1
|
Lindblad C, Rostami E, Helmy A. Interleukin-1 Receptor Antagonist as Therapy for Traumatic Brain Injury. Neurotherapeutics 2023; 20:1508-1528. [PMID: 37610701 PMCID: PMC10684479 DOI: 10.1007/s13311-023-01421-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2023] [Indexed: 08/24/2023] Open
Abstract
Traumatic brain injury is a common type of acquired brain injury of varying severity carrying potentially deleterious consequences for the afflicted individuals, families, and society. Following the initial, traumatically induced insult, cellular injury processes ensue. These are believed to be amenable to treatment. Among such injuries, neuroinflammation has gained interest and has become a specific focus for both experimental and clinical researchers. Neuroinflammation is elicited almost immediately following trauma, and extend for a long time, possibly for years, after the primary injury. In the acute phase, the inflammatory response is characterized by innate mechanisms such as the activation of microglia which among else mediates cytokine production. Among the earliest cytokines to emerge are the interleukin- (IL-) 1 family members, comprising, for example, the agonist IL-1β and its competitive antagonist, IL-1 receptor antagonist (IL-1ra). Because of its early emergence following trauma and its increased concentrations also after human TBI, IL-1 has been hypothesized to be a tractable treatment target following TBI. Ample experimental data supports this, and demonstrates restored neurological behavior, diminished lesion zones, and an attenuated inflammatory response following IL-1 modulation either through IL-1 knock-out experiments, IL-1β inhibition, or IL-1ra treatment. Of these, IL-1ra treatment is likely the most physiological. In addition, recombinant human IL-1ra (anakinra) is already approved for utilization across a few rheumatologic disorders. As of today, one randomized clinical controlled trial has utilized IL-1ra inhibition as an intervention and demonstrated its safety. Further clinical trials powered for patient outcome are needed in order to demonstrate efficacy. In this review, we summarize IL-1 biology in relation to acute neuroinflammatory processes following TBI with a particular focus on current evidence for IL-1ra treatment both in the experimental and clinical context.
Collapse
Affiliation(s)
- Caroline Lindblad
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
- Department of Neurosurgery, Uppsala University Hospital, entrance 85 floor 2, Akademiska Sjukhuset, 751 85, Uppsala, Sweden.
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Elham Rostami
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Department of Neurosurgery, Uppsala University Hospital, entrance 85 floor 2, Akademiska Sjukhuset, 751 85, Uppsala, Sweden
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
2
|
Khaing ZZ, Chen JY, Safarians G, Ezubeik S, Pedroncelli N, Duquette RD, Prasse T, Seidlits SK. Clinical Trials Targeting Secondary Damage after Traumatic Spinal Cord Injury. Int J Mol Sci 2023; 24:3824. [PMID: 36835233 PMCID: PMC9960771 DOI: 10.3390/ijms24043824] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Spinal cord injury (SCI) often causes loss of sensory and motor function resulting in a significant reduction in quality of life for patients. Currently, no therapies are available that can repair spinal cord tissue. After the primary SCI, an acute inflammatory response induces further tissue damage in a process known as secondary injury. Targeting secondary injury to prevent additional tissue damage during the acute and subacute phases of SCI represents a promising strategy to improve patient outcomes. Here, we review clinical trials of neuroprotective therapeutics expected to mitigate secondary injury, focusing primarily on those in the last decade. The strategies discussed are broadly categorized as acute-phase procedural/surgical interventions, systemically delivered pharmacological agents, and cell-based therapies. In addition, we summarize the potential for combinatorial therapies and considerations.
Collapse
Affiliation(s)
- Zin Z. Khaing
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA
| | - Jessica Y. Chen
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Gevick Safarians
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Sohib Ezubeik
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Nicolas Pedroncelli
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Rebecca D. Duquette
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Tobias Prasse
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA
- Department of Orthopedics and Trauma Surgery, University of Cologne, 50931 Cologne, Germany
| | - Stephanie K. Seidlits
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
3
|
Idris Z, Yee AS, Wan Hassan WMN, Hassan MH, Ab Mukmin L, Mohamed Zain KA, Manaf AA, Balandong RP, Tang TB. Clinical outcomes and thermodynamics aspect of direct brain cooling in severe head injury. Surg Neurol Int 2023; 14:158. [PMID: 37151468 PMCID: PMC10159295 DOI: 10.25259/sni_118_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/20/2023] [Indexed: 05/09/2023] Open
Abstract
Background Brain cooling therapy is one of the subjects of interest, and currently, data on direct brain cooling are lacking. Hence, the objective is to investigate the clinical outcomes and discuss the thermodynamics aspect of direct brain cooling on severely injured brain patients. Methods This pilot study recruited the severely injured brain patients who were then randomized to either a direct brain cooling therapy group using a constant cooling temperature system or a control group. All studied patients must be subjected to an emergency neurosurgical procedure of decompressive craniectomy and were monitored with intracranial pressure, brain oxygenation, and temperature. Further, comparison was made with our historical group of patients who had direct brain cooling therapy through the old technique. Results The results disclosed the direct brain cooling treated patients through a newer technique obtained a better Extended Glasgow Outcome Score than a control group (P < 001). In addition, there is a significant outcome difference between the combined cooling treated patients (new and old technique) with the control group (P < 0.001). Focal brain oxygenation and temperature are likely factors that correlate with better outcomes. Conclusion Direct brain cooling is feasible, safe, and affects the clinical outcomes of the severely traumatized brain, and physics of thermodynamics may play a role in its pathophysiology.
Collapse
Affiliation(s)
- Zamzuri Idris
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
- Corresponding author: Zamzuri Idris, Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia.
| | - Ang Song Yee
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | | | - Mohamad Hasyizan Hassan
- Department of Anaesthesiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Laila Ab Mukmin
- Department of Anaesthesiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Khairu Anuar Mohamed Zain
- Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia, Bayan Lepas, Malaysia
| | - Asrulnizam Abd Manaf
- Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia, Bayan Lepas, Malaysia
| | | | - Tong Boon Tang
- Centre for Intelligent Signal and Imaging Research, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Malaysia
| |
Collapse
|
4
|
Prognostic Value of Circadian Brain Temperature Rhythm in Basal Ganglia Hemorrhage After Surgery. Neurol Ther 2021; 10:1045-1059. [PMID: 34561832 PMCID: PMC8571467 DOI: 10.1007/s40120-021-00283-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/07/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction Intracerebral hemorrhage (ICH) is associated with high mortality and morbidity rates. However, both the rhythmic variation and prognostic value of brain temperature after ICH remain unknown. In this study, we investigated brain temperature rhythm and its prognostic value for post-operative mortality and long-term functional outcomes in patients with ICH. Methods Post-operative diurnal brain temperature patterns at the basal ganglion are described. Following surgery for ICH, 78 patients were enrolled, and intracranial pressure and brain temperature were monitored using a fiber optic device. Brain temperature mesor, amplitude, and acrophase were estimated from the recorded temperature measurements, using cosinor analysis, and the association between these patterns and clinical parameters, mortality, and functional outcomes at the 12-month follow-up were examined. Results According to cosinor analysis, brain temperature in 55.1% of patients showed a circadian rhythm within 72 h post-surgery. The rhythm-adjusted mesor of brain temperature (± standard deviation) was 37.6 (± 0.7) °C, with a diminished mean amplitude. A temperature acrophase shift was also observed. Multivariate logistic regression analysis revealed that initial age and circadian rhythm of brain temperature appeared to be predictive and prognostic of functional outcomes. Further, patients with higher brain temperature mesor were more likely to survive than those with a lower mesor. Conclusion For patients with ICH, brain temperature rhythm analysis is an improved prognostic tool for mortality and functional outcome predictions.
Collapse
|
5
|
Kuo LT, Lu HY, Huang APH. Prognostic Value of Circadian Rhythm of Brain Temperature in Traumatic Brain Injury. J Pers Med 2021; 11:jpm11070620. [PMID: 34208924 PMCID: PMC8307466 DOI: 10.3390/jpm11070620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022] Open
Abstract
Hypothermia has been used in postoperative management of traumatic brain injury (TBI); however, the rhythmic variation and prognostic value of brain temperature after TBI have never been studied. This study describes diurnal brain temperature patterns in comatose patients with TBI. Mesors of brain temperature, amplitude, and acrophase were estimated from recorded temperature measurements using cosinor analysis. The association of these patterns with clinical parameters, mortality, and functional outcomes in a 12-month follow-up was examined. According to the cosinor analysis, 59.3% of patients presented with circadian rhythms of brain temperature in the first 72 h postoperatively. The rhythm-adjusted mesor of brain temperature was 37.39 ± 1.21 °C, with a diminished mean amplitude of 0.28 (±0.25) °C; a shift of temperature acrophase was also observed. Multivariate logistic regression analysis revealed that initial Glasgow coma scale score, age, elevated blood glucose level, and circadian rhythm of brain temperature seemed to be predictive and prognostic factors of patients' functional outcomes. For the prediction of survival status, younger patients or those patients with mesor within the middle 50% of brain temperature were more likely to survive. The analysis of brain temperature rhythms in patients with moderate and severe TBI provided additional predictive information related to mortality and functional outcomes.
