children. Nowadays, gene therapies offer substantial promise for deafness, with the success of clinical trials in autosomal recessive deafness 9 using AAV-OTOF gene therapy. However, the majority of genetic mutations that cause deafness affect the development of cochlear structures before the birth of fetuses. Thus, gene therapy before alterations in cochlear structure leading to hearing loss has promising applications. In this review, addressing advances in various fields of IUGT, the progress, and application of IUGT in the treatment of genetic hearing loss are focused, in particular its implementation methods and unique advantages.
Collapse
Affiliation(s)
- Chenyang Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ge Yin
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaohui Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Otorhinolaryngology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
5
|
Coan M, Haefliger S, Ounzain S, Johnson R. Targeting and engineering long non-coding RNAs for cancer therapy. Nat Rev Genet 2024; 25:578-595. [PMID: 38424237 DOI: 10.1038/s41576-024-00693-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 03/02/2024]
Abstract
RNA therapeutics (RNATx) aim to treat diseases, including cancer, by targeting or employing RNA molecules for therapeutic purposes. Amongst the most promising targets are long non-coding RNAs (lncRNAs), which regulate oncogenic molecular networks in a cell type-restricted manner. lncRNAs are distinct from protein-coding genes in important ways that increase their therapeutic potential yet also present hurdles to conventional clinical development. Advances in genome editing, oligonucleotide chemistry, multi-omics and RNA engineering are paving the way for efficient and cost-effective lncRNA-focused drug discovery pipelines. In this Review, we present the emerging field of lncRNA therapeutics for oncology, with emphasis on the unique strengths and challenges of lncRNAs within the broader RNATx framework. We outline the necessary steps for lncRNA therapeutics to deliver effective, durable, tolerable and personalized treatments for cancer.
Collapse
Affiliation(s)
- Michela Coan
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Simon Haefliger
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Rory Johnson
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland.
- Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Dublin, Ireland.
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Department for BioMedical Research, University of Bern, Bern, Switzerland.
- FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, Dublin, Ireland.
| |
Collapse
|
6
|
Genna V, Reyes-Fraile L, Iglesias-Fernandez J, Orozco M. Nucleic acids in modern molecular therapies: A realm of opportunities for strategic drug design. Curr Opin Struct Biol 2024; 87:102838. [PMID: 38759298 DOI: 10.1016/j.sbi.2024.102838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/10/2024] [Accepted: 04/23/2024] [Indexed: 05/19/2024]
Abstract
RNA vaccines have made evident to society what was already known by the scientific community: nucleic acids will be the "drugs of the future." By modifying the genome, interfering in transcription or translation, and by introducing new catalysts into the cell or by mimicking antibody effects, nucleic acids can generate therapeutic activities that are not accessible by any other therapeutic agents. There are, however, challenges that need to be solved in the next few years to make nucleic acids usable in a wide range of therapeutic scenarios. This review illustrates how simulation methods can help achieve this goal.
Collapse
Affiliation(s)
- Vito Genna
- NBD|Nostrum Biodiscovery, Josep Tarradellas 8-10, Barcelona 08019, Spain. https://twitter.com/_VitoGenna_
| | - Laura Reyes-Fraile
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain; Sixfold Bioscience Ltd, Translational & Innovation Hub, 84 Wood Ln, London W12 0BZ, United Kingdom
| | | | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain; Department of Biochemistry and Biomedicine, University of Barcelona, Barcelona 08028, Spain.
| |
Collapse
|
7
|
Kovecses O, Mercier FE, McKeague M. Nucleic acid therapeutics as differentiation agents for myeloid leukemias. Leukemia 2024; 38:1441-1454. [PMID: 38424137 PMCID: PMC11216999 DOI: 10.1038/s41375-024-02191-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
Differentiation therapy has proven to be a success story for patients with acute promyelocytic leukemia. However, the remaining subtypes of acute myeloid leukemia (AML) are treated with cytotoxic chemotherapies that have limited efficacy and a high likelihood of resistance. As differentiation arrest is a hallmark of AML, there is increased interest in developing differentiation-inducing agents to enhance disease-free survival. Here, we provide a comprehensive review of current reports and future avenues of nucleic acid therapeutics for AML, focusing on the use of targeted nucleic acid drugs to promote differentiation. Specifically, we compare and discuss the precision of small interfering RNA, small activating RNA, antisense oligonucleotides, and aptamers to modulate gene expression patterns that drive leukemic cell differentiation. We delve into preclinical and clinical studies that demonstrate the efficacy of nucleic acid-based differentiation therapies to induce leukemic cell maturation and reduce disease burden. By directly influencing the expression of key genes involved in myeloid maturation, nucleic acid therapeutics hold the potential to induce the differentiation of leukemic cells towards a more mature and less aggressive phenotype. Furthermore, we discuss the most critical challenges associated with developing nucleic acid therapeutics for myeloid malignancies. By introducing the progress in the field and identifying future opportunities, we aim to highlight the power of nucleic acid therapeutics in reshaping the landscape of myeloid leukemia treatment.
