1
|
Reyes C, Mokalled MH. Astrocyte-Neuron Interactions in Spinal Cord Injury. ADVANCES IN NEUROBIOLOGY 2024; 39:213-231. [PMID: 39190077 DOI: 10.1007/978-3-031-64839-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Spinal cord injuries cause irreversible loss of sensory and motor functions. In mammals, intrinsic and extrinsic inhibitions of neuronal regeneration obstruct neural repair after spinal cord injury. Although astrocytes have been involved in a growing list of vital homeostatic functions in the nervous system, their roles after injury have fascinated and puzzled scientists for decades. Astrocytes undergo long-lasting morphological and functional changes after injury, referred to as reactive astrogliosis. Although reactive astrogliosis is required to contain spinal cord lesions and restore the blood-spinal cord barrier, reactive astrocytes have detrimental effects that inhibit neuronal repair and remyelination. Intriguingly, elevated regenerative capacity is preserved in some non-mammalian vertebrates, where astrocyte-like glial cells display exclusively pro-regenerative effects after injury. A detailed molecular and phenotypic catalog of the continuum of astrocyte reactivity states is an essential first step toward the development of glial cell manipulations for spinal cord repair.
Collapse
Affiliation(s)
- Catrina Reyes
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Mayssa H Mokalled
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
2
|
Pathak D, Sriram K. Neuron-astrocyte omnidirectional signaling in neurological health and disease. Front Mol Neurosci 2023; 16:1169320. [PMID: 37363320 PMCID: PMC10286832 DOI: 10.3389/fnmol.2023.1169320] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/09/2023] [Indexed: 06/28/2023] Open
Abstract
Astrocytes are an abundantly distributed population of glial cells in the central nervous system (CNS) that perform myriad functions in the normal and injured/diseased brain. Astrocytes exhibit heterogeneous phenotypes in response to various insults, a process known as astrocyte reactivity. The accuracy and precision of brain signaling are primarily based on interactions involving neurons, astrocytes, oligodendrocytes, microglia, pericytes, and dendritic cells within the CNS. Astrocytes have emerged as a critical entity within the brain because of their unique role in recycling neurotransmitters, actively modulating the ionic environment, regulating cholesterol and sphingolipid metabolism, and influencing cellular crosstalk in diverse neural injury conditions and neurodegenerative disorders. However, little is known about how an astrocyte functions in synapse formation, axon specification, neuroplasticity, neural homeostasis, neural network activity following dynamic surveillance, and CNS structure in neurological diseases. Interestingly, the tripartite synapse hypothesis came to light to fill some knowledge gaps that constitute an interaction of a subpopulation of astrocytes, neurons, and synapses. This review highlights astrocytes' role in health and neurological/neurodegenerative diseases arising from the omnidirectional signaling between astrocytes and neurons at the tripartite synapse. The review also recapitulates the disruption of the tripartite synapse with a focus on perturbations of the homeostatic astrocytic function as a key driver to modulate the molecular and physiological processes toward neurodegenerative diseases.
Collapse
|
3
|
Wang R, Zhou R, Chen Z, Gao S, Zhou F. The Glial Cells Respond to Spinal Cord Injury. Front Neurol 2022; 13:844497. [PMID: 35599739 PMCID: PMC9120539 DOI: 10.3389/fneur.2022.844497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/08/2022] [Indexed: 12/24/2022] Open
Abstract
It is been over 100 years since glial cells were discovered by Virchow. Since then, a great deal of research was carried out to specify these further roles and properties of glial cells in central nervous system (CNS). As it is well-known that glial cells, such as astrocytes, microglia, oligodendrocytes (OLs), and oligodendrocyte progenitor cells (OPCs) play an important role in supporting and enabling the effective nervous system function in CNS. After spinal cord injury (SCI), these glial cells play different roles in SCI and repair. In this review, we will discuss in detail about the role of glial cells in the healthy CNS and how they respond to SCI.
Collapse
|
4
|
Zhang C, Qian X, Zheng J, Ai P, Cao X, Pan X, Chen T, Wang Y. Controlled Decompression Alleviates Brain Injury via Attenuating Oxidative Damage and Neuroinflammation in Acute Intracranial Hypertension. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1936691. [PMID: 35187159 PMCID: PMC8850036 DOI: 10.1155/2022/1936691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/17/2021] [Accepted: 01/15/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND The benefits of controlled decompression (CDC) for patients with acute intracranial hypertension especially in terms of alleviating the complications caused by rapid decompression (RDC) have been confirmed by clinical studies. This study is aimed at evaluating the therapeutic potency of CDC with ubiquitin C-terminal hydrolase-L1 (UCH-L1) and glial fibrillary acidic protein (GFAP) by investigating the potential molecular mechanism in the acute intracranial hypertension (AICH) rabbit model. METHODS Male New Zealand white rabbits were randomly subdivided into the sham-operated (SH) group, CDC group, and RDC group. Blood plasma samples and brain tissue were collected 2 days before operation (baseline) and at 3, 6, 24, and 72 hours after operation to measure the levels of UCH-L1, GFAP, oxidative stress indicators, and inflammatory cytokines by performing ELISA or Western blot. The neurological score of the rabbits and brain water content was graded 24 h after surgery. qPCR, immunofluorescence, and FJ-C staining were conducted. RESULTS CDC improved neurological function, lowered brain water content, ameliorated neuronal degeneration, attenuated oxidative damage, and inflammatory responses to a greater extent than RDC. Plasma UCH-L1 level was significantly lower in the CDC group at 3 h postoperatively than in the RDC group. CDC reduced plasma GFAP levels to various degrees at 3 h, 6 h, and 24 h postoperatively compared with RDC. Immunofluorescence confirmed that the expression of UCH-L1 and GFAP in the cortex of the CDC group was lower than that of the RDC group. CONCLUSIONS Our data collectively demonstrate that CDC could attenuate oxidative damage and inflammatory responses, downregulate UCH-L1 and GFAP levels, and contribute to an improved neuroprotective effect compared with RDC.
Collapse
Affiliation(s)
- Chonghui Zhang
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, Jiangsu 214044, China
| | - Xiao Qian
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, Jiangsu 214044, China
| | - Jie Zheng
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, Jiangsu 214044, China
| | - Pu Ai
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, Jiangsu 214044, China
| | - Xinyi Cao
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, Jiangsu 214044, China
| | - Xiaofei Pan
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, Jiangsu 214044, China
| | - Tao Chen
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, Jiangsu 214044, China
| | - Yuhai Wang
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, Jiangsu 214044, China
| |
Collapse
|
5
|
Dinet V, Petry KG, Badaut J. Brain-Immune Interactions and Neuroinflammation After Traumatic Brain Injury. Front Neurosci 2019; 13:1178. [PMID: 31780883 PMCID: PMC6861304 DOI: 10.3389/fnins.2019.01178] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 10/18/2019] [Indexed: 01/04/2023] Open
Abstract
Traumatic brain injury (TBI) is the principal cause of death and disability in children and young adults. Clinical and preclinical research efforts have been carried out to understand the acute, life-threatening pathophysiological events happening after TBI. In the past few years, however, it was recognized that TBI causes significant morbidity weeks, months, or years after the initial injury, thereby contributing substantially to the overall burden of TBI and the decrease of life expectancy in these patients. Long-lasting sequels of TBI include cognitive decline/dementia, sensory-motor dysfunction, and psychiatric disorders, and most important for patients is the need for socio-economic rehabilitation affecting their quality of life. Cerebrovascular alterations have been described during the first week after TBI for direct consequence development of neuroinflammatory process in relation to brain edema. Within the brain-immune interactions, the complement system, which is a family of blood and cell surface proteins, participates in the pathophysiology process. In fact, the complement system is part of the primary defense and clearance component of innate and adaptive immune response. In this review, the complement activation after TBI will be described in relation to the activation of the microglia and astrocytes as well as the blood-brain barrier dysfunction during the first week after the injury. Considering the neuroinflammatory activity as a causal element of neurological handicaps, some major parallel lines of complement activity in multiple sclerosis and Alzheimer pathologies with regard to cognitive impairment will be discussed for chronic TBI. A better understanding of the role of complement activation could facilitate the development of new therapeutic approaches for TBI.