Collapse
Affiliation(s)
- Lu-Ting Kuo
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, No. 7 Chung San South Road, Taipei 100, Taiwan;
| | - Hsueh-Yi Lu
- Department of Industrial Engineering and Management, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan;
| | - Abel Po-Hao Huang
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, No. 7 Chung San South Road, Taipei 100, Taiwan;
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 100, Taiwan
- Correspondence: ; Tel.: +886-2-2312-3456
| |
Collapse
|
6
|
Bruschettini M, Romantsik O, Moreira A, Ley D, Thébaud B. Stem cell-based interventions for the prevention of morbidity and mortality following hypoxic-ischaemic encephalopathy in newborn infants. Cochrane Database Syst Rev 2020; 8:CD013202. [PMID: 32813884 PMCID: PMC7438027 DOI: 10.1002/14651858.cd013202.pub2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Hypoxic-ischaemic encephalopathy (HIE) is a leading cause of mortality and long-term neurological sequelae, affecting thousands of children worldwide. Current therapies to treat HIE are limited to cooling. Stem cell-based therapies offer a potential therapeutic approach to repair or regenerate injured brain tissue. These preclinical findings have now culminated in ongoing human neonatal trials. OBJECTIVES To determine the efficacy and safety of stem cell-based interventions for the treatment of hypoxic-ischaemic encephalopathy (HIE) in newborn infants. SEARCH METHODS We used the standard search strategy of Cochrane Neonatal to search the Cochrane Central Register of Controlled Trials (CENTRAL; 2020, Issue 5), MEDLINE via PubMed (1966 to 8 June 2020), Embase (1980 to 8 June 2020), and CINAHL (1982 to 8 June 2020). We also searched clinical trials databases, conference proceedings, and the reference lists of retrieved articles for randomised controlled trials and quasi-randomised trials. SELECTION CRITERIA Randomised controlled trials, quasi-randomised controlled trials and cluster trials comparing 1) stem cell-based interventions (any type) compared to control (placebo or no treatment); 2) use of mesenchymal stem/stromal cells (MSCs) of type (e.g. number of doses or passages) or source (e.g. autologous versus allogeneic, or bone marrow versus cord) versus MSCs of other type or source; 3) use of stem cell-based interventions other than MSCs of type (e.g. mononuclear cells, oligodendrocyte progenitor cells, neural stem cells, hematopoietic stem cells, and inducible pluripotent stem cells) or source (e.g. autologous versus allogeneic, or bone marrow versus cord) versus stem cell-based interventions other than MSCs of other type or source; or 4) MSCs versus stem cell-based interventions other than MSCs. DATA COLLECTION AND ANALYSIS For each of the included trials, two authors independently planned to extract data (e.g. number of participants, birth weight, gestational age, type and source of MSCs or other stem cell-based interventions) and assess the risk of bias (e.g. adequacy of randomisation, blinding, completeness of follow-up). The primary outcomes considered in this review are all-cause neonatal mortality, major neurodevelopmental disability, death or major neurodevelopmental disability assessed at 18 to 24 months of age. We planned to use the GRADE approach to assess the quality of evidence. MAIN RESULTS Our search strategy yielded 616 references. Two review authors independently assessed all references for inclusion. We did not find any completed studies for inclusion. Fifteen RCTs are currently registered and ongoing. We describe the three studies we excluded. AUTHORS' CONCLUSIONS There is currently no evidence from randomised trials that assesses the benefit or harms of stem cell-based interventions for the prevention of morbidity and mortality following hypoxic-ischaemic encephalopathy in newborn infants.
Collapse
Affiliation(s)
- Matteo Bruschettini
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skåne University Hospital, Lund, Sweden
- Cochrane Sweden, Lund University, Skåne University Hospital, Lund, Sweden
| | - Olga Romantsik
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skåne University Hospital, Lund, Sweden
| | - Alvaro Moreira
- Pediatrics, Division of Neonatology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - David Ley
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skåne University Hospital, Lund, Sweden
| | - Bernard Thébaud
- Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Canada
- Ottawa Hospital Research Institute, Sprott Centre for Stem Cell Research, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
7
|
Andrews PJ, Sinclair HL, Rodríguez A, Harris B, Rhodes J, Watson H, Murray G. Therapeutic hypothermia to reduce intracranial pressure after traumatic brain injury: the Eurotherm3235 RCT. Health Technol Assess 2019; 22:1-134. [PMID: 30168413 DOI: 10.3310/hta22450] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a major cause of disability and death in young adults worldwide. It results in around 1 million hospital admissions annually in the European Union (EU), causes a majority of the 50,000 deaths from road traffic accidents and leaves a further ≈10,000 people severely disabled. OBJECTIVE The Eurotherm3235 Trial was a pragmatic trial examining the effectiveness of hypothermia (32-35 °C) to reduce raised intracranial pressure (ICP) following severe TBI and reduce morbidity and mortality 6 months after TBI. DESIGN An international, multicentre, randomised controlled trial. SETTING Specialist neurological critical care units. PARTICIPANTS We included adult participants following TBI. Eligible patients had ICP monitoring in place with an ICP of > 20 mmHg despite first-line treatments. Participants were randomised to receive standard care with the addition of hypothermia (32-35 °C) or standard care alone. Online randomisation and the use of an electronic case report form (CRF) ensured concealment of random treatment allocation. It was not possible to blind local investigators to allocation as it was obvious which participants were receiving hypothermia. We collected information on how well the participant had recovered 6 months after injury. This information was provided either by the participant themself (if they were able) and/or a person close to them by completing the Glasgow Outcome Scale - Extended (GOSE) questionnaire. Telephone follow-up was carried out by a blinded independent clinician. INTERVENTIONS The primary intervention to reduce ICP in the hypothermia group after randomisation was induction of hypothermia. Core temperature was initially reduced to 35 °C and decreased incrementally to a lower limit of 32 °C if necessary to maintain ICP at < 20 mmHg. Rewarming began after 48 hours if ICP remained controlled. Participants in the standard-care group received usual care at that centre, but without hypothermia. MAIN OUTCOME MEASURES The primary outcome measure was the GOSE [range 1 (dead) to 8 (upper good recovery)] at 6 months after the injury as assessed by an independent collaborator, blind to the intervention. A priori subgroup analysis tested the relationship between minimisation factors including being aged < 45 years, having a post-resuscitation Glasgow Coma Scale (GCS) motor score of < 2 on admission, having a time from injury of < 12 hours and patient outcome. RESULTS We enrolled 387 patients from 47 centres in 18 countries. The trial was closed to recruitment following concerns raised by the Data and Safety Monitoring Committee in October 2014. On an intention-to-treat basis, 195 participants were randomised to hypothermia treatment and 192 to standard care. Regarding participant outcome, there was a higher mortality rate and poorer functional recovery at 6 months in the hypothermia group. The adjusted common odds ratio (OR) for the primary statistical analysis of the GOSE was 1.54 [95% confidence interval (CI) 1.03 to 2.31]; when the GOSE was dichotomised the OR was 1.74 (95% CI 1.09 to 2.77). Both results favoured standard care alone. In this pragmatic study, we did not collect data on adverse events. Data on serious adverse events (SAEs) were collected but were subject to reporting bias, with most SAEs being reported in the hypothermia group. CONCLUSIONS In participants following TBI and with an ICP of > 20 mmHg, titrated therapeutic hypothermia successfully reduced ICP but led to a higher mortality rate and worse functional outcome. LIMITATIONS Inability to blind treatment allocation as it was obvious which participants were randomised to the hypothermia group; there was biased recording of SAEs in the hypothermia group. We now believe that more adequately powered clinical trials of common therapies used to reduce ICP, such as hypertonic therapy, barbiturates and hyperventilation, are required to assess their potential benefits and risks to patients. TRIAL REGISTRATION Current Controlled Trials ISRCTN34555414. FUNDING This project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 22, No. 45. See the NIHR Journals Library website for further project information. The European Society of Intensive Care Medicine supported the pilot phase of this trial.
Collapse
Affiliation(s)
- Peter Jd Andrews
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - H Louise Sinclair
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Aryelly Rodríguez
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK
| | - Bridget Harris
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | | | | | - Gordon Murray
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
8
|
Bruschettini M, Romantsik O, Moreira A, Ley D, Thébaud B. Stem cell-based interventions for the prevention of morbidity and mortality following hypoxic-ischaemic encephalopathy in newborn infants. Hippokratia 2018. [DOI: 10.1002/14651858.cd013202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Matteo Bruschettini
- Lund University, Skåne University Hospital; Department of Paediatrics; Lund Sweden
- Skåne University Hospital; Cochrane Sweden; Wigerthuset, Remissgatan 4, first floor room 11-221 Lund Sweden 22185
| | - Olga Romantsik
- Lund University, Skåne University Hospital; Department of Paediatrics; Lund Sweden
| | - Alvaro Moreira
- University of Texas Health Science Center at San Antonio; Pediatrics, Division of Neonatology; San Antonio Texas USA
| | - David Ley
- Lund University, Skåne University Hospital; Department of Paediatrics; Lund Sweden
| | - Bernard Thébaud
- Children's Hospital of Eastern Ontario; Department of Pediatrics; Ottawa ON Canada
- Ottawa Hospital Research Institute, Sprott Center for Stem Cell Research; Ottawa Canada
- University of Ottawa; Department of Cellular and Molecular Medicine; Ottawa Canada
| |
Collapse
|
9
|
Leung LY, Cardiff K, Yang X, Srambical Wilfred B, Gilsdorf J, Shear D. Selective Brain Cooling Reduces Motor Deficits Induced by Combined Traumatic Brain Injury, Hypoxemia and Hemorrhagic Shock. Front Neurol 2018; 9:612. [PMID: 30123177 PMCID: PMC6085442 DOI: 10.3389/fneur.2018.00612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/09/2018] [Indexed: 11/13/2022] Open
Abstract
Selective brain cooling (SBC) can potentially maximize the neuroprotective benefits of hypothermia for traumatic brain injury (TBI) patients without the complications of whole body cooling. We have previously developed a method that involved extraluminal cooling of common carotid arteries, and demonstrated the feasibility, safety and efficacy for treating isolated TBI in rats. The present study evaluated the neuroprotective effects of 4-h SBC in a rat model of penetrating ballistic-like brain injury (PBBI) combined with hypoxemic and hypotensive insults (polytrauma). Rats were randomly assigned into two groups: PBBI+polytrauma without SBC (PHH) and PBBI+polytrauma with SBC treatment (PHH+SBC). All animals received unilateral PBBI, followed by 30-min hypoxemia (fraction of inspired oxygen = 0.1) and then 30-min hemorrhagic hypotension (mean arterial pressure = 40 mmHg). Fluid resuscitation was given immediately following hypotension. SBC was initiated 15 min after fluid resuscitation and brain temperature was maintained at 32-33°C (core temperature at ~36.5°C) for 4 h under isoflurane anesthesia. The PHH group received the same procedures minus the cooling. At 7, 10, and 21 days post-injury, motor function was assessed using the rotarod task. Cognitive function was assessed using the Morris water maze at 13-17 days post-injury. At 21 days post-injury, blood samples were collected and the animals were transcardially perfused for subsequent histological analyses. SBC transiently augmented cardiovascular function, as indicated by the increase in mean arterial pressure and heart rate during cooling. Significant improvement in motor functions were detected in SBC-treated polytrauma animals at 7, 10, and 21 days post-injury compared to the control group (p < 0.05). However, no significant beneficial effects were detected on cognitive measures following SBC treatment in the polytrauma animals. In addition, the blood serum and plasma levels of cytokines interleukin-1 and -10 were comparable between the two groups. Histological results also did not reveal any between-group differences in subacute neurodegeneration and astrocyte/ microglial activation. In summary, 4-h SBC delivered through extraluminal cooling of the common carotid arteries effectively ameliorated motor deficits induced by PBBI and polytrauma. Improving cognitive function or mitigating subacute neurodegeneration and neuroinflammation might require a different cooling regimen such as extended cooling, a slow rewarming period and a lower temperature.