Collapse
MESH Headings
- Humans
- Cell Differentiation/drug effects
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Nucleic Acids/therapeutic use
- Animals
- Leukemia, Myeloid/drug therapy
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/pathology
- RNA, Small Interfering/genetics
- RNA, Small Interfering/therapeutic use
- Oligonucleotides, Antisense/therapeutic use
Collapse
Affiliation(s)
- Olivia Kovecses
- Department of Pharmacology and Therapeutics, McGill University, Montreal, H3G 1Y6, QC, Canada
| | - François E Mercier
- Division of Hematology and Experimental Medicine, Department of Medicine, McGill University, Montreal, H3T 1E2, QC, Canada
| | - Maureen McKeague
- Department of Pharmacology and Therapeutics, McGill University, Montreal, H3G 1Y6, QC, Canada.
- Department of Chemistry, McGill University, Montreal, H3A 0B8, QC, Canada.
| |
Collapse
|
8
|
Pawluk E, Delaunois A, Gamboa B, Valentin JP. Comparison of electrocardiogram and blood pressure recording methods in non-rodent toxicology studies: A retrospective analysis. J Pharmacol Toxicol Methods 2024; 128:107537. [PMID: 38955286 DOI: 10.1016/j.vascn.2024.107537] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/10/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
Our study retrospectively examines 51 non-rodent general toxicology studies conducted over the past 8 years to ascertain the influence of recording methodologies on baseline cardiovascular (CV) parameters and statistical sensitivity. Specifically, our work aims to evaluate the frequency of cardiovascular parameter recording categorized by therapeutic modality and study type, to assess the variability in these parameters based on measurement techniques, and to determine the sample sizes needed for detecting relevant changes in heart rate (HR), blood pressure (BP), and QTc interval in non-human primate (NHP) studies. Results indicate that electrocardiogram (ECG) measurements in dogs and NHP were recorded in 63% of studies, combined with BP recording in 18% of studies, while BP was never recorded alone. Trend analysis reveals a decline in the utilisation of restraint-based methods for ECG measurements post-2017, to the benefit of telemetry-based recordings, particularly Jacketed External Telemetry (JET). There was a marked difference in baseline values, with restraint-based methods showing significantly higher HR and QTc values compared to JET, likely linked to animal stress. Further analysis suggests an unrealistic and unethical sample size requirement in NHP studies for detecting biologically meaningful CV parameter changes using restraint-based methods, while JET methods necessitate significantly smaller sample sizes. This retrospective study indicates a notable shift from snapshots short-duration, restraint-based methods towards telemetry approaches over the recent years, especially with an increased usage of implanted telemetry. The transition contributes to potential consensus within industry or regulatory frameworks for optimal practices in assessing ECG, HR, and BP in general toxicology studies.
Collapse
Affiliation(s)
- Emma Pawluk
- UCB Biopharma SRL, Chemin du Foriest, B-1420 Braine-l'Alleud, Belgium.
| | - Annie Delaunois
- UCB Biopharma SRL, Chemin du Foriest, B-1420 Braine-l'Alleud, Belgium
| | - Bastien Gamboa
- UCB Biopharma SRL, Chemin du Foriest, B-1420 Braine-l'Alleud, Belgium
| | | |
Collapse
|
9
|
Li S, Xiong F, Zhang S, Liu J, Gao G, Xie J, Wang Y. Oligonucleotide therapies for nonalcoholic steatohepatitis. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102184. [PMID: 38665220 PMCID: PMC11044058 DOI: 10.1016/j.omtn.2024.102184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Nonalcoholic steatohepatitis (NASH) represents a severe disease subtype of nonalcoholic fatty liver disease (NAFLD) that is thought to be highly associated with systemic metabolic abnormalities. It is characterized by a series of substantial liver damage, including hepatocellular steatosis, inflammation, and fibrosis. The end stage of NASH, in some cases, may result in cirrhosis and hepatocellular carcinoma (HCC). Nowadays a large number of investigations are actively under way to test various therapeutic strategies, including emerging oligonucleotide drugs (e.g., antisense oligonucleotide, small interfering RNA, microRNA, mimic/inhibitor RNA, and small activating RNA) that have shown high potential in treating this fatal liver disease. This article systematically reviews the pathogenesis of NASH/NAFLD, the promising druggable targets proven by current studies in chemical compounds or biological drug development, and the feasibility and limitations of oligonucleotide-based therapeutic approaches under clinical or pre-clinical studies.
