1
|
Liddle LJ, Dirks CA, Almekhlafi M, Colbourne F. An Ambiguous Role for Fever in Worsening Outcome After Intracerebral Hemorrhage. Transl Stroke Res 2023; 14:123-136. [PMID: 35366212 PMCID: PMC9995537 DOI: 10.1007/s12975-022-01010-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 11/25/2022]
Abstract
Intracerebral hemorrhage (ICH) accounts for 10-15% of all strokes and leaves most survivors with impairments. Fever, a rise in the thermoregulatory set point, complicates ICH. This review summarizes ICH fever studies and employs meta-analytic techniques to explore the relationship between fever and ICH. We discuss methodological considerations for future studies and provide an overview of mechanisms by which fever, and its treatment, may impact ICH. We searched the PubMed database using the following terms: ((fever OR hyperthermia) AND (intracerebral hemorrhage OR intraparenchymal hemorrhage OR intracerebral haemorrhage OR intraparenchymal haemorrhage)). Our search returned 727 studies, of which 21 were included in our final analysis, consisting of 19 clinical, and two preclinical, studies. We conducted a meta-analysis on the clinical data to quantify how fever is related to mortality, functional outcomes, and intraventricular hemorrhage. Analysis of clinical studies suggested that fever causes an increased risk of mortality but does not appear to be associated with poor outcomes among survivors, making it difficult to ascertain the extent of harm caused by post-ICH fever or the benefits of its treatment. Perhaps these inconsistencies stem from variable fever definitions, and temperature measurement and fever treatment protocols. Additionally, the lack of mechanistic data in clinical studies coupled with preclinical studies showing no harmful effects of moderate bouts of hyperthermia raise concerns about the direct contribution of hyperthermia and fever in post ICH outcome. Overall, the significance of temperature increases after ICH is unclear, making this an important area for future research.
Collapse
Affiliation(s)
- Lane J Liddle
- Department of Psychology, University of Alberta, Edmonton, AB, Canada
| | - Christine A Dirks
- Department of Psychology, University of Alberta, Edmonton, AB, Canada
| | | | - Frederick Colbourne
- Department of Psychology, University of Alberta, Edmonton, AB, Canada.
- Neuroscience and Mental Health Institute, University of Alberta, P217 Biological Sciences Building, Edmonton, AB, T6G 2E9, Canada.
| |
Collapse
|
2
|
Liddle LJ, Kalisvaart ACJ, Abrahart AH, Almekhlafi M, Demchuk A, Colbourne F. Targeting focal ischemic and hemorrhagic stroke neuroprotection: Current prospects for local hypothermia. J Neurochem 2021; 160:128-144. [PMID: 34496050 DOI: 10.1111/jnc.15508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/01/2021] [Accepted: 09/05/2021] [Indexed: 01/17/2023]
Abstract
Therapeutic hypothermia (TH) has applications dating back millennia. In modern history, however, TH saw its importation into medical practice where investigations have demonstrated that TH is efficacious in ischemic insults, notably cardiac arrest and hypoxic-ischemic encephalopathy. As well, studies have been undertaken to investigate whether TH can provide benefit in focal stroke (i.e., focal ischemia and intracerebral hemorrhage). However, clinical studies have encountered various challenges with induction and maintenance of post-stroke TH. Most clinical studies have attempted to use body-wide cooling protocols, commonly hindered by side effects that can worsen post-stroke outcomes. Some of the complications and difficulties with systemic TH can be circumvented by using local hypothermia (LH) methods. Additional advantages include the potential for lower target temperatures to be achieved and faster TH induction rates with LH. This systematic review summarizes the body of clinical and preclinical LH focal stroke studies and raises key points to consider for future LH research. We conclude with an overview of LH neuroprotective mechanisms and a comparison of LH mechanisms with those observed with systemic TH. Overall, whereas many LH studies have been conducted preclinically in the context of focal ischemia, insufficient work has been done in intracerebral hemorrhage. Furthermore, key translational studies have yet to be done in either stroke subtype (e.g., varied models and time-to-treat, studies considering aged animals or animals with co-morbidities). Few clinical LH investigations have been performed and the optimal LH parameters to achieve neuroprotection are unknown.