Collapse
Affiliation(s)
- Virginie Dinet
- INSERM U1029, Angiogenesis and Neuroinflammation Group, University of Bordeaux, Bordeaux, France
| | - Klaus G. Petry
- INSERM U1029, Angiogenesis and Neuroinflammation Group, University of Bordeaux, Bordeaux, France
| | - Jerome Badaut
- CNRS UMR 5287, INCIA, Brain molecular Imaging Team, University of Bordeaux, Bordeaux, France
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States
| |
Collapse
|
6
|
Sun D, Moore S, Jakobs TC. Optic nerve astrocyte reactivity protects function in experimental glaucoma and other nerve injuries. J Exp Med 2017; 214:1411-1430. [PMID: 28416649 PMCID: PMC5413323 DOI: 10.1084/jem.20160412] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 12/05/2016] [Accepted: 03/08/2017] [Indexed: 01/06/2023] Open
Abstract
Reactive remodeling of optic nerve head astrocytes is consistently observed in glaucoma and other optic nerve injuries. However, it is unknown whether this reactivity is beneficial or harmful for visual function. In this study, we used the Cre recombinase (Cre)-loxP system under regulation of the mouse glial fibrillary acidic protein promoter to knock out the transcription factor signal transducer and activator of transcription 3 (STAT3) from astrocytes and test the effect this has on reactive remodeling, ganglion cell survival, and visual function after experimental glaucoma and nerve crush. After injury, STAT3 knockout mice displayed attenuated astrocyte hypertrophy and reactive remodeling; astrocytes largely maintained their honeycomb organization and glial tubes. These changes were associated with increased loss of ganglion cells and visual function over a 30-day period. Thus, reactive astrocytes play a protective role, preserving visual function. STAT3 signaling is an important mediator of various aspects of the reactive phenotype within optic nerve astrocytes.
Collapse
Affiliation(s)
- Daniel Sun
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary/Schepens Eye Research Institute, Harvard Medical School, Boston, MA 02114
| | - Sara Moore
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary/Schepens Eye Research Institute, Harvard Medical School, Boston, MA 02114
| | - Tatjana C Jakobs
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary/Schepens Eye Research Institute, Harvard Medical School, Boston, MA 02114
| |
Collapse
|
7
|
Pan DS, Yan M, Hassan M, Fang ZB, Chen MT. Plasma 8-iso-Prostaglandin F2α, a possible prognostic marker in aneurysmal subarachnoid hemorrhage. Clin Chim Acta 2017; 469:166-170. [PMID: 28408198 DOI: 10.1016/j.cca.2017.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 04/04/2017] [Accepted: 04/04/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND 8-iso-Prostaglandin F2α (8-iso-PGF2α) is a potential biomarker of oxidative stress. This study clarified whether plasma 8-iso-PGF2α concentrations were affected and its underlying relevance to prognosis in aneurysmal subarachnoid hemorrhage (aSAH). METHODS In this prospective, observational study, a total of 170 controls and 170 aSAH patients were enrolled. Plasma 8-iso-PGF2α concentrations were detected using an ELISA. Severity was assessed by World Federation of Neurological Surgeons (WFNS) scale and modified Fisher grading scale. Clinical outcomes included 6-month mortality and poor outcome referred to as Glasgow outcome scale score of 1-3. RESULTS As compared to controls, admission plasma 8-iso-PGF2α concentrations were significantly enhanced. Increased concentrations of plasma 8-iso-PGF2α correlated with WFNS scores and modified Fisher scores. 8-iso-PGF2α in plasma was an independent predictor for clinical outcomes. Under ROC curve, the predictive values of 8-iso-PGF2α concentrations resembled those of WFNS scores and modified Fisher scores for clinical outcomes. CONCLUSIONS An elevation in plasma 8-iso-PGF2α concentrations is associated with the severity and poor outcome after aSAH, substantializing 8-iso-PGF2α as a potential prognostic biomarker of aSAH.
Collapse
Affiliation(s)
- De-Sheng Pan
- Department of Neurosurgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, China.
| | - Min Yan
- Department of Neurosurgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, China
| | - Muhammad Hassan
- Department of Neurosurgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, China
| | - Ze-Bin Fang
- Department of Neurosurgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, China
| | - Man-Tao Chen
- Department of Neurosurgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, China
| |
Collapse
|
8
|
López-García I, Gerő D, Szczesny B, Szoleczky P, Olah G, Módis K, Zhang K, Gao J, Wu P, Sowers LC, DeWitt D, Prough DS, Szabo C. Development of a stretch-induced neurotrauma model for medium-throughput screening in vitro: identification of rifampicin as a neuroprotectant. Br J Pharmacol 2016; 175:284-300. [PMID: 27723079 DOI: 10.1111/bph.13642] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/19/2016] [Accepted: 09/26/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE We hypothesized that an in vitro, stretch-based model of neural injury may be useful to identify compounds that decrease the cellular damage in neurotrauma. EXPERIMENTAL APPROACH We screened three neural cell lines (B35, RN33B and SH-SY5Y) subjected to two differentiation methods and selected all-trans-retinoic acid-differentiated B35 rat neuroblastoma cells subjected to rapid stretch injury, coupled with a subthreshold concentration of H2 O2 , for the screen. The model induced marked alterations in gene expression and proteomic signature of the cells and culminated in delayed cell death (LDH release) and mitochondrial dysfunction [reduced 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) conversion]. Follow-up studies utilized human stem cell-derived neurons subjected to rapid stretch injury. KEY RESULTS From screening of a composite library of 3500 drugs, five drugs (when applied in a post-treatment regimen relative to stretch injury) improved both LDH and MTT responses. The effects of rifampicin were investigated in further detail. Rifampicin reduced cell necrosis and apoptosis and improved cellular bioenergetics. In a second model (stretch injury in human stem cell-derived neurons), rifampicin pretreatment attenuated LDH release, protected against the loss of neurite length and maintained neuron-specific class III β-tubulin immunoreactivity. CONCLUSIONS AND IMPLICATIONS We conclude that the current model is suitable for medium-throughput screening to identify compounds with neuroprotective potential. Rifampicin, when applied either in pre- or post-treatment, improves the viability of neurons subjected to stretch injury and protects against neurite loss. Rifampicin may be a candidate for repurposing for the therapy of traumatic brain injury. LINKED ARTICLES This article is part of a themed section on Inventing New Therapies Without Reinventing the Wheel: The Power of Drug Repurposing. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.2/issuetoc.