Collapse
Affiliation(s)
- Lai Yee Leung
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Katherine Cardiff
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Xiaofang Yang
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Bernard Srambical Wilfred
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Janice Gilsdorf
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Deborah Shear
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| |
Collapse
|
10
|
Szczygielski J, Müller A, Mautes AE, Sippl C, Glameanu C, Schwerdtfeger K, Steudel WI, Oertel J. Selective Brain Hypothermia Mitigates Brain Damage and Improves Neurological Outcome after Post-Traumatic Decompressive Craniectomy in Mice. J Neurotrauma 2017; 34:1623-1635. [PMID: 27799012 DOI: 10.1089/neu.2016.4615] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hypothermia and decompressive craniectomy (DC) have been considered as treatment for traumatic brain injury. The present study investigates whether selective brain hypothermia added to craniectomy could improve neurological outcome after brain trauma. Male CD-1 mice were assigned into the following groups: sham; DC; closed head injury (CHI); CHI followed by craniectomy (CHI+DC); and CHI+DC followed by focal hypothermia (CHI+DC+H). At 24 h post-trauma, animals were subjected to Neurological Severity Score (NSS) test and Beam Balance Score test. At the same time point, magnetic resonance imaging using a 9.4 Tesla scanner and subsequent volumetric evaluation of edema and contusion were performed. Thereafter, the animals were sacrificed and subjected to histopathological analysis. According to NSS, there was a significant impairment among all the groups subjected to trauma. Animals with both trauma and craniectomy performed significantly worse than animals with craniectomy alone. This deleterious effect disappeared when additional hypothermia was applied. BBS was significantly worse in the CHI and CHI+DC groups, but not in the CHI+DC+H group, compared to the sham animals. Edema and contusion volumes were significantly increased in CHI+DC animals, but not in the CHI+DC+H group, compared to the DC group. Histopathological analysis showed that neuronal loss and contusional blossoming could be attenuated by application of selective brain hypothermia. Selective brain cooling applied post-trauma and craniectomy improved neurological function and reduced structural damage and may be therefore an alternative to complication-burdened systemic hypothermia. Clinical studies are recommended in order to explore the potential of this treatment.
Collapse
Affiliation(s)
- Jacek Szczygielski
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Andreas Müller
- 2 Department of Radiology, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Angelika E Mautes
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Christoph Sippl
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Cosmin Glameanu
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Karsten Schwerdtfeger
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Wolf-Ingo Steudel
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Joachim Oertel
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| |
Collapse
|
11
|
Lee JH, Zhang J, Yu SP. Neuroprotective mechanisms and translational potential of therapeutic hypothermia in the treatment of ischemic stroke. Neural Regen Res 2017; 12:341-350. [PMID: 28469636 PMCID: PMC5399699 DOI: 10.4103/1673-5374.202915] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Stroke is a leading cause of disability and death, yet effective treatments for acute stroke has been very limited. Thus far, tissue plasminogen activator has been the only FDA-approved drug for thrombolytic treatment of ischemic stroke patients, yet its application is only applicable to less than 4–5% of stroke patients due to the narrow therapeutic window (< 4.5 hours after the onset of stroke) and the high risk of hemorrhagic transformation. Emerging evidence from basic and clinical studies has shown that therapeutic hypothermia, also known as targeted temperature management, can be a promising therapy for patients with different types of stroke. Moreover, the success in animal models using pharmacologically induced hypothermia (PIH) has gained increasing momentum for clinical translation of hypothermic therapy. This review provides an updated overview of the mechanisms and protective effects of therapeutic hypothermia, as well as the recent development and findings behind PIH treatment. It is expected that a safe and effective hypothermic therapy has a high translational potential for clinical treatment of patients with stroke and other CNS injuries.
Collapse
Affiliation(s)
- Jin Hwan Lee
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA; Veteran's Affair Medical Center, Center for Visual and Neurocognitive Rehabilitation, Atlanta, GA, USA
| | - James Zhang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA; Veteran's Affair Medical Center, Center for Visual and Neurocognitive Rehabilitation, Atlanta, GA, USA
| | - Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA; Veteran's Affair Medical Center, Center for Visual and Neurocognitive Rehabilitation, Atlanta, GA, USA
| |
Collapse
|
12
|
Otto KA. Therapeutic hypothermia applicable to cardiac surgery. Vet Anaesth Analg 2015; 42:559-69. [PMID: 26361886 DOI: 10.1111/vaa.12299] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/19/2015] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To review the beneficial and adverse effects of therapeutic hypothermia (TH) applicable to cardiac surgery with cardiopulmonary bypass (CPB) in the contexts of various temperature levels and techniques for achieving TH. DATABASES USED Multiple electronic literature searches were performed using PubMed and Google for articles published from June 2012 to December 2014. Relevant terms (e.g. 'hypothermia', 'cardiopulmonary bypass', 'cardiac surgery', 'neuroprotection') were used to search for original articles, letters and reviews without species limitation. Reviews were included despite potential publication bias. References from the studies identified were also searched to find other potentially relevant citations. Abstracts, case reports, conference presentations, editorials and expert opinions were excluded. CONCLUSIONS Therapeutic hypothermia is an essential measure of neuroprotection during cardiac surgery that may be achieved most effectively by intravascular cooling using hypothermic CPB. For most cardiac surgical procedures, mild to modest (32-36 °C) TH will be sufficient to assure neuroprotection and will avoid most of the adverse effects of hypothermia that occur at lower body core temperatures.
Collapse
Affiliation(s)
- Klaus A Otto
- Central Laboratory Animal Facility, Hannover Medical School, Hannover, Germany
| |
Collapse
|
13
|
Zygun DA, Doig CJ, Auer RN, Laupland KB, Sutherland GR. Progress in Clinical Neurosciences: Therapeutic Hypothermia in Severe Traumatic Brain Injury. Can J Neurol Sci 2014; 30:307-13. [PMID: 14672261 DOI: 10.1017/s0317167100003000] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Severe traumatic brain injury (sTBI) is a relatively common problem with few therapies proven effective. Despite its use for over 50 years, therapeutic hypothermia has not gained widespread acceptance in the treatment of sTBI due to conflicting results from clinical trials. This review will summarize the current evidence from animal, mechanistic and clinical studies supporting the use of therapeutic hypothermia. In addition, issues of rewarming and optimal temperature will be discussed. Finally, the future of hypothermia in sTBI will be addressed.
Collapse
Affiliation(s)
- David A Zygun
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
14
|
Bristot G, Ascoli B, Gubert C, Panizzutti B, Kapczinski F, Rosa AR. Progesterone and its metabolites as therapeutic targets in psychiatric disorders. Expert Opin Ther Targets 2014; 18:679-90. [PMID: 24654651 DOI: 10.1517/14728222.2014.897329] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Neurosteroids are molecules that regulate physiological functions of the CNS. There is increasing evidence suggesting that impaired neurosteroid biosynthesis has been associated with distinct psychiatric disorders. This review summarizes data from studies that have investigated the relationship between progesterone (PROG) and psychiatric disorders as well as the mechanisms potentially involved in PROG-induced neuroprotection. AREAS COVERED The review covers the role of PROG and its metabolites in psychiatric disorders, focusing on results from preclinical and some clinical studies that support the relationship between alterations on PROG levels and pathophysiology of psychiatric illness. We also discussed the main mechanisms underlying the neuroprotective effects of PROG metabolites. EXPERT OPINION Our review points out the possible relationship between PROG and its metabolites and the pathophysiology of psychiatric disorders. Furthermore, both preclinical and clinical studies show that certain treatments (antidepressants or antipsychotics) may normalize the levels of PROG, suggesting that the amelioration of psychiatric symptoms may occur due to upregulation of PROG metabolites. Therefore, these results give support to new possibilities of treatment for patients with psychiatric symptoms from anxiety- and depressive-like behaviors to aggressive behaviors.
Collapse
Affiliation(s)
- Giovana Bristot
- Universidade Federal do Rio Grande do Sul, National Science and Technology Institute for Translational Medicine (INCT-TM), Hospital de Clínicas de Porto Alegre, Laboratory of Molecular Psychiatry, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) , Porto Alegre , Brazil +55 51 33598845 ; +55 51 33598846 ;
| | | | | | | | | | | |
Collapse
|
15
|
The effect of hypothermia on sensory-motor function and tissue sparing after spinal cord injury. Spine J 2013; 13:1881-91. [PMID: 24012427 DOI: 10.1016/j.spinee.2013.06.073] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 01/17/2013] [Accepted: 06/01/2013] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT In recent years, hypothermia has been described as a therapeutic approach that leads to potential protective effects via minimization of secondary damage consequences, reduction of neurologic deficit, and increase of motor performance after spinal cord injury (SCI) in animal models and humans. PURPOSE The objective of this study was to determine the therapeutic efficacy of hypothermia treatment on sensory-motor function and bladder activity outcome correlated with the white and gray matter sparing and neuronal survival after SCI in adult rats. STUDY DESIGN A standardized animal model of compression SCI was used to test the hypothesis that hypothermia could have a neuroprotective effect on neural cell death and loss of white and/or gray matter. METHODS Animals underwent spinal cord compression injury at the Th8-Th9 level followed by systemic hypothermia of 32.0°C with gradual re-warming to 37.0°C. Motor function of hind limbs (BBB score) and mechanical allodynia (von Frey hair filaments) together with function of urinary bladder was monitored in all experimental animals throughout the whole survival period. RESULTS Present results showed that hypothermia had beneficial effects on urinary bladder activity and on locomotor function recovery at Days 7 and 14 post-injury. Furthermore, significant increase of NeuN-positive neuron survival within dorsal and ventral horns at Days 7, 14, and 21 were documented. CONCLUSIONS Our conclusions suggest that hypothermia treatment may not only promote survival of neurons, which can have a significant impact on the improvement of motor and vegetative functions, but also induce mechanical allodynia.