Collapse
Affiliation(s)
- Sixu Li
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610066, China
| | - Feng Xiong
- Department of Cardiology, The Third People’s Hospital of Chengdu, Chengdu 610031, China
| | - Songbo Zhang
- Department of Breast Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Jinghua Liu
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA 01605, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA 01605, USA
| | - Yi Wang
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610066, China
| |
Collapse
|
10
|
Matsubayashi T, Yoshioka K, Lei Mon SS, Katsuyama M, Jia C, Yamaguchi T, Hara RI, Nagata T, Nakagawa O, Obika S, Yokota T. Favorable efficacy and reduced acute neurotoxicity by antisense oligonucleotides with 2',4'-BNA/LNA with 9-(aminoethoxy)phenoxazine. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102161. [PMID: 38978695 PMCID: PMC11229412 DOI: 10.1016/j.omtn.2024.102161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/28/2024] [Indexed: 07/10/2024]
Abstract
An increasing number of antisense oligonucleotides (ASOs) have been approved for clinical use. However, improvements of both efficacy and safety in the central nervous system (CNS) are crucial for the treatment with CNS diseases. We aimed to overcome the crucial issues by our development of various gapmer ASOs with a novel nucleoside derivative including a 2',4'-BNA/LNA with 9-(aminoethoxy)phenoxazine (BNAP-AEO). The various gapmer ASOs with BNAP-AEO were evaluated for thermal stability, in vitro and in vivo efficacy, and acute CNS toxicity. Thermal stability analysis of the duplexes with their complementary RNAs showed that ASOs with BNAP-AEO had a higher binding affinity than those without BNAP-AEO. In vitro assays, when transfected into neuroblastoma cell lines, demonstrated that ASOs with BNAP-AEO, had a more efficient gene silencing effect than those without BNAP-AEO. In vivo assays, involving intracerebroventricular injections into mice, revealed ASOs with BNAP-AEO potently suppressed gene expression in the brain. Surprisingly, the acute CNS toxicity in mice, as assessed through open field tests and scoring systems, was significantly lower for ASOs with BNAP-AEO than for those without BNAP-AEO. This study underscores the efficient gene-silencing effect and low acute CNS toxicity of ASOs incorporating BNAP-AEO, indicating the potential for future therapeutic applications.
Collapse
Affiliation(s)
- Taiki Matsubayashi
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8519, Japan
| | - Kotaro Yoshioka
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8519, Japan
| | - Su Su Lei Mon
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8519, Japan
| | - Maho Katsuyama
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8519, Japan
| | - Chunyan Jia
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8519, Japan
| | - Takao Yamaguchi
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka Suita, Osaka 565-0871, Japan
| | - Rintaro Iwata Hara
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8519, Japan
| | - Tetsuya Nagata
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8519, Japan
| | - Osamu Nakagawa
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka Suita, Osaka 565-0871, Japan
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahoji, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka Suita, Osaka 565-0871, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8519, Japan
| |
Collapse
|
11
|
Lin S, Hong L, Wei DQ, Xiong Y. Deep learning facilitates efficient optimization of antisense oligonucleotide drugs. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102208. [PMID: 38803420 PMCID: PMC11129084 DOI: 10.1016/j.omtn.2024.102208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Affiliation(s)
- Shenggeng Lin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Artificial Intelligence Biomedical Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Liang Hong
- Artificial Intelligence Biomedical Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Artificial Intelligence Laboratory, Shanghai, China
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Xiong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Artificial Intelligence Biomedical Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Artificial Intelligence Laboratory, Shanghai, China
| |
Collapse
|
12
|
Leckie J, Yokota T. Potential of Cell-Penetrating Peptide-Conjugated Antisense Oligonucleotides for the Treatment of SMA. Molecules 2024; 29:2658. [PMID: 38893532 PMCID: PMC11173757 DOI: 10.3390/molecules29112658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Spinal muscular atrophy (SMA) is a severe neuromuscular disorder that is caused by mutations in the survival motor neuron 1 (SMN1) gene, hindering the production of functional survival motor neuron (SMN) proteins. Antisense oligonucleotides (ASOs), a versatile DNA-like drug, are adept at binding to target RNA to prevent translation or promote alternative splicing. Nusinersen is an FDA-approved ASO for the treatment of SMA. It effectively promotes alternative splicing in pre-mRNA transcribed from the SMN2 gene, an analog of the SMN1 gene, to produce a greater amount of full-length SMN protein, to compensate for the loss of functional protein translated from SMN1. Despite its efficacy in ameliorating SMA symptoms, the cellular uptake of these ASOs is suboptimal, and their inability to penetrate the CNS necessitates invasive lumbar punctures. Cell-penetrating peptides (CPPs), which can be conjugated to ASOs, represent a promising approach to improve the efficiency of these treatments for SMA and have the potential to transverse the blood-brain barrier to circumvent the need for intrusive intrathecal injections and their associated adverse effects. This review provides a comprehensive analysis of ASO therapies, their application for the treatment of SMA, and the encouraging potential of CPPs as delivery systems to improve ASO uptake and overall efficiency.