Collapse
Affiliation(s)
- Isabel López-García
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Domokos Gerő
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Bartosz Szczesny
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Petra Szoleczky
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Gabor Olah
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Katalin Módis
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Kangling Zhang
- Department of Pharmacology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jungling Gao
- Department of Neuroscience & Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ping Wu
- Department of Neuroscience & Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Lawrence C Sowers
- Department of Pharmacology, University of Texas Medical Branch, Galveston, TX, USA
| | - Doug DeWitt
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Donald S Prough
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
9
|
Jullienne A, Obenaus A, Ichkova A, Savona-Baron C, Pearce WJ, Badaut J. Chronic cerebrovascular dysfunction after traumatic brain injury. J Neurosci Res 2016; 94:609-22. [PMID: 27117494 PMCID: PMC5415378 DOI: 10.1002/jnr.23732] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 02/11/2016] [Accepted: 02/28/2016] [Indexed: 12/12/2022]
Abstract
Traumatic brain injuries (TBI) often involve vascular dysfunction that leads to long-term alterations in physiological and cognitive functions of the brain. Indeed, all the cells that form blood vessels and that are involved in maintaining their proper function can be altered by TBI. This Review focuses on the different types of cerebrovascular dysfunction that occur after TBI, including cerebral blood flow alterations, autoregulation impairments, subarachnoid hemorrhage, vasospasms, blood-brain barrier disruption, and edema formation. We also discuss the mechanisms that mediate these dysfunctions, focusing on the cellular components of cerebral blood vessels (endothelial cells, smooth muscle cells, astrocytes, pericytes, perivascular nerves) and their known and potential roles in the secondary injury cascade. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Amandine Jullienne
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, California
| | - Andre Obenaus
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, California
- Department of Physiology, Loma Linda University School of Medicine, Loma Linda, California
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, University of California Riverside, Riverside, California
| | | | | | - William J Pearce
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California
| | - Jerome Badaut
- Department of Physiology, Loma Linda University School of Medicine, Loma Linda, California
- CNRS UMR5287, University of Bordeaux, Bordeaux, France
| |
Collapse
|
10
|
Fan F, Ge Y, Lv W, Elliott MR, Muroya Y, Hirata T, Booz GW, Roman RJ. Molecular mechanisms and cell signaling of 20-hydroxyeicosatetraenoic acid in vascular pathophysiology. Front Biosci (Landmark Ed) 2016; 21:1427-63. [PMID: 27100515 DOI: 10.2741/4465] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cytochrome P450s enzymes catalyze the metabolism of arachidonic acid to epoxyeicosatrienoic acids (EETs), dihydroxyeicosatetraenoic acid and hydroxyeicosatetraeonic acid (HETEs). 20-HETE is a vasoconstrictor that depolarizes vascular smooth muscle cells by blocking K+ channels. EETs serve as endothelial derived hyperpolarizing factors. Inhibition of the formation of 20-HETE impairs the myogenic response and autoregulation of renal and cerebral blood flow. Changes in the formation of EETs and 20-HETE have been reported in hypertension and drugs that target these pathways alter blood pressure in animal models. Sequence variants in CYP4A11 and CYP4F2 that produce 20-HETE, UDP-glucuronosyl transferase involved in the biotransformation of 20-HETE and soluble epoxide hydrolase that inactivates EETs are associated with hypertension in human studies. 20-HETE contributes to the regulation of vascular hypertrophy, restenosis, angiogenesis and inflammation. It also promotes endothelial dysfunction and contributes to cerebral vasospasm and ischemia-reperfusion injury in the brain, kidney and heart. This review will focus on the role of 20-HETE in vascular dysfunction, inflammation, ischemic and hemorrhagic stroke and cardiac and renal ischemia reperfusion injury.
Collapse
Affiliation(s)
- Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216
| | - Ying Ge
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216
| | - Wenshan Lv
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216 and Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Matthew R Elliott
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216
| | - Yoshikazu Muroya
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216 and Department of General Medicine and Rehabilitation, Tohoku Medical and Pharmaceutical University School of Medicine, Sendai, Japan
| | - Takashi Hirata
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216 and Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| | - George W Booz
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216,
| |
Collapse
|
11
|
Zheng YB, Ruan GM, Fu JX, Su ZL, Cheng P, Lu JZ. Postoperative plasma 8-iso-prostaglandin F2α levels are associated with delirium and cognitive dysfunction in elderly patients after hip fracture surgery. Clin Chim Acta 2016; 455:149-53. [PMID: 26874041 DOI: 10.1016/j.cca.2016.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/04/2016] [Accepted: 02/09/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND Oxidative stress may be involved in occurrence of postoperative delirium (POD) and cognitive dysfunction (POCD). 8-iso-Prostaglandin F2α (8-iso-PGF2α), an isoprostane derived from arachidonic acid via lipid peroxidation, is considered a gold standard for measuring oxidative stress. The present study aimed to investigate the ability of postoperative plasma 8-iso-PGF2α levels to predict POD and POCD in elderly patients undergoing hip fracture surgery. METHODS Postoperative plasma 8-iso-PGF2α levels of 182 patients were measured by an enzyme-linked immunosorbent assay. We assessed the relationships between plasma 8-iso-PGF2α levels and the risk of POD and POCD using a multivariate analysis. RESULTS Plasma 8-iso-PGF2α levels and age were identified as the independent predictors for POD and POCD. Based on areas under receiver operating characteristic curve, the predictive values of 8-iso-PGF2α were obviously higher than those of age for POD and POCD. In a combined logistic-regression model, 8-iso-PGF2α significantly enhanced the areas under curve of age for prediction of POD and POCD. CONCLUSIONS Postoperative plasma 8-iso-PGF2α levels may have the potential to predict POD and POCD in elder patients undergoing hip fracture surgery.
Collapse
Affiliation(s)
- Yuan-Bo Zheng
- Department of Orthopedics, The People's Hospital of Wenzhou City, 57 Canghou Lane, Wenzhou 325000, China
| | - Guo-Mo Ruan
- Department of Orthopedics, The People's Hospital of Wenzhou City, 57 Canghou Lane, Wenzhou 325000, China
| | - Jia-Xing Fu
- Department of Orthopedics, The People's Hospital of Wenzhou City, 57 Canghou Lane, Wenzhou 325000, China
| | - Zhong-Liang Su
- Department of Orthopedics, The People's Hospital of Wenzhou City, 57 Canghou Lane, Wenzhou 325000, China
| | - Peng Cheng
- Department of Orthopedics, The People's Hospital of Wenzhou City, 57 Canghou Lane, Wenzhou 325000, China
| | - Jian-Zuo Lu
- Department of Orthopedics, The People's Hospital of Wenzhou City, 57 Canghou Lane, Wenzhou 325000, China.
| |
Collapse
|
12
|
Burda JE, Bernstein AM, Sofroniew MV. Astrocyte roles in traumatic brain injury. Exp Neurol 2015; 275 Pt 3:305-315. [PMID: 25828533 DOI: 10.1016/j.expneurol.2015.03.020] [Citation(s) in RCA: 515] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 02/28/2015] [Accepted: 03/08/2015] [Indexed: 01/15/2023]
Abstract
Astrocytes sense changes in neural activity and extracellular space composition. In response, they exert homeostatic mechanisms critical for maintaining neural circuit function, such as buffering neurotransmitters, modulating extracellular osmolarity and calibrating neurovascular coupling. In addition to upholding normal brain activities, astrocytes respond to diverse forms of brain injury with heterogeneous and progressive changes of gene expression, morphology, proliferative capacity and function that are collectively referred to as reactive astrogliosis. Traumatic brain injury (TBI) sets in motion complex events in which noxious mechanical forces cause tissue damage and disrupt central nervous system (CNS) homeostasis, which in turn trigger diverse multi-cellular responses that evolve over time and can lead either to neural repair or secondary cellular injury. In response to TBI, astrocytes in different cellular microenvironments tune their reactivity to varying degrees of axonal injury, vascular disruption, ischemia and inflammation. Here we review different forms of TBI-induced astrocyte reactivity and the functional consequences of these responses for TBI pathobiology. Evidence regarding astrocyte contribution to post-traumatic tissue repair and synaptic remodeling is examined, and the potential for targeting specific aspects of astrogliosis to ameliorate TBI sequelae is considered.