Collapse
|
16
|
Khadrawy YA, AboulEzz HS, Ahmed NA, Mohammed HS. The Anticonvulant Effect of Cooling in Comparison to α-Lipoic Acid: A Neurochemical Study. Neurochem Res 2013; 38:906-15. [DOI: 10.1007/s11064-013-0995-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 01/28/2013] [Accepted: 01/31/2013] [Indexed: 11/29/2022]
|
17
|
Brain temperature: physiology and pathophysiology after brain injury. Anesthesiol Res Pract 2012; 2012:989487. [PMID: 23326261 PMCID: PMC3541556 DOI: 10.1155/2012/989487] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 11/09/2012] [Accepted: 12/12/2012] [Indexed: 12/02/2022] Open
Abstract
The regulation of brain temperature is largely dependent on the metabolic activity of brain tissue and remains complex. In intensive care clinical practice, the continuous monitoring of core temperature in patients with brain injury is currently highly recommended. After major brain injury, brain temperature is often higher than and can vary independently of systemic temperature. It has been shown that in cases of brain injury, the brain is extremely sensitive and vulnerable to small variations in temperature. The prevention of fever has been proposed as a therapeutic tool to limit neuronal injury. However, temperature control after traumatic brain injury, subarachnoid hemorrhage, or stroke can be challenging. Furthermore, fever may also have beneficial effects, especially in cases involving infections. While therapeutic hypothermia has shown beneficial effects in animal models, its use is still debated in clinical practice. This paper aims to describe the physiology and pathophysiology of changes in brain temperature after brain injury and to study the effects of controlling brain temperature after such injury.
Collapse
|
18
|
Neuroprotective effects of hypothermia after spinal cord injury in rats: comparative study between epidural hypothermia and systemic hypothermia. Spine (Phila Pa 1976) 2012; 37:E1551-9. [PMID: 22926281 DOI: 10.1097/brs.0b013e31826ff7f1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN An experimental comparative study on moderate epidural hypothermia (MEH) versus moderate systemic hypothermia (MSH) after spinal cord injury (SCI). OBJECTIVE To compare neuroprotective effects of hypothermia between MEH and MSH after SCI in rats. SUMMARY OF BACKGROUND DATA Experimental MEH or MSH has been attempted for neuroprotection after ischemic or traumatic SCI. However, there is no comparative study on neuroprotective effect of MEH and MSH after SCI. If hypothermia is to be considered as 1 modality for treating SCI, further studies on the advantages and disadvantages of hypothermia will be mandatory. METHODS A spinal cord contusion was produced in all 32 rats, and these rats were randomly divided into 4 groups-8 rats in each group: (1) the control group (spinal cord contusion only), (2) the methylprednisolone group, (3) the MEH group (28°C for 48 hr), and (4) the MSH group (32°C for 48 hr). The functional recovery was assessed using Basso, Beattie, Bresnahan scale and antiapoptotic and anti-inflammatory effects were assessed. RESULTS The Basso, Beattie, Bresnahan scale scores in both the hypothermia groups were significantly higher than that in the control group at 6 weeks. The numbers of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells and OX-42 positive cells were significantly lower in both the MEH and MSH groups than that in the control group. The p38 mitogen-activated protein kinases expression of the treated groups was significantly lower than that of the control group. The expression of caspase-8 and caspase-9 significantly decreased in the treated groups compared with that of the control group. However, in terms of caspase-3, only the MSH group has shown to be significantly lower than that of the control group. CONCLUSION This study presented that both systemic and epidural hypothermia demonstrated neuroprotective effects after SCI. Systemic hypothermia showed more neuroprotective effect by antiapoptotic and anti-inflammatory effects.
Collapse
|
19
|
Adamczak S, Dale G, de Rivero Vaccari JP, Bullock MR, Dietrich WD, Keane RW. Inflammasome proteins in cerebrospinal fluid of brain-injured patients as biomarkers of functional outcome: clinical article. J Neurosurg 2012; 117:1119-25. [PMID: 23061392 DOI: 10.3171/2012.9.jns12815] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECT Traumatic brain injury (TBI), the third most common CNS pathology, plagues 5.3 million Americans with permanent TBI-related disabilities. To evaluate injury severity and prognosis, physicians rely on clinical variables. Here, the authors seek objective, biochemical markers reflecting molecular injury mechanisms specific to the CNS as more accurate measurements of injury severity and outcome. One such secondary injury mechanism, the innate immune response, is regulated by the inflammasome, a molecular platform that activates caspase-1 and interleukin-1β. METHODS The authors investigated whether inflammasome components were present in the CSF of 23 patients with TBI and whether levels of inflammasome components correlate with outcome. The authors performed an immunoblot analysis of CSF samples from patients who suffered TBI and nontrauma controls and assessed the outcomes 5 months postinjury by using the Glasgow Outcome Scale. Data were analyzed using Mann-Whitney U-tests and linear regression analysis. RESULTS Patients with severe or moderate cranial trauma exhibited significantly higher CSF levels of the inflammasome proteins ASC, caspase-1, and NALP-1 than nontrauma controls (p < 0.0001, p = 0.0029, and p = 0.0202, respectively). Expression of each protein correlated significantly with the Glasgow Outcome Scale score at 5 months postinjury (p < 0.05). ASC, caspase-1, and NALP-1 were significantly higher in the CSF of patients with unfavorable outcomes, including death and severe disability (p < 0.0001). CONCLUSIONS NALP-1 inflammasome proteins are potential biomarkers to assess TBI severity, outcome, and the secondary injury mechanisms impeding recovery, serving as adjuncts to clinical predictors.
Collapse
Affiliation(s)
- Stephanie Adamczak
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Florida, USA
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Traumatic brain injury (TBI) activates the NALP1/NLRP1 inflammasome, which is an important component of the early innate inflammatory response to injury. We investigated the influence of therapeutic hypothermia on inflammasome activation after TBI. Adult male Sprague-Dawley rats were subjected to moderate fluid percussion brain injury. Temperature manipulation (33°C or 37°C) was initiated 30 minutes after TBI and maintained for 4 hours. At 4 or 24 hours after TBI, traumatized cortex and hippocampus were prepared for immunoblot or immunohistochemical analysis. In the normothermic groups, caspase-1, caspase-11 and expression of the purinergic receptor P2X7 increased at 24 hours after TBI. Posttraumatic hypothermia lead to decreased expression of these proteins at 24 hours compared with normothermic levels. Immunocytochemical studies showed that posttraumatic hypothermia also decreased caspase-1 staining in cerebral cortical neurons compared with normothermic TBI. Cultured cortical neurons subjected to stretch injury demonstrated significant secretion of caspase-1 into the culture medium and caspase-3 activation, both results reduced by hypothermic treatment. Posttraumatic hypothermia decreases inflammasome signaling in neurons and reduces the innate immune response to TBI at 24 hours after injury. Therapeutic hypothermia may protect the injured central nervous system by targeting the detrimental consequences of the innate immune response to injury.
Collapse
|
21
|
|
22
|
Bregy A, Nixon R, Lotocki G, Alonso OF, Atkins CM, Tsoulfas P, Bramlett HM, Dietrich WD. Posttraumatic hypothermia increases doublecortin expressing neurons in the dentate gyrus after traumatic brain injury in the rat. Exp Neurol 2011; 233:821-8. [PMID: 22197046 DOI: 10.1016/j.expneurol.2011.12.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 11/30/2011] [Accepted: 12/05/2011] [Indexed: 12/12/2022]
Abstract
Previous studies have demonstrated that moderate hypothermia reduces histopathological damage and improves behavioral outcome after experimental traumatic brain injury (TBI). Further investigations have clarified the mechanisms underlying the beneficial effects of hypothermia by showing that cooling reduces multiple cell injury cascades. The purpose of this study was to determine whether hypothermia could also enhance endogenous reparative processes following TBI such as neurogenesis and the replacement of lost neurons. Male Sprague-Dawley rats underwent moderate fluid-percussion brain injury and then were randomized into normothermia (37°C) or hypothermia (33°C) treatment. Animals received injections of 5-bromo-2'-deoxyuridine (BrdU) to detect mitotic cells after brain injury. After 3 or 7 days, animals were perfusion-fixed and processed for immunocytochemistry and confocal analysis. Sections were stained for markers selective for cell proliferation (BrdU), neuroblasts and immature neurons (doublecortin), and mature neurons (NeuN) and then analyzed using non-biased stereology to quantify neurogenesis in the dentate gyrus (DG). At 7 days after TBI, both normothermic and hypothermic TBI animals demonstrated a significant increase in the number of BrdU-immunoreactive cells in the DG as compared to sham-operated controls. At 7 days post-injury, hypothermia animals had a greater number of BrdU (ipsilateral cortex) and doublecortin (ipsilateral and contralateral cortex) immunoreactive cells in the DG as compared to normothermia animals. Because adult neurogenesis following injury may be associated with enhanced functional recovery, these data demonstrate that therapeutic hypothermia sustains the increase in neurogenesis induced by TBI and this may be one of the mechanisms by which hypothermia promotes reparative strategies in the injured nervous system.
Collapse
Affiliation(s)
- Amade Bregy
- Department of Neurological Surgery, The Neurotrauma Research Center, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Yu CH, Yhee JY, Kim JH, Im KS, Kim NH, Jung DI, Lee HC, Chon SK, Sur JH. Pro- and anti-inflammatory cytokine expression and histopathological characteristics in canine brain with traumatic brain injury. J Vet Sci 2011; 12:299-301. [PMID: 21897106 PMCID: PMC3165162 DOI: 10.4142/jvs.2011.12.3.299] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
We analyzed the expression level and cellular localization of pro- and anti-inflammatory cytokines and histopathologically characterized canine traumatic brain injury (TBI). Canine TBI brains revealed subarachnoid and cerebral cortical hemorrhage, neutrophilic infiltration, neuronal necrosis, astrocytosis, and vasogenic edema. Immunohistochemical evaluations suggested that both pro-inflammatory cytokines [interleukin (IL)-1β, IL-6, and tumor necrosis factor-α] and anti-inflammatory cytokines [IL-10 and transforming growth factor-beta (TGF-β)] were highly expressed in neurons and neutrophils. In particular, the highest magnitude of expression was identified for IL-1β and TGF-β. This data helps describe the pathologic characteristics of canine TBI, and may help in the design of potential therapeutic approaches to control secondary damage by inflammatory cytokines.