Collapse
Affiliation(s)
- Jamie Leckie
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- The Friends of Garrett Cumming Research & Muscular Dystrophy Canada HM Toupin Neurological Sciences Research, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
13
|
Bai D, Ziadlou R, Vaijayanthi T, Karthikeyan S, Chinnathambi S, Parthasarathy A, Cai L, Brüggen MC, Sugiyama H, Pandian GN. Nucleic acid-based small molecules as targeted transcription therapeutics for immunoregulation. Allergy 2024; 79:843-860. [PMID: 38055191 DOI: 10.1111/all.15959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 12/07/2023]
Abstract
Transcription therapy is an emerging approach that centers on identifying the factors associated with the malfunctioning gene transcription machinery that causes diseases and controlling them with designer agents. Until now, the primary research focus in therapeutic gene modulation has been on small-molecule drugs that target epigenetic enzymes and critical signaling pathways. However, nucleic acid-based small molecules have gained popularity in recent years for their amenability to be pre-designed and realize operative control over the dynamic transcription machinery that governs how the immune system responds to diseases. Pyrrole-imidazole polyamides (PIPs) are well-established DNA-based small-molecule gene regulators that overcome the limitations of their conventional counterparts owing to their sequence-targeted specificity, versatile regulatory efficiency, and biocompatibility. Here, we emphasize the rational design of PIPs, their functional mechanisms, and their potential as targeted transcription therapeutics for disease treatment by regulating the immune response. Furthermore, we also discuss the challenges and foresight of this approach in personalized immunotherapy in precision medicine.
Collapse
Affiliation(s)
- Dan Bai
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Japan
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Xi'an Key Laboratory of Special Medicine and Health Engineering, Xi'an, China
| | - Reihane Ziadlou
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Thangavel Vaijayanthi
- Chief Executive Officer, Regugene Co. Ltd., Kyoto, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan
| | - Subramani Karthikeyan
- Centre for Healthcare Advancement, Innovation and Research, Vellore Institute of Technology, Chennai, Tamil Nadu, India
| | | | | | - Li Cai
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, USA
| | - Marie-Charlotte Brüggen
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Hiroshi Sugiyama
- Chief Executive Officer, Regugene Co. Ltd., Kyoto, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan
| | - Ganesh N Pandian
- Chief Executive Officer, Regugene Co. Ltd., Kyoto, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan
| |
Collapse
|
14
|
Suárez-Herrera N, Li CHZ, Leijsten N, Karjosukarso DW, Corradi Z, Bukkems F, Duijkers L, Cremers FPM, Hoyng CB, Garanto A, Collin RWJ. Preclinical Development of Antisense Oligonucleotides to Rescue Aberrant Splicing Caused by an Ultrarare ABCA4 Variant in a Child with Early-Onset Stargardt Disease. Cells 2024; 13:601. [PMID: 38607040 PMCID: PMC11011354 DOI: 10.3390/cells13070601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
Precision medicine is rapidly gaining recognition in the field of (ultra)rare conditions, where only a few individuals in the world are affected. Clinical trial design for a small number of patients is extremely challenging, and for this reason, the development of N-of-1 strategies is explored to accelerate customized therapy design for rare cases. A strong candidate for this approach is Stargardt disease (STGD1), an autosomal recessive macular degeneration characterized by high genetic and phenotypic heterogeneity. STGD1 is caused by pathogenic variants in ABCA4, and amongst them, several deep-intronic variants alter the pre-mRNA splicing process, generally resulting in the insertion of pseudoexons (PEs) into the final transcript. In this study, we describe a 10-year-old girl harboring the unique deep-intronic ABCA4 variant c.6817-713A>G. Clinically, she presents with typical early-onset STGD1 with a high disease symmetry between her two eyes. Molecularly, we designed antisense oligonucleotides (AONs) to block the produced PE insertion. Splicing rescue was assessed in three different in vitro models: HEK293T cells, fibroblasts, and photoreceptor precursor cells, the last two being derived from the patient. Overall, our research is intended to serve as the basis for a personalized N-of-1 AON-based treatment to stop early vision loss in this patient.