Collapse
Affiliation(s)
- Joshua E Burda
- Department of Neurobiology and Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095-1763, USA
| | - Alexander M Bernstein
- Department of Neurobiology and Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095-1763, USA
| | - Michael V Sofroniew
- Department of Neurobiology and Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095-1763, USA.
| |
Collapse
|
13
|
Plasma 8-iso-Prostaglandin F2α concentrations and outcomes after acute intracerebral hemorrhage. Clin Chim Acta 2014; 437:141-6. [PMID: 25079083 DOI: 10.1016/j.cca.2014.07.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 07/08/2014] [Accepted: 07/10/2014] [Indexed: 11/24/2022]
Abstract
BACKGROUND Higher plasma 8-iso-Prostaglandin F2α concentrations have been associated with poor outcome of severe traumatic brain injury. We further investigated the relationships between plasma 8-iso-Prostaglandin F2α concentrations and clinical outcomes in patients with acute intracerebral hemorrhage. METHODS Plasma 8-iso-Prostaglandin F2α concentrations of 128 consecutive patients and 128 sex- and gender-matched healthy subjects were measured by enzyme-linked immunosorbent assay. We assessed their relationships with disease severity and clinical outcomes including 1-week mortality, 6-month mortality and unfavorable outcome (modified Rankin Scale score>2). RESULTS Plasma 8-iso-Prostaglandin F2α concentrations were substantially higher in patients than in healthy controls. Plasma 8-iso-Prostaglandin F2α concentrations were positively associated with National Institutes of Health Stroke Scale (NIHSS) scores and hematoma volume using a multivariate linear regression. It emerged as an independent predictor for clinical outcomes of patients using a forward stepwise logistic regression. ROC curves identified the predictive values of plasma 8-iso-Prostaglandin F2α concentrations, and found its predictive value was similar to NIHSS scores and hematoma volumes. However, it just numerically added the predictive values of NIHSS score and hematoma volume. CONCLUSIONS Increased plasma 8-iso-Prostaglandin F2α concentrations are associated with disease severity and clinical outcome after acute intracerebral hemorrhage.
Collapse
|
14
|
Sheng WS, Hu S, Feng A, Rock RB. Reactive oxygen species from human astrocytes induced functional impairment and oxidative damage. Neurochem Res 2013; 38:2148-59. [PMID: 23918204 DOI: 10.1007/s11064-013-1123-z] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 07/19/2013] [Accepted: 07/30/2013] [Indexed: 12/28/2022]
Abstract
Reactive oxygen species (ROS) have been shown to be a contributor to aging and disease. ROS also serve as a trigger switch for signaling cascades leading to corresponding cellular and molecular events. In the central nervous system (CNS), microglial cells are likely the main source of ROS production. However, activated astrocytes also appear to be capable of generating ROS. In this study we investigated ROS production in human astrocytes stimulated with interleukin (IL)-1β and interferon (IFN)-γ and its potential harmful effects. Although IFN-γ alone had no effect, it potentiated IL-1β-induced ROS production in a time-dependent manner. One of the sources of ROS in IL-1β-activated astrocytes was from increased superoxide production in mitochondria accompanied by enhanced manganese superoxide dismutase and inhibited catalase expression. NADPH oxidase (NOX) may also contribute to ROS production as astrocytes express NOX isoforms. Glutamate uptake, which represents one of the most important methods of astrocytes to prevent excitotoxicity, was down-regulated in IL-1β-activated astrocytes, and was further suppressed in the presence of IFN-γ; IFN-γ itself exerted minimal effect. Elevated levels of 8-isoprostane in IL-1β ± IFN-γ-activated human astrocytes indicate downstream lipid peroxidation. Pretreatment with diphenyleneiodonium abolished the IL-1β ± IFN-γ-induced ROS production, restored glutamate uptake function and reduced 8-isoprostane to near control levels suggesting that ROS contributes to the dysfunction of activated astrocytes. These results support the notion that dampening activated human astrocytes to maintain the redox homeostasis is vital to preserve their neuroprotective potential in the CNS.
Collapse
Affiliation(s)
- Wen S Sheng
- Department of Medicine, The Center for Infectious Diseases & Microbiology Translational Research (CIDMTR), University of Minnesota Medical School, Minneapolis, MN, 55455, USA,
| | | | | | | |
Collapse
|
15
|
Roman RJ, Renic M, Dunn KMJ, Takeuchi K, Hacein-Bey L. Evidence that 20-HETE contributes to the development of acute and delayed cerebral vasospasm. Neurol Res 2013; 28:738-49. [PMID: 17164037 DOI: 10.1179/016164106x152016] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Recent studies have indicated that arachidonic acid (AA) is metabolized by the cytochrome P450 4A (CYP4A) enzymes in cerebral arteries to produce 20-hydroxyeicosatetraenoic acid (20-HETE) and that this compound has effects on cerebral vascular tone that mimic those seen following subarachnoid hemorrhage (SAH). In this regard, 20-HETE is a potent constrictor of cerebral arteries that decreases the open state probability of Ca(2+)-activated K(+) channels through activation of protein kinase C (PKC). It increases the sensitivity of the contractile apparatus to Ca(2+) by activating PKC and rho kinase. The formation of 20-HETE is stimulated by angiotensin II (AII), endothelin, adenosine triphosphate (ATP) and serotonin, and inhibited by NO, CO and superoxide radicals. Inhibitors of the formation of 20-HETE block the myogenic response of cerebral arterioles to elevations in transmural pressure in vitro and autoregulation of cerebral blood flow (CBF) in vivo. 20-HETE also plays an important role in modulating the cerebral vascular responses to vasodilators (NO and CO) and vasoconstrictors (AII, endothelin, serotonin). Recent studies have indicated that the levels of 20-HETE in cerebrospinal fluid (CSF) increase in rats, dogs and human patients following SAH and that inhibitors of the synthesis of 20-HETE prevent the acute fall in CBF in rats and reverse delayed vasospasm in both dogs and rats. This review examines the evidence that an elevation in the production of 20-HETE contributes to the initial fall in CBF following SAH and the later development of delayed vasospasm.
Collapse
Affiliation(s)
- Richard J Roman
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | | | | | |
Collapse
|
16
|
Increased plasma 8-iso-Prostaglandin F2α concentration in severe human traumatic brain injury. Clin Chim Acta 2013; 421:7-11. [DOI: 10.1016/j.cca.2013.02.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/19/2013] [Accepted: 02/19/2013] [Indexed: 11/20/2022]
|
17
|
Abstract
In vitro models of traumatic brain injury (TBI) are helping elucidate the pathobiological mechanisms responsible for dysfunction and delayed cell death after mechanical stimulation of the brain. Researchers have identified compounds that have the potential to break the chain of molecular events set in motion by traumatic injury. Ultimately, the utility of in vitro models in identifying novel therapeutics will be determined by how closely the in vitro cascades recapitulate the sequence of cellular events that play out in vivo after TBI. Herein, the major in vitro models are reviewed, and a discussion of the physical injury mechanisms and culture preparations is employed. A comparison between the efficacy of compounds tested in vitro and in vivo is presented as a critical evaluation of the fidelity of in vitro models to the complex pathobiology that is TBI. We conclude that in vitro models were greater than 88% predictive of in vivo results.