Collapse
Affiliation(s)
- Chi-Ho Yu
- Department of Pathobiology, Small Animal Tumor Diagnostic Center, College of Veterinary Medicine, Konkuk University, Seoul 143-701, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Helmy A, De Simoni MG, Guilfoyle MR, Carpenter KLH, Hutchinson PJ. Cytokines and innate inflammation in the pathogenesis of human traumatic brain injury. Prog Neurobiol 2011; 95:352-72. [PMID: 21939729 DOI: 10.1016/j.pneurobio.2011.09.003] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 09/04/2011] [Accepted: 09/06/2011] [Indexed: 01/31/2023]
Abstract
There is an increasing recognition that following traumatic brain injury, a cascade of inflammatory mediators is produced, and contributes to the pathological consequences of central nervous system injury. This review summarises the key literature from pre-clinical models that underlies our understanding of innate inflammation following traumatic brain injury before focussing on the growing evidence from human studies. In addition, the underlying molecular mediators responsible for blood brain barrier dysfunction have been discussed. In particular, we have highlighted the different sampling methodologies available and the difficulties in interpreting human data of this sort. Ultimately, understanding the innate inflammatory response to traumatic brain injury may provide a therapeutic avenue in the treatment of central nervous system disease.
Collapse
Affiliation(s)
- Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Box 167, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK.
| | | | | | | | | |
Collapse
|
25
|
Bukur M, Kurtovic S, Berry C, Tanios M, Ley EJ, Salim A. Pre-hospital hypothermia is not associated with increased survival after traumatic brain injury. J Surg Res 2011; 175:24-9. [PMID: 21872881 DOI: 10.1016/j.jss.2011.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 03/24/2011] [Accepted: 07/05/2011] [Indexed: 01/18/2023]
Abstract
BACKGROUND Conclusions from in vivo and in vitro studies suggest hypothermia may be protective in traumatic brain injury (TBI). Few studies evaluated the effect of admission temperature on outcomes. The purpose of this study is to examine the relationship between admission hypothermia and mortality in patients with isolated, blunt, moderate to severe TBI. METHODS The Los Angeles Trauma Database was queried for all patients ≥ 14 y of age with isolated, blunt, moderate to severe TBI (head abbreviated injury score (AIS) ≥ 3, all other <3), admitted between 2005 and 2009. The study population was then stratified into two groups by admission temperature: hypothermic (≤ 35°C) and normothermic (>35°C). Demographic characteristics and outcomes were compared between groups. Logistic regression analysis was used to determine the relationship between admission hypothermia and mortality. RESULTS A total of 1834 patients were analyzed and then stratified into two groups: hypothermic (n = 44) and normothermic (n = 1790). There was a significant difference noted in overall mortality (25% versus 7%), with the hypothermic group being four times more likely to succumb to their injuries. After adjusting for confounding factors, admission hypothermia was independently associated with increased mortality (AOR 2.5; 95% CI 1.1-6.3; P = 0.04). CONCLUSIONS Although in-vivo and in-vitro studies demonstrate induced hypothermia may be protective in TBI, our study demonstrates that admission hypothermia was associated with increased mortality in isolated, blunt, moderate to severe TBI. Further prospective research is needed to elucidate the role of thermoregulation in patients sustaining TBI.
Collapse
Affiliation(s)
- Marko Bukur
- Department of Surgery, Division of Trauma and Critical Care, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Traumatic brain injury is the leading cause of death in young people. Induced hypothermia has been used as a therapeutic intervention to improve outcome, based on results of animal studies. This article reviews the mechanisms of brain injury, the results of animal and human studies and the reasons that human studies do not always reflect the success seen in animal studies and why results may be ‘lost in translation’ to treatment of patients. It concludes by suggesting further areas of work to investigate the clinical use of therapeutic hypothermia.
Collapse
Affiliation(s)
- Liming Qiu
- Medical Student, Bart's and the London Medical School
| |
Collapse
|
27
|
Feng JF, Zhang KM, Jiang JY, Gao GY, Fu X, Liang YM. Effect of therapeutic mild hypothermia on the genomics of the hippocampus after moderate traumatic brain injury in rats. Neurosurgery 2011; 67:730-42. [PMID: 20651628 DOI: 10.1227/01.neu.0000378023.81727.6e] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Traumatic brain injury (TBI), a major cause of morbidity and mortality, is a serious public health concern. OBJECTIVE To evaluate the effect of mild hypothermia on gene expression in the hippocampus and to try to elucidate molecular mechanisms of hypothermic neuroprotection after TBI. METHODS Rats were subjected to mild hypothermia (group 1: n = 3, 33 degrees C, 3H) or normothermia (group 2: n = 3; 37 degrees C, 3H) after TBI. Six genome arrays were applied to detect the gene expression profiles of ipsilateral hippocampus. Functional clustering and gene ontology analysis were then carried out. Another 20 rats were randomly assigned to 4 groups (n = 5 per group): group 3, sham-normothermia; group 4, sham-hypothermia; group 5, TBI-normothermia; and group 6, TBI-hypothermia. Real-time fluorescent quantitative reverse-transcription polymerase chain reaction was used to detect specific selected genes. RESULTS We found that 133 transcripts in the hypothermia group were statistically different from those in the normothermia group, including 57 transcripts that were upregulated and 76 that were downregulated after TBI (P < .01). Most of these genes were involved in various pathophysiological processes, and some were critical to cell survival. Analysis showed that 9 gene ontology categories were significantly affected by hypothermia, including the most affected categories: synapse organization and biogenesis (upregulated) and regulation of inflammatory response (downregulated). The mRNA expression of Ank3, Cmbp, Nrxn3, Tgm2, and Fcgr3 was regulated by hypothermia, TBI, or a combination of TBI and hypothermia compared with the sham-normothermia group. Their mRNA expression was significantly regulated by hypothermia in TBI groups. CONCLUSION Posttraumatic mild hypothermia has a significant effect on the gene expression profiles of the hippocampus, especially those genes belonging to the 9 gene ontology categories. Differential expression of those genes may be involved in the most fundamental molecular mechanisms of cerebral protection by mild hypothermia after TBI.
Collapse
Affiliation(s)
- Jun-feng Feng
- Department of Neurosurgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Spinal cord injury (SCI) is a devastating condition that affects approximately 11,000 patients each year in the United States. Although a significant amount of research has been conducted to clarify the pathophysiology of SCI, there are limited therapeutic interventions that are currently available in the clinic. Moderate hypothermia has been used in a variety of experimental and clinical situations to target several neurological disorders, including traumatic brain and SCI. Recent studies using clinically relevant animal models of SCI have reported the efficacy of therapeutic hypothermia (TH) in terms of promoting long-term behavioral improvement and reducing histopathological damage. In addition, several clinical studies have demonstrated encouraging evidence for the use of TH in patients with a severe cervical spinal cord injury. Moderate hypothermia (33°C) introduced systemically by intravascular cooling strategies appears to be safe and provides some improvement of long-term recovery of function. TH remains an experimental clinical approach and randomized multicenter trials are needed to critically evaluate this potentially exciting therapeutic intervention targeting this patient population.
Collapse
Affiliation(s)
- W Dalton Dietrich
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL 33136-1060, USA.
| | | | | | | |
Collapse
|
29
|
Sogut O, Guloglu C, Orak M, Sayhan MB, Gokdemir MT, Ustundag M, Akkus Z. Trauma scores and neuron-specific enolase, cytokine and C-reactive protein levels as predictors of mortality in patients with blunt head trauma. J Int Med Res 2011; 38:1708-20. [PMID: 21309485 DOI: 10.1177/147323001003800516] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This study evaluated serum neuron-specific enolase (NSE), cytokine and high-sensitivity C-reactive-protein (hs-CRP) levels, along with the Glasgow Coma Scale (GCS) and Revised Trauma Score (RTS), as predictors of mortality in the early posttraumatic period, in 100 Turkish patients with blunt head trauma. Overall patient mortality was 27%. There was a significant association between age and mortality, and mortality was negatively correlated with GCS and RTS. Head injury severity (GCS) was significantly related to NSE, hs-CRP, interleukin (IL)-6, IL-8 and tumour necrosis factor (TNF)-alpha levels. Mortality correlated positively with IL-6, IL-8, TNF-alpha and hs-CRP levels. NSE, hs-CRP, IL-6, IL-8 and TNF-alpha levels were significantly higher in non-survivors compared with survivors. GCS score < or =8, younger age and NSE levels were significant independent predictors of mortality. During the early post-traumatic period, NSE may be an objective alternative criterion to the GCS, in the management of patients with blunt head trauma.
Collapse
Affiliation(s)
- O Sogut
- Department of Emergency Medicine, Faculty of Medicine, Harran University, Sanliurfa, Turkey.
| | | | | | | | | | | | | |
Collapse
|
30
|
Childs C, Wieloch T, Lecky F, Machin G, Harris B, Stocchetti N. Report of a consensus meeting on human brain temperature after severe traumatic brain injury: its measurement and management during pyrexia. Front Neurol 2010; 1:146. [PMID: 21206519 PMCID: PMC3009434 DOI: 10.3389/fneur.2010.00146] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 11/01/2010] [Indexed: 01/16/2023] Open
Abstract
Temperature disturbances are common in patients with severe traumatic brain injury. The possibility of an adaptive, potentially beneficial role for fever in patients with severe brain trauma has been dismissed, but without good justification. Fever might, in some patients, confer benefit. A cadre of clinicians and scientists met to debate the clinically relevant, but often controversial issue about whether raised brain temperature after human traumatic brain injury (TBI) should be regarded as "good or bad" for outcome. The objective was to produce a consensus document of views about current temperature measurement and pyrexia treatment. Lectures were delivered by invited speakers with National and International publication track records in thermoregulation, neuroscience, epidemiology, measurement standards and neurocritical care. Summaries of the lectures and workshop discussions were produced from transcriptions of the lectures and workshop discussions. At the close of meeting, there was agreement on four key issues relevant to modern temperature measurement and management and for undergirding of an evidence-based practice, culminating in a consensus statement. There is no robust scientific data to support the use of hypothermia in patients whose intracranial pressure is controllable using standard therapy. A randomized clinical trial is justified to establish if body cooling for control of pyrexia (to normothermia) vs moderate pyrexia leads to a better patient outcome for TBI patients.