Collapse
Affiliation(s)
- Nuria Suárez-Herrera
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.S.-H.); (N.L.); (D.W.K.); (Z.C.); (F.B.); (L.D.); (F.P.M.C.); (A.G.)
| | - Catherina H. Z. Li
- Department of Ophthalmology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (C.H.Z.L.); (C.B.H.)
| | - Nico Leijsten
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.S.-H.); (N.L.); (D.W.K.); (Z.C.); (F.B.); (L.D.); (F.P.M.C.); (A.G.)
| | - Dyah W. Karjosukarso
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.S.-H.); (N.L.); (D.W.K.); (Z.C.); (F.B.); (L.D.); (F.P.M.C.); (A.G.)
| | - Zelia Corradi
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.S.-H.); (N.L.); (D.W.K.); (Z.C.); (F.B.); (L.D.); (F.P.M.C.); (A.G.)
| | - Femke Bukkems
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.S.-H.); (N.L.); (D.W.K.); (Z.C.); (F.B.); (L.D.); (F.P.M.C.); (A.G.)
| | - Lonneke Duijkers
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.S.-H.); (N.L.); (D.W.K.); (Z.C.); (F.B.); (L.D.); (F.P.M.C.); (A.G.)
| | - Frans P. M. Cremers
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.S.-H.); (N.L.); (D.W.K.); (Z.C.); (F.B.); (L.D.); (F.P.M.C.); (A.G.)
| | - Carel B. Hoyng
- Department of Ophthalmology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (C.H.Z.L.); (C.B.H.)
- Dutch Center for RNA Therapeutics, 2311 EZ Leiden, The Netherlands
| | - Alejandro Garanto
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.S.-H.); (N.L.); (D.W.K.); (Z.C.); (F.B.); (L.D.); (F.P.M.C.); (A.G.)
- Dutch Center for RNA Therapeutics, 2311 EZ Leiden, The Netherlands
- Department of Pediatrics, Amalia Children’s Hospital, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Rob W. J. Collin
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.S.-H.); (N.L.); (D.W.K.); (Z.C.); (F.B.); (L.D.); (F.P.M.C.); (A.G.)
- Dutch Center for RNA Therapeutics, 2311 EZ Leiden, The Netherlands
| |
Collapse
|
15
|
El-Fateh M, Chatterjee A, Zhao X. A systematic review of peptide nucleic acids (PNAs) with antibacterial activities: Efficacy, potential and challenges. Int J Antimicrob Agents 2024; 63:107083. [PMID: 38185398 DOI: 10.1016/j.ijantimicag.2024.107083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/11/2023] [Accepted: 12/30/2023] [Indexed: 01/09/2024]
Abstract
Peptide nucleic acids (PNAs) are synthetic molecules that are like DNA/RNA, but with different building blocks. PNAs target and bind to mRNAs and disrupt the function of a targeted gene, hence they have been studied as potential antibacterials. The aim of this systematic review was to provide an in-depth analysis of the current status of PNAs as antibacterial agents, define the characteristics of the effective PNA constructs, and address the gap in advancing PNAs to become clinically competent agents. Following the PRISMA model, four electronic databases were searched: Web of Science, PubMed, SciFinder and Scopus. A total of 627 articles published between 1994 and 2023 were found. After screening and a rigorous selection process using explicit inclusion and exclusion criteria, 65 scientific articles were selected, containing 656 minimum inhibitory concentration (MIC) data. The antibacterial activity of PNAs was assessed against 20 bacterial species. The most studied Gram-negative and Gram-positive bacteria were Escherichia coli (n=266) and Staphylococcus aureus (n=53), respectively. In addition, the effect of PNA design, including construct length, binding location, and carrier agents, on antibacterial activity was shown. Finally, antibacterial test models to assess the inhibitory effects of PNAs were examined, emphasising gaps and prospects. This systematic review provides a comprehensive assessment of the potential of PNAs as antibacterial agents and offers valuable insights for researchers and clinicians seeking novel therapeutic strategies in the context of increasing rates of antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Mohamed El-Fateh
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada, H9X3V9; Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, 35516, El-Dakhelia, Egypt; Antimicrobial Regeneration Consortium Labs, Louisville, CO, 80027, USA
| | - Anushree Chatterjee
- Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA; Antimicrobial Regeneration Consortium Labs, Louisville, CO, 80027, USA
| | - Xin Zhao
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada, H9X3V9; Antimicrobial Regeneration Consortium Labs, Louisville, CO, 80027, USA.
| |
Collapse
|
16
|
Okamoto S, Echigoya Y, Tago A, Segawa T, Sato Y, Itou T. Antiviral Efficacy of RNase H-Dependent Gapmer Antisense Oligonucleotides against Japanese Encephalitis Virus. Int J Mol Sci 2023; 24:14846. [PMID: 37834294 PMCID: PMC10573891 DOI: 10.3390/ijms241914846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/23/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
RNase H-dependent gapmer antisense oligonucleotides (ASOs) are a promising therapeutic approach via sequence-specific binding to and degrading target RNAs. However, the efficacy and mechanism of antiviral gapmer ASOs have remained unclear. Here, we investigated the inhibitory effects of gapmer ASOs containing locked nucleic acids (LNA gapmers) on proliferating a mosquito-borne flavivirus, Japanese encephalitis virus (JEV), with high mortality. We designed several LNA gapmers targeting the 3' untranslated region of JEV genomic RNAs. In vitro screening by plaque assay using Vero cells revealed that LNA gapmers targeting a stem-loop region effectively inhibit JEV proliferation. Cell-based and RNA cleavage assays using mismatched LNA gapmers exhibited an underlying mechanism where the inhibition of viral production results from JEV RNA degradation by LNA gapmers in a sequence- and modification-dependent manner. Encouragingly, LNA gapmers potently inhibited the proliferation of five JEV strains of predominant genotypes I and III in human neuroblastoma cells without apparent cytotoxicity. Database searching showed a low possibility of off-target binding of our LNA gapmers to human RNAs. The target viral RNA sequence conservation observed here highlighted their broad-spectrum antiviral potential against different JEV genotypes/strains. This work will facilitate the development of an antiviral LNA gapmer therapy for JEV and other flavivirus infections.