Collapse
Affiliation(s)
- Barclay Morrison
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| | | | | | | |
Collapse
|
18
|
Abstract
The rising awareness of the long-term health problems associated with concussions re-emphasizes the need for understanding the mechanical etiology of concussions. This article reviews past studies defining the common mechanisms for mild traumatic brain injury and summarizes efforts to convert the external input to the head (force, acceleration, and velocity) into estimates of motions and deformations of the brain that occur during mild traumatic brain injury. Studies of how these mechanical conditions contribute to the cellular mechanisms of damage in mild traumatic brain injury are reviewed. Finally, future directions for improving understanding concussion biomechanics are discussed.
Collapse
|
19
|
Safety and efficacy of erythropoietin in traumatic brain injury patients: a pilot randomized trial. Crit Care Res Pract 2010; 2010. [PMID: 20948886 PMCID: PMC2951080 DOI: 10.1155/2010/209848] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 02/22/2010] [Accepted: 02/23/2010] [Indexed: 11/17/2022] Open
Abstract
Background. Erythropoietin (EPO) is a neuroprotective agent utilized in stroke patients. This pilot study represents the first randomized trial of EPO in traumatic brain injury (TBI) patients. Methods. Adult, blunt trauma patients with evidence of TBI were randomized to EPO or placebo within 6 hours of injury. Baseline and daily serum S-100B and Neuron Specific Enolase (NSE) levels were measured. Results. TBI was worse in the EPO (n = 11) group compared to placebo patients (n = 5). The use of EPO did not impact NSE (P = .89) or S100 B (P = .53) levels compared to placebo. Conclusions. At the dose used, EPO did not reduce neuronal cell death compared to placebo; however, TBI severity was worse in the EPO group while levels of NSE and S100-B were similar to the less injured placebo group making it difficult to rule out a treatment effect. A larger, balanced study is necessary to confirm a potential treatment effect.
Collapse
|
20
|
Dietary n-3 polyunsaturated fatty acids increase oxidative stress in rats with intracerebral hemorrhagic stroke. Nutr Res 2010; 29:812-8. [PMID: 19932870 DOI: 10.1016/j.nutres.2009.10.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 09/28/2009] [Accepted: 10/19/2009] [Indexed: 11/22/2022]
Abstract
Intake of n-3 polyunsaturated fatty acids such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) has been suggested to associate with an increased risk of hemorrhagic stroke. The present study was designed to investigate the hypothesis that EPA and DHA increase oxidative stress and hemorrhage volume in rats with intracerebral hemorrhagic (ICH) stroke. Thirty-five-week-old male rats were fed an American Institute of Nutrition-93M diet containing 0% (n = 27), 0.5% (n = 15), or 1% EPA + DHA of total energy for 5 weeks. Of 5 rats fed 1% EPA + DHA (41%), 5 died because of excessive bleeding within 12 hours after ICH surgery. Behavior test score and hemorrhage volume were significantly (P < .05) greater in the 1% EPA + DHA-fed rats than in other rats. Magnetic resonance imaging consistently showed that edema and bleeding were visible in only the rats fed 1% EPA + DHA. Levels of superoxide dismutase and glutathione were significantly (P < .05) lower in rats fed 0.5% and 1% EPA + DHA than those fed 0% EPA + DHA. Thiobarbituric acid-reactive substance content was significantly (P < .05) higher in 1% EPA + DHA-fed rats than in 0% and 0.5% EPA + DHA-fed rats. The level of 8-hydroxydeoxyguanosine was significantly (P < .05) higher in ICH rats with all diets than in sham surgery rats. Brain levels of EPA and DHA were highest in rats fed 1% EPA + DHA than in rats fed 0% and 0.5% EPA + DHA. These results suggested that intake of 1% EPA + DHA of total energy could lead to oxidative damage to the brain and thus increase the risk of intracerebral hemorrhagic stroke in this rat model.
Collapse
|
21
|
Chen YC, Smith DH, Meaney DF. In-vitro approaches for studying blast-induced traumatic brain injury. J Neurotrauma 2009; 26:861-76. [PMID: 19397424 DOI: 10.1089/neu.2008.0645] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Traumatic brain injury caused by explosive or blast events is currently divided into four phases: primary, secondary, tertiary, and quaternary blast injury. These phases of blast-induced traumatic brain injury (bTBI) are biomechanically distinct, and can be modeled in both in-vivo and in-vitro systems. The purpose of this review is to consider the mechanical phases of bTBI, how these phases are reproduced with in-vitro models, and to review findings from these models to assess how each phase of bTBI can be examined in more detail. Highlighted are some important gaps in the literature that may be addressed in the future to better identify the exact contributing mechanisms for bTBI. These in-vitro models, viewed in combination with in-vivo models and clinical studies, can be used to assess both the mechanisms and possible treatments for this type of trauma.
Collapse
Affiliation(s)
- Yung Chia Chen
- Departments of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
22
|
Spaethling JM, Geddes-Klein DM, Miller WJ, von Reyn CR, Singh P, Mesfin M, Bernstein SJ, Meaney DF. Linking impact to cellular and molecular sequelae of CNS injury: modeling in vivo complexity with in vitro simplicity. PROGRESS IN BRAIN RESEARCH 2007; 161:27-39. [PMID: 17618968 DOI: 10.1016/s0079-6123(06)61003-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Traumatic brain injury (TBI) represents one of most common disorders to the central nervous system (CNS). Despite significant efforts, though, an effective clinical treatment for TBI is not yet available. The complexity of human TBI is modeled with a broad group of experimental models, with each model matching some aspect of the human condition. In the past 15 years, these in vivo models were complemented with a group of in vitro models, with these in vitro models allowing investigators to more precisely identify the mechanism(s) of TBI, the different intracellular events that occur in acute period following injury, and the possible treatment of this injury in vitro. In this paper, we review the available in vitro models to study TBI, discuss their biomechanical basis for human TBI, and review the findings from these in vitro models. Finally, we synthesize the current knowledge and point out possible future directions for this group of models, especially in the effort toward developing new therapies for the traumatically brain injured patient.
Collapse
Affiliation(s)
- Jennifer M Spaethling
- Department of Bioengineering, University of Pennsylvania, 3320 Smith Walk, Philadelphia, PA 19104-6392, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Cambonie G, Comte B, Yzydorczyk C, Ntimbane T, Germain N, Lê NLO, Pladys P, Gauthier C, Lahaie I, Abran D, Lavoie JC, Nuyt AM. Antenatal antioxidant prevents adult hypertension, vascular dysfunction, and microvascular rarefaction associated with in utero exposure to a low-protein diet. Am J Physiol Regul Integr Comp Physiol 2007; 292:R1236-45. [PMID: 17138729 DOI: 10.1152/ajpregu.00227.2006] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Developmental programming of hypertension is associated with vascular dysfunction characterized by impaired vasodilatation to nitric oxide, exaggerated vasoconstriction to ANG II, and microvascular rarefaction appearing in the neonatal period. Hypertensive adults have indices of increased oxidative stress, and newborns that were nutrient depleted during fetal life have decreased antioxidant defenses and increased susceptibility to oxidant injury. To test the hypothesis that oxidative stress participates in early life programming of hypertension, vascular dysfunction, and microvascular rarefaction associated with maternal protein deprivation, pregnant rats were fed a normal, low protein (LP), or LP plus lazaroid (lipid peroxidation inhibitor) isocaloric diet from the day of conception until delivery. Lazaroid administered along with the LP diet prevented blood pressure elevation, enhanced vasomotor response to ANG II, impaired vasodilatation to sodium nitroprusside, and microvascular rarefaction in adult offspring. Liver total glutathione was significantly decreased in LP fetuses, and kidney eight-isoprostaglandin F2α (8-isoPGF2α) levels were significantly increased in adult LP offspring; these modifications were prevented by lazaroid. Renal nitrotyrosine abundance and blood levels of 1,4-dihydroxynonene and 4-hydroxynonenal-protein adducts were not modified by antenatal diet exposure. This study shows in adult offspring of LP-fed dams prevention of hypertension, vascular dysfunction, microvascular rarefaction, and of an increase in indices of oxidative stress by the administration of lazaroid during gestation. Lazaroid also prevented the decrease in antioxidant glutathione levels in fetuses, suggesting an antenatal mild oxidative stress in offspring of LP-fed dams. These studies support the concept that perinatal oxidative insult can lead to permanent alterations in the cardiovascular system development.