Collapse
Affiliation(s)
- Charmaine Childs
- Yong Loo Lin School of Medicine, National University of SingaporeSingapore
| | - Tadeusz Wieloch
- Laboratory for Experimental Brain Research, Wallenberg Centre for NeuroscienceLund, Sweden
| | - Fiona Lecky
- Trauma Audit Research Network, Salford Royal NHS Foundation Trust, University of ManchesterGreater Manchester, UK
| | - Graham Machin
- Temperature Group, National Physical LaboratoryMiddlesex, UK
| | - Bridget Harris
- School of Clinical Sciences and Community Health, Royal Infirmary, The University of EdinburghEdinburgh, UK
| | - Nino Stocchetti
- Terapia Intensiva Neuroscienze, Ospedale Policlinico, Istituiti di Ricovero e Cura a Carattere ScientificoMilano, Italy
| |
Collapse
|
31
|
Abstract
There is now compelling clinical evidence that prolonged, moderate cerebral hypothermia initiated within a few hours after severe hypoxia-ischemia and continued until resolution of the acute phase of delayed cell death can reduce subsequent neuronal loss and improve behavioral recovery in term infants and adults after cardiac arrest. Perhaps surprisingly, the specific mechanisms of hypothermic neuroprotection remain unclear, at least in part because hypothermia suppresses a broad range of potential injurious factors. In the present review we critically examine proposed mechanisms in relation to the known window of opportunity for effective protection with hypothermia. Better knowledge of the mechanisms of hypothermia is critical to help guide the rational development of future combination treatments to augment neuroprotection with hypothermia, and to identify those most likely to benefit from it.
Collapse
|
32
|
Lotocki G, de Rivero Vaccari JP, Perez ER, Sanchez-Molano J, Furones-Alonso O, Bramlett HM, Dietrich WD. Alterations in blood-brain barrier permeability to large and small molecules and leukocyte accumulation after traumatic brain injury: effects of post-traumatic hypothermia. J Neurotrauma 2010; 26:1123-34. [PMID: 19558276 DOI: 10.1089/neu.2008.0802] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We investigated the temporal and regional profile of blood-brain barrier (BBB) permeability to both large and small molecules after moderate fluid percussion (FP) brain injury in rats and determined the effects of post-traumatic modest hypothermia (33 degrees C/4 h) on these vascular perturbations. The visible tracers biotin-dextrin-amine 3000 (BDA-3K, 3 kDa) and horseradish peroxidase (HRP, 44 kDa) were injected intravenously at 4 h or 3 or 7 days post-TBI. At 30 min after the tracer infusion, both small and large molecular weight tracers were detected in the contusion area as well as remote regions adjacent to the injury epicenter in both cortical and hippocampal structures. In areas adjacent to the contusion site, increased permeability to the small molecular weight tracer (BDA-3K) was evident at 4 h post-TBI and remained visible after 7 days survival. In contrast, the larger tracer molecule (HRP) appeared in these remote areas at acute permeable sites but was not detected at later post-traumatic time periods. A regionally specific relationship was documented at 3 days between the late-occurring permeability changes observed with BDA-3K and the accumulation of CD68-positive macrophages. Mild hypothermia initiated 30 min after TBI reduced permeability to both large and small tracers and the infiltration of CD68-positive cells. These results indicate that moderate brain injury produces temperature-sensitive acute, as well as more long-lasting vascular perturbations associated with secondary injury mechanisms.
Collapse
Affiliation(s)
- George Lotocki
- Department of Neurological Surgery, Neurotrauma Research Center, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Traumatic brain injury remains a major cause of death and severe disability throughout the world. Traumatic brain injury leads to 1,000,000 hospital admissions per annum throughout the European Union. It causes the majority of the 50,000 deaths from road traffic accidents and leaves 10,000 patients severely handicapped: three quarters of these victims are young people. Therapeutic hypothermia has been shown to improve outcome after cardiac arrest, and consequently the European Resuscitation Council and American Heart Association guidelines recommend the use of hypothermia in these patients. Hypothermia is also thought to improve neurological outcome after neonatal birth asphyxia. Cardiac arrest and neonatal asphyxia patient populations present to health care services rapidly and without posing a diagnostic dilemma; therefore, therapeutic systemic hypothermia may be implemented relatively quickly. As a result, hypothermia in these two populations is similar to the laboratory models wherein systemic therapeutic hypothermia is commenced very soon after the injury and has shown so much promise. The need for resuscitation and computerised tomography imaging to confirm the diagnosis in patients with traumatic brain injury is a factor that delays intervention with temperature reduction strategies. Treatments in traumatic brain injury have traditionally focussed on restoring and maintaining adequate brain perfusion, surgically evacuating large haematomas where necessary, and preventing or promptly treating oedema. Brain swelling can be monitored by measuring intracranial pressure (ICP), and in most centres ICP is used to guide treatments and to monitor their success. There is an absence of evidence for the five commonly used treatments for raised ICP and all are potential 'double-edged swords' with significant disadvantages. The use of hypothermia in patients with traumatic brain injury may have beneficial effects in both ICP reduction and possible neuro-protection. This review will focus on the bench-to-bedside evidence that has supported the development of the Eurotherm3235Trial protocol.
Collapse
Affiliation(s)
- H Louise Sinclair
- Department of Anaesthesia, Critical Care and Pain Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Peter JD Andrews
- Department of Anaesthesia, Critical Care and Pain Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| |
Collapse
|
34
|
Dietrich WD, Bramlett HM. The evidence for hypothermia as a neuroprotectant in traumatic brain injury. Neurotherapeutics 2010; 7:43-50. [PMID: 20129496 PMCID: PMC2819078 DOI: 10.1016/j.nurt.2009.10.015] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 10/21/2009] [Indexed: 11/30/2022] Open
Abstract
This article reviews published experimental and clinical evidence for the benefits of modest hypothermia in the treatment of traumatic brain injury (TBI). Therapeutic hypothermia has been reported to improve outcome in several animal models of CNS injury and has been successfully translated to specific patient populations. A PubMed search for hypothermia and TBI was conducted, and important papers were selected for review. The research summarized was conducted at major academic institutions throughout the world. Experimental studies have emphasized that hypothermia can affect multiple pathophysiological mechanisms thought to participate in the detrimental consequences of TBI. Published data from several relevant clinical trials on the use of hypothermia in severely injured TBI patients are also reviewed. The consequences of mild to moderate levels of hypothermia introduced by different strategies to the head-injured patient for variable periods of time are discussed. Both experimental and clinical data support the beneficial effects of modest hypothermia following TBI in specific patient populations. Following on such single-institution studies, positive findings from multicenter TBI trials will be required before this experimental treatment can be considered standard of care.
Collapse
Affiliation(s)
- W Dalton Dietrich
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida 33136, USA.
| | | |
Collapse
|
35
|
Dietrich WD, Atkins CM, Bramlett HM. Protection in animal models of brain and spinal cord injury with mild to moderate hypothermia. J Neurotrauma 2009; 26:301-12. [PMID: 19245308 DOI: 10.1089/neu.2008.0806] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
For the past 20 years, various laboratories throughout the world have shown that mild to moderate levels of hypothermia lead to neuroprotection and improved functional outcome in various models of brain and spinal cord injury (SCI). Although the potential neuroprotective effects of profound hypothermia during and following central nervous system (CNS) injury have long been recognized, more recent studies have described clinically feasible strategies for protecting the brain and spinal cord using hypothermia following a variety of CNS insults. In some cases, only a one or two degree decrease in brain or core temperature can be effective in protecting the CNS from injury. Alternatively, raising brain temperature only a couple of degrees above normothermia levels worsens outcome in a variety of injury models. Based on these data, resurgence has occurred in the potential use of therapeutic hypothermia in experimental and clinical settings. The study of therapeutic hypothermia is now an international area of investigation with scientists and clinicians from every part of the world contributing to this important, promising therapeutic intervention. This paper reviews the experimental data obtained in animal models of brain and SCI demonstrating the benefits of mild to moderate hypothermia. These studies have provided critical data for the translation of this therapy to the clinical arena. The mechanisms underlying the beneficial effects of mild hypothermia are also summarized.
Collapse
Affiliation(s)
- W Dalton Dietrich
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida 33136-1060, USA.
| | | | | |
Collapse
|
36
|
de Rivero Vaccari JP, Lotocki G, Alonso OF, Bramlett HM, Dietrich WD, Keane RW. Therapeutic neutralization of the NLRP1 inflammasome reduces the innate immune response and improves histopathology after traumatic brain injury. J Cereb Blood Flow Metab 2009; 29:1251-61. [PMID: 19401709 PMCID: PMC2846547 DOI: 10.1038/jcbfm.2009.46] [Citation(s) in RCA: 259] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Traumatic brain injury elicits acute inflammation that in turn exacerbates primary brain damage. A crucial part of innate immunity in the immune privileged central nervous system involves production of proinflammatory cytokines mediated by inflammasome signaling. Here, we show that the nucleotide-binding, leucine-rich repeat pyrin domain containing protein 1 (NLRP1) inflammasome consisting of NLRP1, caspase-1, caspase-11, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), the X-linked inhibitor of apoptosis protein, and pannexin 1 is expressed in neurons of the cerebral cortex. Moderate parasagittal fluid-percussion injury (FPI) induced processing of interleukin-1beta, activation of caspase-1, cleavage of X-linked inhibitor of apoptosis protein, and promoted assembly of the NLRP1 inflammasome complex. Anti-ASC neutralizing antibodies administered immediately after fluid-percussion injury to injured rats reduced caspase-1 activation, X-linked inhibitor of apoptosis protein cleavage, and processing of interleukin-1beta, resulting in a significant decrease in contusion volume. These studies show that the NLRP1 inflammasome constitutes an important component of the innate central nervous system inflammatory response after traumatic brain injury and may be a novel therapeutic target for reducing the damaging effects of posttraumatic brain inflammation.