Collapse
Affiliation(s)
- Shunsuke Okamoto
- Laboratory of Preventive Veterinary Medicine and Animal Health, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan; (S.O.); (T.S.); (T.I.)
- Nihon University Veterinary Research Center, Fujisawa, Kanagawa 252-0880, Japan; (A.T.); (Y.S.)
| | - Yusuke Echigoya
- Nihon University Veterinary Research Center, Fujisawa, Kanagawa 252-0880, Japan; (A.T.); (Y.S.)
- Laboratory of Biomedical Science, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Ayaka Tago
- Nihon University Veterinary Research Center, Fujisawa, Kanagawa 252-0880, Japan; (A.T.); (Y.S.)
- Laboratory of Biomedical Science, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Takao Segawa
- Laboratory of Preventive Veterinary Medicine and Animal Health, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan; (S.O.); (T.S.); (T.I.)
- Nihon University Veterinary Research Center, Fujisawa, Kanagawa 252-0880, Japan; (A.T.); (Y.S.)
| | - Yukita Sato
- Nihon University Veterinary Research Center, Fujisawa, Kanagawa 252-0880, Japan; (A.T.); (Y.S.)
- Laboratory of Biomedical Science, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Takuya Itou
- Laboratory of Preventive Veterinary Medicine and Animal Health, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan; (S.O.); (T.S.); (T.I.)
- Nihon University Veterinary Research Center, Fujisawa, Kanagawa 252-0880, Japan; (A.T.); (Y.S.)
| |
Collapse
|
17
|
Berman CL, Antonsson M, Batkai S, Bosgra S, Chopda GR, Driessen W, Foy J, Hassan C, Hu XS, Jang HG, Meena , Sanseverino M, Thum T, Wang Y, Wild M, Wu JT. OSWG Recommended Approaches to the Nonclinical Pharmacokinetic (ADME) Characterization of Therapeutic Oligonucleotides. Nucleic Acid Ther 2023; 33:287-305. [PMID: 37590469 PMCID: PMC10561745 DOI: 10.1089/nat.2023.0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/25/2023] [Indexed: 08/19/2023] Open
Abstract
This white paper summarizes the recommendations of the absorption, distribution, metabolism, and excretion (ADME) Subcommittee of the Oligonucleotide Safety Working Group for the characterization of absorption, distribution, metabolism, and excretion of oligonucleotide (ON) therapeutics in nonclinical studies. In general, the recommended approach is similar to that for small molecule drugs. However, some differences in timing and/or scope may be warranted due to the greater consistency of results across ON classes as compared with the diversity among small molecule classes. For some types of studies, a platform-based approach may be appropriate; once sufficient data are available for the platform, presentation of these data should be sufficient to support development of additional ONs of the same platform. These recommendations can serve as a starting point for nonclinical study design and foundation for discussions with regulatory agencies.
Collapse
Affiliation(s)
| | | | | | - Sieto Bosgra
- Independent Consultant, Amsterdam, The Netherlands
| | - Girish R. Chopda
- Dicerna Pharmaceuticals, Inc., a Novo Nordisk Company, Lexington, Massachusetts, USA
| | | | | | | | | | | | - Meena
- Stoke Therapeutics, Bedford, Massachusetts, USA
| | | | - Thomas Thum
- Cardior Pharmaceuticals GmbH, Hannover, Germany
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover, Germany
- Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | - Yanfeng Wang
- Formerly of Ionis Pharmaceuticals, Carlsbad, California, USA
| | - Martin Wild
- Early Oncology, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Jing-Tao Wu
- Alnylam Pharmaceuticals, Cambridge, Massachusetts, USA
| |
Collapse
|
18
|
Shi F, Zhao M, Zheng S, Zheng L, Wang H. Advances in genetic variation in metabolism-related fatty liver disease. Front Genet 2023; 14:1213916. [PMID: 37753315 PMCID: PMC10518415 DOI: 10.3389/fgene.2023.1213916] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
Metabolism-related fatty liver disease (MAFLD) is the most common form of chronic liver disease in the world. Its pathogenesis is influenced by both environmental and genetic factors. With the upgrading of gene screening methods and the development of human genome project, whole genome scanning has been widely used to screen genes related to MAFLD, and more and more genetic variation factors related to MAFLD susceptibility have been discovered. There are genetic variants that are highly correlated with the occurrence and development of MAFLD, and there are genetic variants that are protective of MAFLD. These genetic variants affect the development of MAFLD by influencing lipid metabolism and insulin resistance. Therefore, in-depth analysis of different mechanisms of genetic variation and targeting of specific genetic variation genes may provide a new idea for the early prediction and diagnosis of diseases and individualized precision therapy, which may be a promising strategy for the treatment of MAFLD.