Collapse
Affiliation(s)
- Gilles Cambonie
- Research Center, Hôpital Sainte-Justine, Department of Pediatrics, University of Montreal, 3175 Côte Sainte-Catherine, Montreal, Quebec, Canada, H3T 1C5
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Floyd CL, Lyeth BG. Astroglia: important mediators of traumatic brain injury. PROGRESS IN BRAIN RESEARCH 2007; 161:61-79. [PMID: 17618970 DOI: 10.1016/s0079-6123(06)61005-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Traumatic brain injury (TBI) research to date has focused almost exclusively on the pathophysiology of injured neurons with very little attention paid to non-neuronal cells. However in the past decade, exciting discoveries have challenged this century-old view of passive glial cells and have led to a reinterpretation of the role of glial cells in central nervous system (CNS) biology and pathology. In this chapter we review several lines of evidence, indicating that glial cells, particularly astrocytes, are active partners to neurons in the brain, and summarize recent findings that detail the significance of astrocyte pathology in traumatic brain injury.
Collapse
Affiliation(s)
- Candace L Floyd
- Department of Physical Medicine and Rehabilitation, Center for Glial Biology in Medicine, 547 Spain Rehabilitation Center, University of Alabama at Birmingham, Birmingham, AL 35249, USA.
| | | |
Collapse
|
25
|
Cohen AS, Pfister BJ, Schwarzbach E, Grady MS, Goforth PB, Satin LS. Injury-induced alterations in CNS electrophysiology. PROGRESS IN BRAIN RESEARCH 2007; 161:143-69. [PMID: 17618975 DOI: 10.1016/s0079-6123(06)61010-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mild to moderate cases of traumatic brain injury (TBI) are very common, but are not always associated with the overt pathophysiogical changes seen following severe trauma. While neuronal death has been considered to be a major factor, the pervasive memory, cognitive and motor function deficits suffered by many mild TBI patients do not always correlate with cell loss. Therefore, we assert that functional impairment may result from alterations in surviving neurons. Current research has begun to explore CNS synaptic circuits after traumatic injury. Here we review significant findings made using in vivo and in vitro models of TBI that provide mechanistic insight into injury-induced alterations in synaptic electrophysiology. In the hippocampus, research now suggests that TBI regionally alters the delicate balance between excitatory and inhibitory neurotransmission in surviving neurons, disrupting the normal functioning of synaptic circuits. In another approach, a simplified model of neuronal stretch injury in vitro, has been used to directly explore how injury impacts the physiology and cell biology of neurons in the absence of alterations in blood flow, blood brain barrier integrity, or oxygenation associated with in vivo models of brain injury. This chapter discusses how these two models alter excitatory and inhibitory synaptic transmission at the receptor, cellular and circuit levels and how these alterations contribute to cognitive impairment and a reduction in seizure threshold associated with human concussive brain injury.
Collapse
Affiliation(s)
- Akiva S Cohen
- Department of Pediatrics, University of Pennsylvania, School of Medicine and Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Takeuchi K, Miyata N, Renic M, Harder DR, Roman RJ. Hemoglobin, NO, and 20-HETE interactions in mediating cerebral vasoconstriction following SAH. Am J Physiol Regul Integr Comp Physiol 2005; 290:R84-9. [PMID: 16166205 DOI: 10.1152/ajpregu.00445.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies have indicated that 20-hydroxyeicosatetraenoic acid (20-HETE) contributes to the fall in cerebral blood flow (CBF) after subarachnoid hemorrhage (SAH), but the factors that stimulate the production of 20-HETE are unknown. This study examines the role of vasoactive factors released by clotting blood vs. the scavenging of nitric oxide (NO) by hemoglobin (Hb) in the fall in CBF after SAH. Intracisternal (icv) injection of blood produced a greater and more prolonged (120 vs. 30 min) decrease in CBF than that produced by a 4% solution of Hb. Pretreating rats with N(omega)-nitro-l-arginine methyl ester (l-NAME; 10 mg/kg iv) to block the synthesis of NO had no effect on the fall in CBF produced by an icv injection of blood. l-NAME enhanced rather than attenuated the fall in CBF produced by an icv injection of Hb. Blockade of the synthesis of 20-HETE with TS-011 (0.1 mg/kg iv) prevented the sustained fall in CBF produced by an icv injection of blood and the transient vasoconstrictor response to Hb. Hb (0.1%) reduced the diameter of the basilar artery (BA) of rats in vitro by 10 +/- 2%. This response was reversed by TS-011 (100 nM). Pretreatment of vessels with l-NAME (300 muM) reduced the diameter of BA and blocked the subsequent vasoconstrictor response to the addition of Hb to the bath. TS-011 returned the diameter of vessels exposed to l-NAME and Hb to that of control. These results suggest that the fall in CBF after SAH is largely due to the release of vasoactive factors by clotting blood rather than the scavenging of NO by Hb and that 20-HETE contributes the vasoconstrictor response of cerebral vessels to both Hb and blood.
Collapse
Affiliation(s)
- Kazuhiko Takeuchi
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | | | | | | | | |
Collapse
|
27
|
Rogers MS, Wang CC, Lau TK, Xiao X, Zhou XG, Fok TF, Chu KO, Pang CP. Relationship between Isoprostane Concentrations, Metabolic Acidosis, and Morbid Neonatal Outcome. Clin Chem 2005; 51:1271-4. [PMID: 15976110 DOI: 10.1373/clinchem.2004.047241] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Michael Scott Rogers
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Raicevic N, Mladenovic A, Perovic M, Harhaji L, Miljkovic D, Trajkovic V. Iron protects astrocytes from 6-hydroxydopamine toxicity. Neuropharmacology 2005; 48:720-31. [PMID: 15814106 DOI: 10.1016/j.neuropharm.2004.12.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2004] [Revised: 09/24/2004] [Accepted: 12/10/2004] [Indexed: 11/20/2022]
Abstract
The role of iron in 6-hydroxydopamine (6-OHDA) toxicity towards astrocytes was investigated in vitro using rat primary astrocytes, rat astrocytoma cell line C6, and human astrocytoma cell line U251. The assessment of mitochondrial respiration or lactate dehydrogenase release has shown a dose-dependent decrease in the viability of astrocytes treated with 6-OHDA, which coincided with DNA fragmentation and the changes in cellular morphology. This was a consequence of the oxidative stress mediated by 6-OHDA autoxidation products hydrogen peroxide, superoxide anion, and hydroxyl radical. Both FeSO(4) and FeCl(3) markedly alleviated detrimental effects of 6-OHDA treatment, while MgSO(4) was without effect. The protective action of iron was neutralized by a membrane-permeable iron chelator o-phenanthroline, which also augmented astrocyte killing in the absence of exogenous iron. The mechanisms responsible for iron-mediated protection of astrocytes did not involve interference with either 6-OHDA autoxidation, hydrogen peroxide toxicity, or 6-OHDA-induced activation of extracellular signal-regulated kinase. Finally, the addition of iron potentiated and its chelation blocked 6-OHDA toxicity towards neuronal PC12 cells, suggesting the opposite roles for this transition metal in regulating the survival of astrocytes and dopaminergic neurons.