Collapse
|
37
|
Therapeutic hypothermia preserves antioxidant defenses after severe traumatic brain injury in infants and children. Crit Care Med 2009; 37:689-95. [PMID: 19114918 DOI: 10.1097/ccm.0b013e318194abf2] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Oxidative stress contributes to secondary damage after traumatic brain injury (TBI). Hypothermia decreases endogenous antioxidant consumption and lipid peroxidation after experimental cerebral injury. Our objective was to determine the effect of therapeutic hypothermia on oxidative damage after severe TBI in infants and children randomized to moderate hypothermia vs. normothermia. DESIGN Prospective randomized controlled study. SETTING Pediatric intensive care unit of Pittsburgh Children's Hospital. PATIENTS The study included 28 patients. MEASUREMENTS AND MAIN RESULTS We compared the effects of hypothermia (32 degrees C-33 degrees C) vs. normothermia in patients treated in a single center involved in a multicentered randomized controlled trial of hypothermia in severe pediatric TBI (Glasgow Coma Scale score <or=8). The patients randomized to hypothermia (n = 13) were cooled to target temperature within approximately 6 to 24 hours for 48 hours and then rewarmed. Antioxidant status was assessed by measurements of total antioxidant reserve and glutathione. Protein oxidation and lipid peroxidation were assessed by measurements of protein thiols and F2-isoprostane, respectively, in ventricular cerebrospinal fluid (CSF) samples (n = 76) obtained on day 1-3 after injury. The association between Glasgow Coma Scale score, age, gender, treatment, temperature, time after injury, and CSF antioxidant reserve, glutathione, protein-thiol, F2-isoprostane levels were assessed by bivariate and multiple regression models. Demographic and clinical characteristics were similar between the two treatment groups. Mechanism of injury included both accidental injury and nonaccidental injury. Multiple regression models revealed preservation of CSF antioxidant reserve by hypothermia (p = 0.001). Similarly, a multiple regression model showed that glutathione levels were inversely associated with patient temperature at the time of sampling (p = 0.002). F2-isoprostane levels peaked on day 1 after injury and were progressively decreased thereafter. Although F2-isoprostane levels were approximately three-fold lower in patients randomized to hypothermia vs. normothermia, this difference was not statistically significant. CONCLUSION To our knowledge, this is the first study demonstrating that hypothermia attenuates oxidative stress after severe TBI in infants and children. Our data also support the concept that CSF represents a valuable tool for monitoring treatment effects on oxidative stress after TBI.
Collapse
|
38
|
|
39
|
Effect of 35 degrees C hypothermia on intracranial pressure and clinical outcome in patients with severe traumatic brain injury. ACTA ACUST UNITED AC 2009; 66:166-73. [PMID: 19131820 DOI: 10.1097/ta.0b013e318157dbec] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND From 1994, we have used therapeutic hypothermia in patients with severe traumatic brain injury (Glasgow Coma Scale scores of 5 or less). In 2000, we altered the target temperature to 35 degrees C from the former 33 degrees C, as our findings suggested that cooling to 35 degrees C is sufficient to control intracranial hypertension, and that hypothermia below 35 degrees C may predispose patients to persistent cumulative oxygen debt. We attempted to clarify whether 35 degrees C hypothermia has the same effect as 33 degrees C hypothermia in reducing intracranial hypertension and whether it is associated with fewer complications and improved outcomes. METHODS We compared intracranial pressure (ICP) and biochemical parameters in the 30 patients treated with 35 degrees C hypothermia (January 2000 to June 2005) with those in the 31 patients treated with 33 degrees C hypothermia (July 1994 to December 1999). RESULTS Patient characteristics were similar in the two groups. The mean temperature during hypothermia was 35.1 +/- 0.7 degrees C in the 35 degrees C hypothermia group and 33.4 +/- 0.8 degrees C in the 33 degrees C hypothermia group. Mean ICP was controlled under 20 mm Hg during hypothermia in both the 35 degrees C hypothermia and 33 degrees C hypothermia groups. The incidence of intracranial hypertension and low cerebral perfusion pressure did not differ between the two groups. The 35 degrees C hypothermic patients exhibited a significant improvement in the decline of serum potassium concentrations during hypothermia and in the increment of C-reactive protein after rewarming. The mortality rate and the incidence of systemic complications tended to be lower in the 35 degrees C group. CONCLUSIONS Cooling patients to 35 degrees C is safe and the ICP reduction effects of 35 degrees C hypothermia are similar to those of 33 degrees C hypothermia.
Collapse
|
40
|
Combined Therapeutic Hypothermia and Barbiturate Coma Reduces Interleukin-6 in the Cerebrospinal Fluid After Aneurysmal Subarachnoid Hemorrhage. J Neurosurg Anesthesiol 2008; 20:193-8. [DOI: 10.1097/ana.0b013e31817996bf] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
41
|
Matsui T, Kakeda T. IL-10 Production Is Reduced by Hypothermia but Augmented by Hyperthermia in Rat Microglia. J Neurotrauma 2008; 25:709-15. [DOI: 10.1089/neu.2007.0482] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Tomohiro Matsui
- Department of Laboratory Sciences, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Takahiro Kakeda
- Department of Nursing, Faculty of Health and Welfare, Kawasaki University of Medical Welfare, Kurashiki, Okayama, Japan
| |
Collapse
|
42
|
Wartenberg KE, Mayer SA. Use of induced hypothermia for neuroprotection: indications and application. FUTURE NEUROLOGY 2008. [DOI: 10.2217/14796708.3.3.325] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Therapeutic temperature regulation has become an exciting field of interest. Mild-to-moderate hypothermia is a safe and feasible management strategy for neuroprotection and control of intracranial pressure in neurological catastrophies such as traumatic brain injury, subarachnoid and intracerebral hemorrhage, and large hemispheric stroke. Fever is associated with worse neurological outcome in patients with brain injury, normothermia may be of benefit in this patient population. The efficacy of mild-to-moderate hypothermia has been proven for neuroprotection after cardiac arrest with ventricular fibrillation as initial rhythm, and after neonatal asphyxia. Application of hypothermia and fever control in neurocritical care, available cooling technologies and systemic effects and complications of hypothermia will be discussed.
Collapse
Affiliation(s)
- Katja E Wartenberg
- University Hospital Carl Gustav Carus Dresden, Neurointensive Care Unit, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Stephan A Mayer
- Columbia University, Dept of Neurosurgery, 710 W 168th Street, New York, NY 10032, USA
| |
Collapse
|
43
|
Abstract
This chapter will report to the frequency of neonatal hypoxic-ischemic encephalopathy. The pathophysiology and the childhood outcome of encephalopathy due to hypoxia-ischemia will be examined. The limitations of current therapy for this condition and new therapies will be evaluated. Hypothermia seems to offer the most promise as a therapy for neuroprotection in hypoxic-ischemic encephalopathy. The evidence-based trials of hypothermia will be reviewed along with recommendations regarding clinical applications for this therapy and need for long-term follow-up of children receiving this therapy.
Collapse
Affiliation(s)
- Seetha Shankaran
- Wayne State University, Children's Hospital of Michigan, Detroit, MI 48201, USA.
| | | |
Collapse
|
44
|
Abstract
There have been over 2000 publications in the last year addressing the topic of neuroprotection. Novel and emerging therapeutic targets that have been explored include cerebral inflammation, hypothermia, neural transplantation and repair and gene therapy. Unfortunately, with few exceptions, the successes of experimental neuroprotection have not been translated into clinical practice. The possible reasons for the discrepancy between experimental success and clinical benefit are explored.
Collapse
Affiliation(s)
- D K Menon
- Department of Anaesthesiology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.
| | | |
Collapse
|
45
|
Hsu SF, Niu KC, Lin CL, Lin MT. BRAIN COOLING CAUSES ATTENUATION OF CEREBRAL OXIDATIVE STRESS, SYSTEMIC INFLAMMATION, ACTIVATED COAGULATION, AND TISSUE ISCHEMIA/INJURY DURING HEATSTROKE. Shock 2006; 26:210-20. [PMID: 16878031 DOI: 10.1097/01.shk.0000223124.49265.10] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The purpose of the present study was to assess the therapeutic effect of hypothermic retrograde jugular vein flush (HRJVF) on heatstroke. HRJVF was accomplished by infusion of 4 degrees C isotonic sodium chloride solution via the external jugular vein (1.7 mL/100 g of body weight over 5 min). Immediately after the onset of heatstroke, anesthetized rats were divided into 2 major groups and given the following: 36 degrees C or 4 degrees C isotonic sodium chloride solution, i.v. They were exposed to ambient temperature of 43 degrees C to induce heatstroke. Another group of rats was exposed to room temperature (24 degrees C) and used as normothermic controls. When the 36 degrees C saline-treated rats underwent heat exposure, their survival time values were found to be 23 to 28 min. Immediately after the onset of heatstroke, resuscitation with an i.v. dose of 4 degrees C saline significantly improved survival during heatstroke (208-252 min). All heat-stressed animals displayed systemic inflammation and activated coagulation, evidenced by increased tumor necrosis factor alpha, prothrombin time, activated partial thromboplastin time, and d-dimer, and decreased platelet count and protein C. Biochemical markers evidenced cellular ischemia and injury/dysfunction: plasma levels of blood urea nitrogen, creatinine, glutamic oxaloacetic transaminase, glutamic pyruvic transaminase, and alkaline phosphatase; and striatal levels of glycerol, glutamate, and lactate/pyruvate; dihydroxy benzoic acid, lipid peroxidation, oxidized-form glutathione reduced-form glutathione, dopamine, and serotonin were all elevated during heatstroke. Core and brain temperatures and intracranial pressure were also increased during heatstroke. In contrast, the values of mean arterial pressure, cerebral perfusion pressure, and striatal levels of local blood flow, partial pressure of oxygen, superoxide dismutase, catalase, glutathione peroxidase, and glutathions reductase activities were all significantly lower during heatstroke. The circulatory dysfunction, systemic inflammation, hypercoagulable state, and cerebral oxidative stress, ischemia, and damage during heatstroke were all significantly suppressed by HRJVF. These findings demonstrate that brain cooling caused by HRJVF therapy may resuscitate persons who had a stroke by attenuating cerebral oxidative stress, systemic inflammation, activated coagulation, and tissue ischemia/injury during heatstroke.
Collapse
Affiliation(s)
- Shu-Fen Hsu
- Institute of Physiology, National Yang-Ming University School of Medicine, Taipei, Taiwan 112
| | | | | | | |
Collapse
|
46
|
Abstract
The possibility that hypothermia during or after resuscitation from asphyxia at birth, or cardiac arrest in adults, might reduce evolving damage has tantalized clinicians for a very long time. It is now known that severe hypoxia-ischemia may not necessarily cause immediate cell death, but can precipitate a complex biochemical cascade leading to the delayed neuronal loss. Clinically and experimentally, the key phases of injury include a latent phase after reperfusion, with initial recovery of cerebral energy metabolism but EEG suppression, followed by a secondary phase characterized by accumulation of cytotoxins, seizures, cytotoxic edema, and failure of cerebral oxidative metabolism starting 6 to 15 h post insult. Although many of the secondary processes can be injurious, they appear to be primarily epiphenomena of the 'execution' phase of cell death. Studies designed around this conceptual framework have shown that moderate cerebral hypothermia initiated as early as possible before the onset of secondary deterioration, and continued for a sufficient duration in relation to the severity of the cerebral injury, has been associated with potent, long-lasting neuroprotection in both adult and perinatal species. Two large controlled trials, one of head cooling with mild hypothermia, and one of moderate whole body cooling have demonstrated that post resuscitation cooling is generally safe in intensive care, and reduces death or disability at 18 months of age after neonatal encephalopathy. These studies, however, show that only a subset of babies seemed to benefit. The challenge for the future is to find ways of improving the effectiveness of treatment.