Collapse
Affiliation(s)
- Fan Shi
- School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mei Zhao
- School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shudan Zheng
- School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lihong Zheng
- Department of Internal Medicine, Fourth Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Haiqiang Wang
- Department of Internal Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
19
|
Gould S, Templin MV. Off target toxicities and links with physicochemical properties of medicinal products, including antibiotics, oligonucleotides, lipid nanoparticles (with cationic and/or anionic charges). Data review suggests an emerging pattern. Toxicol Lett 2023; 384:14-29. [PMID: 37454775 DOI: 10.1016/j.toxlet.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Toxicology is an essential part of any drug development plan. Circumnavigating the risk of failure because of a toxicity issue can be a challenge, and failure in late development is extremely costly. To identify potential risks, it requires more than just understanding the biological target. The toxicologist needs to consider a compound's structure, it's physicochemical properties (including the impact of the overall formulation), as well as the biological target (e.g., receptor interactions). Understanding the impact of the physicochemical properties can be used to predict potential toxicities in advance by incorporating key endpoints in early screening strategies and/or used to compare toxicity profiles across lead candidates. This review discussed the risks of off-target and/or non-specific toxicities that may be associated with the physicochemical properties of compounds, especially those carrying dominant positive or negative charges, including amphiphilic small molecules, peptides, oligonucleotides and lipids/liposomes/lipid nanoparticles. The latter of which are being seen more and more in drug development, including the recent Covid pandemic, where mRNA and lipid nanoparticle technology is playing more of a role in vaccine development. The translation between non-clinical and clinical data is also considered, questioning how a physicochemical driven toxicity may be more universal across species, which means that such toxicity may be reassuringly translatable between species and as such, this information may also be considered as a support to the 3 R's, particularly in the early screening stages of a drug development plan.
Collapse
|
20
|
Zhou H, Arechavala-Gomeza V, Garanto A. Experimental Model Systems Used in the Preclinical Development of Nucleic Acid Therapeutics. Nucleic Acid Ther 2023; 33:238-247. [PMID: 37145922 PMCID: PMC10457615 DOI: 10.1089/nat.2023.0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/23/2023] [Indexed: 05/07/2023] Open
Abstract
Preclinical evaluation of nucleic acid therapeutics (NATs) in relevant experimental model systems is essential for NAT drug development. As part of COST Action "DARTER" (Delivery of Antisense RNA ThERapeutics), a network of researchers in the field of RNA therapeutics, we have conducted a survey on the experimental model systems routinely used by our members in preclinical NAT development. The questionnaire focused on both cellular and animal models. Our survey results suggest that skin fibroblast cultures derived from patients is the most commonly used cellular model, while induced pluripotent stem cell-derived models are also highly reported, highlighting the increasing potential of this technology. Splice-switching antisense oligonucleotide is the most frequently investigated RNA molecule, followed by small interfering RNA. Animal models are less prevalent but also widely used among groups in the network, with transgenic mouse models ranking the top. Concerning the research fields represented in our survey, the mostly studied disease area is neuromuscular disorders, followed by neurometabolic diseases and cancers. Brain, skeletal muscle, heart, and liver are the top four tissues of interest reported. We expect that this snapshot of the current preclinical models will facilitate decision making and the share of resources between academics and industry worldwide to facilitate the development of NATs.