Collapse
Affiliation(s)
- Lane J Liddle
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Ashley H Abrahart
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | - Frederick Colbourne
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
3
|
Kalisvaart ACJ, Prokop BJ, Colbourne F. Hypothermia: Impact on plasticity following brain injury. Brain Circ 2019; 5:169-178. [PMID: 31950092 PMCID: PMC6950515 DOI: 10.4103/bc.bc_21_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/28/2019] [Indexed: 12/13/2022] Open
Abstract
Therapeutic hypothermia (TH) is a potent neuroprotectant against multiple forms of brain injury, but in some cases, prolonged cooling is needed. Such cooling protocols raise the risk that TH will directly or indirectly impact neuroplasticity, such as after global and focal cerebral ischemia or traumatic brain injury. TH, depending on the depth and duration, has the potential to broadly affect brain plasticity, especially given the spatial, temporal, and mechanistic overlap with the injury processes that cooling is used to treat. Here, we review the current experimental and clinical evidence to evaluate whether application of TH has any adverse or positive effects on postinjury plasticity. The limited available data suggest that mild TH does not appear to have any deleterious effect on neuroplasticity; however, we emphasize the need for additional high-quality preclinical and clinical work in this area.
Collapse
|
4
|
Almekhlafi MA, Colbourne F, Al Sultan AS, Goyal M, Demchuk AM. Selective brain cooling: Let us have a moment of science. J Cereb Blood Flow Metab 2019; 39:182-183. [PMID: 30215541 PMCID: PMC6311662 DOI: 10.1177/0271678x18800274] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Selective brain cooling is a promising advent for reducing final infarct volume and improving outcomes in ischemic stroke victims. Despite the robust body of evidence from animal studies, evidence supporting the use of selective hypothermia in stroke patients is lacking. A recent study provided promising results on the safety and possible efficacy of selective brain hypothermia via intraarterial infusion of cooled saline. Better understanding of the patients' population that may attain benefit from this approach will be informative. Details of infarct progression using perfusion imaging will also help understand the mechanism of effect of selective hypothermia to inform future trials.
Collapse
Affiliation(s)
- Mohammed A Almekhlafi
- 1 Department of Clinical Neurosciences, at Cumming school of Medicine, University of Calgary, Alberta, Canada.,2 Department of Radiology at Cumming school of Medicine, University of Calgary, Alberta, Canada.,3 Hotchkiss Brain Institute at Cumming school of Medicine, University of Calgary, Alberta, Canada
| | - Fred Colbourne
- 4 Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada.,5 Department of Psychology, University of Alberta, Edmonton, Canada
| | - Abdulaziz S Al Sultan
- 1 Department of Clinical Neurosciences, at Cumming school of Medicine, University of Calgary, Alberta, Canada.,3 Hotchkiss Brain Institute at Cumming school of Medicine, University of Calgary, Alberta, Canada
| | - Mayank Goyal
- 2 Department of Radiology at Cumming school of Medicine, University of Calgary, Alberta, Canada.,3 Hotchkiss Brain Institute at Cumming school of Medicine, University of Calgary, Alberta, Canada
| | - Andrew M Demchuk
- 1 Department of Clinical Neurosciences, at Cumming school of Medicine, University of Calgary, Alberta, Canada.,3 Hotchkiss Brain Institute at Cumming school of Medicine, University of Calgary, Alberta, Canada