Collapse
Affiliation(s)
- A J Gunn
- Dept of Physiology, The University of Auckland, New Zealand.
| | | |
Collapse
|
47
|
Huang PS, Tang GJ, Chen CH, Kou YR. Whole-body moderate hypothermia confers protection from wood smoke-induced acute lung injury in rats: The therapeutic window*. Crit Care Med 2006; 34:1160-7. [PMID: 16484924 DOI: 10.1097/01.ccm.0000207342.50559.0f] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Toxic smoke inhalation causes acute lung injury. We studied the efficacy and therapeutic window of whole-body hypothermia in rats with wood smoke-induced acute lung injury. DESIGN Randomized, controlled study. SETTING Research laboratory. SUBJECTS Anesthetized, paralyzed, and artificially ventilated rats (n = 100) were used. INTERVENTIONS Air or wood smoke (30 breaths) was delivered into the lung using a respirator. Immediately after challenge, the rat's colonic temperature was kept a) 37 degrees C (normothermia, NT) for 1 (NT-1-Air and NT-1-Smoke), 2.5 (NT-2.5-Air and NT-2.5-Smoke), or 5 hrs (NT-5-Air and NT-5-Smoke) in six groups; b) 30 degrees C (hypothermia, HT) for 2.5 (HT-2.5-Smoke) or 5 hrs (HT-5-Air and HT-5-Smoke) in three groups; c) 30 degrees C for the first 2.5 hrs followed by 37 degrees C for another 2.5 hrs (HT-NT-5-Smoke) in one group; or d) 37 degrees C for the first 2.5 hrs followed by 30 degrees C for another 2.5 hrs (NT-HT-5-Smoke) in on group. MEASUREMENTS AND MAIN RESULTS Various acute lung injury indexes were assessed at 1, 2.5, or 5 hrs after challenge. In the air group, whole-body hypothermia did not affect the level of lung lipid peroxidation and the amount of proteins, total and differential cell counts, and concentrations of tumor necrosis factor-alpha and interleukin-1beta in bronchoalveolar lavage fluid. In the smoke groups, these acute lung injury indexes were increased showing that NT-5-Smoke > NT-2.5-Smoke > NT-1-Smoke. Whole-body hypothermia prevented increases in these acute lung injury indexes in the HT-2.5-Smoke and HT-5-Smoke groups. The efficacy of whole-body hypothermia in the HT-NT-5-Smoke group was superior to that in the NT-HT-5-Smoke group and similar to that in the HT-5-Smoke group. Whole-body hypothermia also alleviated smoke-induced poor gas exchange, pulmonary edema, and pathohistologic injurious signs. CONCLUSIONS Whole-body hypothermia confers protection from wood smoke-induced acute lung injury in rats by suppressing oxidant bronchoalveolar damage and pulmonary inflammation. Early and short-period (2 hrs) application of whole-body hypothermia provides favorable therapeutic effects.
Collapse
Affiliation(s)
- Pin-Shiun Huang
- Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | | | | | | |
Collapse
|
48
|
Truettner JS, Suzuki T, Dietrich WD. The effect of therapeutic hypothermia on the expression of inflammatory response genes following moderate traumatic brain injury in the rat. ACTA ACUST UNITED AC 2005; 138:124-34. [PMID: 15922484 DOI: 10.1016/j.molbrainres.2005.04.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Revised: 03/11/2005] [Accepted: 04/17/2005] [Indexed: 11/26/2022]
Abstract
Traumatic brain injury (TBI) initiates a cascade of cellular and molecular responses including both pro- and anti-inflammatory. Although post-traumatic hypothermia has been shown to improve outcome in various models of brain injury, the underlying mechanisms responsible for these effects have not been clarified. In this study, inflammation cDNA arrays and semi-quantitative RT-PCR were used to detect genes that are differentially regulated after TBI. In addition, the effect of post-traumatic hypothermia on the expression of selective genes was also studied. Rats (n = 6-8 per group) underwent moderate fluid-percussion (F-P) brain injury with and without hypothermic treatment (33 degrees C/3 h). RNA from 3-h or 24-h survival was analyzed for the expression of IL1-beta, IL2, IL6, TGF-beta2, growth-regulated oncogene (GRO), migration inhibitory factor (MIF), and MCP (a transcription factor). The interleukins IL-1beta, IL-2, and IL-6 and TGF-beta and GRO were strongly upregulated early and transiently from 2- to 30-fold over sham at 3 h, with normalization by 24 h. In contrast, the expressions of MIF and MCP were both reduced by TBI compared to sham. Post-traumatic hypothermia had no significant effect on the acute expression of the majority of genes investigated. However, the expression of TGF-beta2 at 24 h was significantly reduced by temperature manipulation. The mechanism by which post-traumatic hypothermia is protective may not involve a general genetic response of the inflammatory genes. However, specific genes, including TGF-beta2, may be altered and effect cell death mechanisms after TBI. Hypothermia differentially regulates certain genes and may target more delayed responses underlying the secondary damage following TBI.
Collapse
Affiliation(s)
- Jessie S Truettner
- Department of Neurological Surgery, The Neurotrauma Research Center, The Miami Project to Cure Paralysis, University of Miami School of Medicine, Miami, FL 33136, USA
| | | | | |
Collapse
|
49
|
Truettner JS, Alonso OF, Dietrich WD. Influence of therapeutic hypothermia on matrix metalloproteinase activity after traumatic brain injury in rats. J Cereb Blood Flow Metab 2005; 25:1505-16. [PMID: 15959464 DOI: 10.1038/sj.jcbfm.9600150] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Recent evidence suggests that matrix metalloproteinases (MMPs) contribute to acute edema and lesion formation following ischemic and traumatic brain injuries (TBI). Experimental and clinical studies have also reported the beneficial effects of posttraumatic hypothermia on histopathological and behavioral outcome. The purpose of this study was to determine whether therapeutic hypothermia would affect the activity of MMPs after TBI. Male Sprague-Dawley rats were traumatized by moderate parasagittal fluid-percussion (F-P) brain injury. Seven groups (n=5/group) of animals were investigated: sham-operated, TBI with normothermia (37 degrees C), and TBI with hypothermia (33 degrees C). Normothermia animals were killed at 4, 24, 72 h and 5 days, and hypothermia animals at 24 or 72 h. Brain temperature was reduced to target temperature 30 mins after trauma and maintained for 4 h. Ipsilateral and contralateral cortical, hippocampal, and thalamic regions were analyzed by gelatin and in situ zymography. In traumatized normothermic animals, TBI significantly (P<0.005) increased MMP-9 levels in ipsilateral (right) cortical and hippocampal regions, compared with contralateral or sham animals, beginning at 4 h and persisting to 5 days. At 1, 3, and 5 days after TBI, significant increases in MMP-2 levels were observed. In contrast to these findings observed with normothermia, posttraumatic hypothermia significantly reduced MMP-9 levels. Hypothermic treatment, however, did not affect the delayed activation of MMP-2. Clarifying the mechanisms underlying the beneficial effects of posttraumatic hypothermia is an active area of research. Posttraumatic hypothermia may attenuate the deleterious consequences of brain trauma by reducing MMP activation acutely.
Collapse
Affiliation(s)
- Jessie S Truettner
- Department of Neurological Surgery, Neurotrauma Research Center, The Miami Project to Cure Paralysis, University of Miami School of Medicine, Miami, Florida 33101, USA
| | | | | |
Collapse
|
50
|
Hong SB, Koh Y, Lee IC, Kim MJ, Kim WS, Kim DS, Kim WD, Lim CM. Induced hypothermia as a new approach to lung rest for the acutely injured lung*. Crit Care Med 2005; 33:2049-55. [PMID: 16148479 DOI: 10.1097/01.ccm.0000178186.37167.53] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To investigate whether low-frequency ventilation during hypothermia could attenuate lung injury associated with endotoxin and mechanical ventilation. DESIGN : Experimental animal study. SETTING University-affiliated animal laboratory. SUBJECTS Forty-eight Sprague-Dawley rats. INTERVENTIONS : Lipopolysaccharide was administered to rats intratracheally to induce acute lung injury. After 1 hr of this treatment, animals were assigned to normothermia-only (NO, rectal temperature 37 degrees C, ventilatory frequency 90/min), normothermia-lung rest (NR, 37 degrees C, 45/min), hypothermia-only (HO, 27 degrees C, 90/min), or hypothermia-lung rest (HR, 27 degrees C, 45/min). After 1 hr of injurious ventilation, the lungs of the rats were removed for bronchoalveolar lavage and histologic examination. MEASUREMENTS AND MAIN RESULTS Compared with the normothermia groups (NO, NR), the neutrophil counts (per milliliter) (NO, 7708 +/- 5704; NR, 10,479 +/- 11,152; HO, 1638 +/- 955; HR, 805 +/- 591) and interleukin-1beta levels (pg/mL) (1180 +/- 439, 1081 +/- 652, 620 +/- 426, 420 +/- 182, respectively) in the bronchoalveolar lavage fluid, the wet-to-dry lung weight ratios (6.0 +/- 0.4, 5.7 +/- 0.4, 5.6 +/- 0.2, 5.2 +/- 0.2, respectively), and histologic acute lung injury scores (8.3 +/- 2.7, 10.4 +/- 3.1, 3.5 +/- 2.1, 3.1 +/- 2.2, respectively) of the hypothermia groups (HO, HR) were lower (all p < .001). Compared with the HO group, the neutrophil counts and protein content (HO, 1367 +/- 490 mug/mL vs. HR, 831 +/- 369 mug/mL) in the bronchoalveolar lavage fluid, the serum lactate dehydrogenase levels (units/mL) (9.1 +/- 3.6 vs. 5.3 +/- 1.5), and the wet-to-dry lung weight ratios of the HR group were lower (all p < .05). CONCLUSIONS Reduction of ventilatory frequency in conjunction with hypothermia attenuated many variables of acute lung injury in rats. Use of hypothermia could be exploited as a new approach to lung rest for the ventilatory management of the acutely injured lung.
Collapse
Affiliation(s)
- Sang-Bum Hong
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|