Collapse
Affiliation(s)
- Haiyan Zhou
- Genetics and Genomic Medicine Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- NIHR Great Ormond Street Hospital Biomedical Research Center, London, United Kingdom
| | - Virginia Arechavala-Gomeza
- Nucleic Acid Therapeutics for Rare Disorders (NAT-RD), Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Alejandro Garanto
- Department of Pediatrics, Amalia Children's Hospital, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
21
|
Sardaru MC, Marangoci NL, Palumbo R, Roviello GN, Rotaru A. Nucleic Acid Probes in Bio-Imaging and Diagnostics: Recent Advances in ODN-Based Fluorescent and Surface-Enhanced Raman Scattering Nanoparticle and Nanostructured Systems. Molecules 2023; 28:3561. [PMID: 37110795 PMCID: PMC10141977 DOI: 10.3390/molecules28083561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Raman nanoparticle probes are a potent class of optical labels for the interrogation of pathological and physiological processes in cells, bioassays, and tissues. Herein, we review the recent advancements in fluorescent and Raman imaging using oligodeoxyribonucleotide (ODN)-based nanoparticles and nanostructures, which show promise as effective tools for live-cell analysis. These nanodevices can be used to investigate a vast number of biological processes occurring at various levels, starting from those involving organelles, cells, tissues, and whole living organisms. ODN-based fluorescent and Raman probes have contributed to the achievement of significant advancements in the comprehension of the role played by specific analytes in pathological processes and have inaugurated new possibilities for diagnosing health conditions. The technological implications that have emerged from the studies herein described could open new avenues for innovative diagnostics aimed at identifying socially relevant diseases like cancer through the utilization of intracellular markers and/or guide surgical procedures based on fluorescent or Raman imaging. Particularly complex probe structures have been developed within the past five years, creating a versatile toolbox for live-cell analysis, with each tool possessing its own strengths and limitations for specific studies. Analyzing the literature reports in the field, we predict that the development of ODN-based fluorescent and Raman probes will continue in the near future, disclosing novel ideas on their application in therapeutic and diagnostic strategies.
Collapse
Affiliation(s)
- Monica-Cornelia Sardaru
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Centre of Advanced Research in Bionanoconjugates and Biopolymers, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
- The Research Institute of the University of Bucharest (ICUB), 90 Sos. Panduri, 050663 Bucharest, Romania
| | - Narcisa-Laura Marangoci
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Centre of Advanced Research in Bionanoconjugates and Biopolymers, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
| | - Rosanna Palumbo
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Giovanni N. Roviello
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Alexandru Rotaru
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Centre of Advanced Research in Bionanoconjugates and Biopolymers, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
- Institute for Research, Innovation and Technology Transfer, UPS “Ion Creanga”, Ion Creanga Str. 1, MD2069 Chisinau, Moldova
| |
Collapse
|
22
|
Saoudi A, Fergus C, Gileadi T, Montanaro F, Morgan JE, Kelly VP, Tensorer T, Garcia L, Vaillend C, Muntoni F, Goyenvalle A. Investigating the Impact of Delivery Routes for Exon Skipping Therapies in the CNS of DMD Mouse Models. Cells 2023; 12:cells12060908. [PMID: 36980249 PMCID: PMC10047648 DOI: 10.3390/cells12060908] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Nucleic acid-based therapies have demonstrated great potential for the treatment of monogenetic diseases, including neurologic disorders. To date, regulatory approval has been received for a dozen antisense oligonucleotides (ASOs); however, these chemistries cannot readily cross the blood–brain barrier when administered systemically. Therefore, an investigation of their potential effects within the central nervous system (CNS) requires local delivery. Here, we studied the brain distribution and exon-skipping efficacy of two ASO chemistries, PMO and tcDNA, when delivered to the cerebrospinal fluid (CSF) of mice carrying a deletion in exon 52 of the dystrophin gene, a model of Duchenne muscular dystrophy (DMD). Following intracerebroventricular (ICV) delivery (unilateral, bilateral, bolus vs. slow rate, repeated via cannula or very slow via osmotic pumps), ASO levels were quantified across brain regions and exon 51 skipping was evaluated, revealing that tcDNA treatment invariably generates comparable or more skipping relative to that with PMO, even when the PMO was administered at higher doses. We also performed intra-cisterna magna (ICM) delivery as an alternative route for CSF delivery and found a biased distribution of the ASOs towards posterior brain regions, including the cerebellum, hindbrain, and the cervical part of the spinal cord. Finally, we combined both ICV and ICM injection methods to assess the potential of an additive effect of this methodology in inducing efficient exon skipping across different brain regions. Our results provide useful insights into the local delivery and associated efficacy of ASOs in the CNS in mouse models of DMD. These findings pave the way for further ASO-based therapy application to the CNS for neurological disease.
Collapse
Affiliation(s)
- Amel Saoudi
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000 Versailles, France
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400 Saclay, France
| | - Claire Fergus
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Talia Gileadi
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, 30 Guildford Street, London WC1N 1EH, UK
| | - Federica Montanaro
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, 30 Guildford Street, London WC1N 1EH, UK
| | - Jennifer E. Morgan
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, 30 Guildford Street, London WC1N 1EH, UK
| | - Vincent P. Kelly
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Thomas Tensorer
- SQY Therapeutics-Synthena, UVSQ, 78180 Montigny le Bretonneux, France
| | - Luis Garcia
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000 Versailles, France
| | - Cyrille Vaillend
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400 Saclay, France
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, 30 Guildford Street, London WC1N 1EH, UK
- Correspondence: (F.M.); (A.G.)
| | - Aurélie Goyenvalle
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000 Versailles, France
- Correspondence: (F.M.); (A.G.)
| |
Collapse
|