| |
Collapse
|
5
|
Chen H, Qian H, Gu Z, Wang M. Temperature Management With Paracetamol in Acute Stroke Patients: Evidence From Randomized Controlled Trials. Front Neurol 2018; 9:917. [PMID: 30515128 PMCID: PMC6255928 DOI: 10.3389/fneur.2018.00917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/09/2018] [Indexed: 12/26/2022] Open
Abstract
Whether or not paracetamol can improve functional outcomes in patients with acute stroke has been examined in several clinical trials. The inconsistent results of these trials have caused great controversy regarding the need for further studies. In the present meta-analysis, we have aimed to address this controversy. The main databases (Medline, Embase, and Cochrane Library) were searched for randomized controlled trials involving the use of paracetamol in acute stroke patients. Pooled relative risks (RRs) or mean differences (MDs) and 95% confidence intervals (CIs) were calculated using a random-effects model. A total of 1,836 patients were pooled from four phase II and two phase III trials. The use of paracetamol resulted in a significant reduction in body temperature after 24 h (MD, −0.21; 95% CI, −0.28 to −0.13; P < 0.001) and mortality rate after 7–14 days (RR, 0.62; 95% CI, 0.41–0.93; P = 0.02) when compared with the placebo group; however, no effect of paracetamol was observed in the modified Rankin Scale score (RR, 1.07; 95% CI, 0.91–1.27; P = 0.40) or Barthel Index score (RR, 0.98; 95% CI, 0.91–1.06; P = 0.63) at 30 or 90 days. No significant differences were observed with respect to serious adverse events between the paracetamol and the placebo groups (P > 0.05). Subgroup analyses were performed to detect the source of the heterogeneity, which showed that ischemic stroke, serious condition at baseline, and late time-to-treatment had adverse impacts on the effect of paracetamol post stroke. In conclusion, temperature management with paracetamol in acute stroke patients is safe. Although paracetamol reduced the mortality rate in the early stage of stroke, it did not appear to affect long-term mortality and functional recovery. It should be noted that this conclusion is based on the results from studies of poor quality. A large clinical trial with a focus on early treatment of patients with acute stroke is warranted.
Collapse
Affiliation(s)
- Huawei Chen
- Department of Neurosurgery, Shaoxing Central Hospital, Shaoxing, China
| | - Hui Qian
- Department of Neurosurgery, Shaoxing Central Hospital, Shaoxing, China
| | - Zhiwei Gu
- Department of Neurosurgery, Shaoxing Central Hospital, Shaoxing, China
| | - Majun Wang
- Department of Neurosurgery, Zhejiang Zuji People's Hospital, Shaoxing, China
| |
Collapse
|
6
|
Abstract
Different mechanisms explain thermoregulatory dysfunction following ischemic stroke, hemorrhagic stroke, and traumatic brain injury. Temperature instability following brain injury likely involves hypothalamic injury, pathologic changes in cerebral blood flow, metabolic derangement, and a neurogenic inflammatory response. Although targeted temperature management (TTM) exerts pleiotropic effects, the heterogeneity of brain injury has hindered identification of patient subsets most likely to benefit from TTM. Early optimism about TTM's role in brain injury has been tempered by the failure of successive clinical trials to show improved patient outcomes. However, given the deleterious effects of fever, aggressive fever management is still warranted in the critically ill neurologic patient.