Collapse
Affiliation(s)
- Nevena Raicevic
- Department of Neurobiology and Immunology, Institute for Biological Research, Belgrade, Serbia and Montenegro
| | | | | | | | | | | |
Collapse
|
29
|
Santos A, Borges N, Cerejo A, Sarmento A, Azevedo I. Catalase Activity and Thiobarbituric Acid Reactive Substances (TBARS) Production in a Rat Model of Diffuse Axonal Injury. Effect of Gadolinium and Amiloride. Neurochem Res 2005; 30:625-31. [PMID: 16176066 DOI: 10.1007/s11064-005-2750-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study evaluated the effect of mechanogated membrane ion channel blockers on brain catalase (CAT) activity and thiobarbituric acid reactive substances (TBARS) production after traumatic brain injury (TBI). A weight drop trauma model was used. Controls were sham-operated and received no weight drop. Gadolinium (GAD) or amiloride (AMI) were administered to control and experimental rats (30 min after TBI). Brain CAT activity and TBARS production were measured. When blood vessels were washed out with saline perfusion brain CAT activity significantly increased up to 6 h after trauma, decreasing significantly by 24 h; GAD or AMI administration preserved CAT activity 24 h after TBI. TBARS production increased after trauma, this effect being significantly reversed by GAD or AMI administration. GAD significantly decreased TBARS production in control animals. Mechanogated membrane ion channels may be involved in the genesis of the ionic disruption leading to oxidative stress and other secondary injury processes in head trauma.
Collapse
Affiliation(s)
- Alejandro Santos
- Serviço de Bioquímica (U38-FCT) Faculdade de Medicina, Universidade do Porto, 4200-319, Porto, Portugal.
| | | | | | | | | |
Collapse
|
30
|
Asaeda M, Sakamoto M, Kurosaki M, Tabuchi S, Kamitani H, Yokota M, Watanabe T. A non-enzymatic derived arachidonyl peroxide, 8-iso-prostaglandin F2α, in cerebrospinal fluid of patients with aneurysmal subarachnoid hemorrhage participates in the pathogenesis of delayed cerebral vasospasm. Neurosci Lett 2005; 373:222-5. [PMID: 15619547 DOI: 10.1016/j.neulet.2004.10.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Revised: 08/17/2004] [Accepted: 10/05/2004] [Indexed: 11/26/2022]
Abstract
We performed serial measurements of 8-iso-prostaglandin F2alpha (8-iso-PGF2alpha), a non-enzymatic derived arachidonyl peroxide, in the cerebrospinal fluid (CSF) of 34 patients with subarachnoid hemorrhage (SAH). Patients were treated with open or endovascular surgery within 48 h of onset. Delayed cerebral vasospasm was verified by the presence of a low-density area on CT scan indicating focal cerebral infarction occurring after symptomatic delayed vasospasm. Concentrations of 8-iso-PGF2alpha in the CSF of 15 patients exhibiting delayed cerebral vasospasm were compared with those of 19 patients who did not exhibit vasospasm. The concentrations of 8-iso-PGF2alpha in the CSF of patients showing vasospasm were 42.4+/-37.1 pg/ml (mean+/-S.D., n=12) on Days 0-2, 66.4+/-41.0 pg/ml (n=14) on Days 3-5, 118.5+/-89.9 pg/ml (n=15) on Days 6-8, 86.2+/-70.2 pg/ml (n=11) on Days 9-11, 48.8+/-31.8 pg/ml (n=10) on Days 12-14, 27.8+/-20.1 pg/ml (n=7) after Day 20, while the concentrations in patients not showing vasospasm were 24.8+/-12.0 pg/ml (n=18) on Days 0-2, 25.7+/-15.2 pg/ml (n=19) on Days 3-5, 47.5+/-52.3 pg/ml (n=18) on Days 6-8, 56.7+/-72.0 pg/ml (n=13) on Days 9-11, 34.2+/-53.1 pg/ml (n=15) on Days 12-14, 20.1+/-18.2 pg/ml (n=10) after Day 20. CSF concentrations of 8-iso-PGF2alpha on Days 3-5 and Days 6-8 were significantly higher in patients showing vasospasm as compared to patients not showing vasospasm. CSF levels of 8-iso-PGF2alpha in patients showing vasospasm gradually increased in the days after onset of SAH and peaked on Days 6-8. Levels returned to normal after Day 20. These values on Days 3-5, Days 6-8, and Days 9-11 were significantly higher than the value after Day 20. Considering these data and the biological activities of 8-iso-PGF2alpha, such as development of inflammation, membrane perturbation and vasoconstriction, we conclude that 8-iso-PGF2alpha may play a role in delayed cerebral vasospasm after SAH.
Collapse
Affiliation(s)
- Masahiro Asaeda
- Division of Neurosurgery, Faculty of Medicine, Institute of Neurological Sciences, Tottori University, 36-1 Nishi-cho, Yonago 683-8504, Japan.
| | | | | | | | | | | | | |
Collapse
|
31
|
Clarke J, Herzberg G, Peeling J, Buist R, Corbett D. Dietary supplementation of omega-3 polyunsaturated fatty acids worsens forelimb motor function after intracerebral hemorrhage in rats. Exp Neurol 2005; 191:119-27. [PMID: 15589518 DOI: 10.1016/j.expneurol.2004.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2004] [Revised: 08/19/2004] [Accepted: 09/10/2004] [Indexed: 10/26/2022]
Abstract
Dietary intake of omega-3 polyunsaturated fatty acids has been associated with decreased clotting ability and increased risk of hemorrhagic stroke. The aim of the current study was to assess the effect of dietary supplementation of omega-3 polyunsaturated fatty acid on functional outcome after hemorrhagic stroke. Rats were maintained on a diet containing approximately 30% of energy as either fish oil (rich in omega-3 fatty acids) or safflower oil (rich in omega-6 fatty acids) and subjected to either intracerebral hemorrhage or sham surgery. Behavioral tests, infarct measurement, and MR imaging techniques were used to assess outcome. While there was no significant difference in infarct volume between rats on different diets, animals maintained on a diet enriched with fish oil exhibited increased cerebral blood flow after surgery. These animals were significantly more impaired than rats fed the safflower-oil-enriched diet in tests of forelimb dexterity and fine motor control. These results suggest that high intake of omega-3 polyunsaturated fatty acids may not only increase the risk of hemorrhagic stroke as shown in previous studies, but most importantly may lead to a more severe motor impairment and a poorer functional outcome after such an event.
Collapse
Affiliation(s)
- Jared Clarke
- Basic Medical Sciences, Faculty of Medicine, Memorial University, St. John's, NL, Canada
| | | | | | | | | |
Collapse
|
32
|
Floyd CL, Rzigalinski BA, Sitterding HA, Willoughby KA, Ellis EF. Antagonism of group I metabotropic glutamate receptors and PLC attenuates increases in inositol trisphosphate and reduces reactive gliosis in strain-injured astrocytes. J Neurotrauma 2004; 21:205-16. [PMID: 15000761 DOI: 10.1089/089771504322778668] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have previously found that in vitro traumatic injury uncouples IP3-mediated intracellular free calcium ([Ca2+]i) signaling in astrocytes (Rzigalinski et al., 1998; Floyd et al., 2001). Since Group I metabotropic glutamate receptors (mGluRs) are coupled to IP3-mediated Ca2+ signaling, we investigated their role in the in vitro strain injury of cultured astrocytes. Astrocytes grown on Silastic membranes were labeled with 3H-myo-inositol and strain (stretch)-injured. Cells injured in the presence of LiCl to prevent inositol phosphate metabolism were acid extracted and inositol phosphates (IPx) isolated using anion exchange columns. Reactive gliosis was assessed as increased glial fibrillary acidic protein immunoreactivity (GFAP-IR). Pre- but not post-injury administration of (RS)-1-aminoindan-15-decarboxylic acid (AIDA) or (S)-4-carboxy-3-hydroxyphenylglycine (S4CH3HPG), both group I mGluR antagonists, attenuated injury-induced increases in IPx. Injury increased GFAP-IR in astrocytes at 24 and 48 h post injury, which was reduced or blocked by AIDA or inhibition of phospholipase C (PLC) with U73122. These findings suggest that strain injury activates Group I mGluRs, causing aberrant IPx production and uncoupling of the PLC signaling pathway. Changes in this signaling pathway may be related to induction of reactive gliosis. Additionally, our results suggest a complex physical coupling between G protein receptor, PLC, and IP3 receptor, in support of the conformational coupling model.
Collapse
Affiliation(s)
- Candace L Floyd
- Center for Neuroscience, University of California, Davis, Davis, California, USA
| | | | | | | | | |
Collapse
|
33
|
|
34
|
Jenkins LW, Peters GW, Dixon CE, Zhang X, Clark RSB, Skinner JC, Marion DW, Adelson PD, Kochanek PM. Conventional and functional proteomics using large format two-dimensional gel electrophoresis 24 hours after controlled cortical impact in postnatal day 17 rats. J Neurotrauma 2002; 19:715-40. [PMID: 12165133 DOI: 10.1089/08977150260139101] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Conventional and functional proteomics have significant potential to expand our understanding of traumatic brain injury (TBI) but have not yet been used. The purpose of the present study was to examine global hippocampal protein changes in postnatal day (PND) 17 immature rats 24 h after moderate controlled cortical impact (CCI). Silver nitrate stains or protein kinase B (PKB) phosphoprotein substrate antibodies were used to evaluate high abundance or PKB pathway signal transduction proteins representing conventional and functional proteomic approaches, respectively. Isoelectric focusing was performed over a nonlinear pH range of 3-10 with immobilized pH gradients (IPG strips) using supernatant from the most soluble cellular protein fraction of hippocampal tissue protein lysates from six paired sham and injured PND 17 rats. Approximately 1,500 proteins were found in each silver stained gel with 40% matching of proteins. Of these 600 proteins, 52% showed a twofold, 20% a fivefold, and 10% a 10-fold decrease or increase. Spot matching with existing protein databases revealed changes in important cytoskeletal and cell signalling proteins. PKB substrate protein phosphorylation was best seen in large format two-dimensional blots and known substrates of PKB such as glucose transporter proteins 3 and 4 and forkhead transcription factors, identified based upon molecular mass and charge, showed altered phosphorylation 24 h after injury. These results suggest that combined conventional and functional proteomic approaches are powerful, complementary and synergistic tools revealing multiple protein changes and posttranslational protein modifications that allow for more specific and comprehensive functional assessments after pediatric TBI.
Collapse
Affiliation(s)
- L W Jenkins
- Department of Neurosurgery, Safar Center for Resuscitation Research and University of Pittsburgh, Pittsburgh, Pennsylvania, USA. ljenkins+@pitt.edu
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Sakamoto M, Takaki E, Yamashita K, Watanabe K, Tabuchi S, Watanabe T, Satoh K. Nonenzymatic derived lipid peroxide, 8-iso-PGF2 alpha, participates in the pathogenesis of delayed cerebral vasospasm in a canine SAH model. Neurol Res 2002; 24:301-6. [PMID: 11958426 DOI: 10.1179/016164102101199783] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
We studied whether 8-iso-PGF2alpha, nonenzymatic arachidonyl peroxide, participated in the pathogenesis of delayed vasospasm using a canine subarachnoid hemorrhage (SAH) model. Fourteen adult mongrel dogs were divided into two groups, two-hemorrhage SAH group (n = 8) and control group (n = 6). The contents of 8-iso-PGF2alpha in CSF, the basilar artery segment, and subarachnoid clot were measured by enzyme immunoassay kit. The CSF 8-iso-PGF2alpha content on Day 7 in the SAH group was 67.9+/-29.9 pg ml(-1) (n = 8), which was significantly higher than 27.1+/-13.8 (n = 8) on Day 0 in the SAH group, and 33.2+/-14.4 pg ml(-1) (n = 5) on Day 7 in the control group. The 8-iso-PGF2alpha content in the basilar artery segment with spasm on Day 7 in the SAH group was 13.5+/-1.9 pg mg(-1) wet weight (n = 8), significantly higher than 8.7+/-1.9 (n = 6) in the control group. The 8-iso-PGF2alpha content in subarachnoid clot was 1.7+/-1.4 ng g(-1) wet weight (n = 8). Significant elevation of the 8-iso-PGF2alpha contents in the CSF and the basilar artery segment occurred on Day 7 in the SAH group. The subarachnoid clot enclosed the basilar artery on Day 7, contained a considerable amount of 8-iso-PGF2alpha. These results suggested that 8-iso-PGF2alpha could play a crucial role in the pathogenesis of the delayed cerebral vasospasm.
Collapse
Affiliation(s)
- Makoto Sakamoto
- Department of Neurosurgery, Institute of Neurological Sciences, Faculty of Medicine, Tottori University, Yonago, Japan.
| | | | | | | | | | | | | |
Collapse
|
36
|
Floyd CL, Rzigalinski BA, Weber JT, Sitterding HA, Willoughby KA, Ellis EF. Traumatic injury of cultured astrocytes alters inositol (1,4,5)-trisphosphate-mediated signaling. Glia 2001; 33:12-23. [PMID: 11169788 DOI: 10.1002/1098-1136(20010101)33:1<12::aid-glia1002>3.0.co;2-v] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Our previous studies using an in vitro model of traumatic injury have shown that stretch injury of astrocytes causes a rapid elevation in intracellular free calcium ([Ca2+]i), which returns to near normal by 15 min postinjury. We have also shown that after injury astrocyte intracellular calcium stores are no longer able to release Ca2+ in response to signal transduction events mediated by the second messenger inositol (1,4,5)-trisphosphate (IP3, Rzigalinski et al., 1998). Therefore, we tested the hypothesis that in vitro injury perturbs astrocyte IP3 levels. Astrocytes grown on Silastic membranes were labeled with [3H]-myo-inositol and stretch-injured. Cells and media were acid-extracted and inositol phosphates isolated using anion-exchange columns. After injury, inositol polyphosphate (IPx) levels increased up to 10-fold over uninjured controls. Significant injury-induced increases were seen at 5, 15, and 30 min and at 24 and 48 h postinjury. Injury-induced increases in IPx were equivalent to the maximal glutamate and trans-(1S,3R)-1-amino-1,3-cyclopentanedicarboxylic acid-stimulated IPx production, however injury-induced increases in IPx were sustained through 24 and 48 h postinjury. Injury-induced increases in IPx were attenuated by pretreatment with the phospholipase C inhibitors neomycin (100 microM) or U73122 (1.0 microM). Since we have previously shown that astrocyte [Ca2+]i returns to near basal levels by 15 min postinjury, the current results suggest that IP3-mediated signaling is uncoupled from its target, the intracellular Ca2+ store. Uncoupling of IP3-mediated signaling may contribute to the pathological alterations seen after traumatic brain injury.
Collapse
Affiliation(s)
- C L Floyd
- Department of Psychology, Medical College of Virginia/Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | | | | | | | |
Collapse
|