Collapse
Affiliation(s)
- Ram Gowda
- Program in Trauma, Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Matthew Jaffa
- Program in Trauma, Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Neeraj Badjatia
- Program in Trauma, Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
7
|
Madden LK, Hill M, May TL, Human T, Guanci MM, Jacobi J, Moreda MV, Badjatia N. The Implementation of Targeted Temperature Management: An Evidence-Based Guideline from the Neurocritical Care Society. Neurocrit Care 2017; 27:468-487. [DOI: 10.1007/s12028-017-0469-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Choi W, Kwon SC, Lee WJ, Weon YC, Choi B, Lee H, Park ES, Ahn R. Feasibility and Safety of Mild Therapeutic Hypothermia in Poor-Grade Subarachnoid Hemorrhage: Prospective Pilot Study. J Korean Med Sci 2017; 32:1337-1344. [PMID: 28665071 PMCID: PMC5494334 DOI: 10.3346/jkms.2017.32.8.1337] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/24/2017] [Indexed: 01/10/2023] Open
Abstract
Therapeutic hypothermia (TH) improves the neurological outcome in patients after cardiac arrest and neonatal hypoxic brain injury. We studied the safety and feasibility of mild TH in patients with poor-grade subarachnoid hemorrhage (SAH) after successful treatment. Patients were allocated randomly to either the TH group (34.5°C) or control group after successful clipping or coil embolization. Eleven patients received TH for 48 hours followed by 48 hours of slow rewarming. Vasospasm, delayed cerebral ischemia (DCI), functional outcome, mortality, and safety profiles were compared between groups. We enrolled 22 patients with poor-grade SAH (Hunt & Hess Scale 4, 5 and modified Fisher Scale 3, 4). In the TH group, 10 of 11 (90.9%) patients had a core body temperature of < 36°C for > 95% of the 48-hour treatment period. Fewer patients in the TH than control group (n = 11, each) had symptomatic vasospasms (18.1% vs. 36.4%, respectively) and DCI (36.3% vs. 45.6%, respectively), but these differences were not statistically significant. At 3 months, 54.5% of the TH group had a good-to-moderate functional outcome (0-3 on the modified Rankin Scale [mRS]) compared with 9.0% in the control group (P = 0.089). Mortality at 1 month was 36.3% in the control group compared with 0.0% in the TH group (P = 0.090). Mild TH is feasible and can be safely used in patients with poor-grade SAH. Additionally, it may reduce the risk of vasospasm and DCI, improving the functional outcomes and reducing mortality. A larger randomized controlled trial is warranted.
Collapse
Affiliation(s)
- Wookjin Choi
- Department of Emergency Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Soon Chan Kwon
- Department of Neurosurgery, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea.
| | - Won Joo Lee
- Department of Neurosurgery, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Young Cheol Weon
- Department of Radiology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Byungho Choi
- Department of Emergency Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Hyeji Lee
- Department of Emergency Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Eun Suk Park
- Department of Neurosurgery, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Ryeok Ahn
- Department of Emergency Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| |
Collapse
|
9
|
Abstract
The application of targeted temperature management has become common practice in the neurocritical care setting. It is important to recognize the pathophysiologic mechanisms by which temperature control impacts acute neurologic injury, as well as the clinical limitations to its application. Nonetheless, when utilizing temperature modulation, an organized approach is required in order to avoid complications and minimize side-effects. The most common clinically relevant complications are related to the impact of cooling on hemodynamics and electrolytes. In both instances, the rate of complications is often related to the depth and rate of cooling or rewarming. Shivering is the most common side-effect of hypothermia and is best managed by adequate monitoring and stepwise administration of medications specifically targeting the shivering response. Due to the impact cooling can have upon pharmacokinetics of commonly used sedatives and analgesics, there can be significant delays in the return of the neurologic examination. As a result, early prognostication posthypothermia should be avoided.
Collapse
Affiliation(s)
- N Badjatia
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
10
|
Lee JH, Wei ZZ, Cao W, Won S, Gu X, Winter M, Dix TA, Wei L, Yu SP. Regulation of therapeutic hypothermia on inflammatory cytokines, microglia polarization, migration and functional recovery after ischemic stroke in mice. Neurobiol Dis 2016; 96:248-260. [PMID: 27659107 PMCID: PMC5161414 DOI: 10.1016/j.nbd.2016.09.013] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/30/2016] [Accepted: 09/17/2016] [Indexed: 01/08/2023] Open
Abstract
Stroke is a leading threat to human life and health in the US and around the globe, while very few effective treatments are available for stroke patients. Preclinical and clinical studies have shown that therapeutic hypothermia (TH) is a potential treatment for stroke. Using novel neurotensin receptor 1 (NTR1) agonists, we have demonstrated pharmacologically induced hypothermia and protective effects against brain damages after ischemic stroke, hemorrhage stroke, and traumatic brain injury (TBI) in rodent models. To further characterize the mechanism of TH-induced brain protection, we examined the effect of TH (at ±33°C for 6h) induced by the NTR1 agonist HPI-201 or physical (ice/cold air) cooling on inflammatory responses after ischemic stroke in mice and oxygen glucose deprivation (OGD) in cortical neuronal cultures. Seven days after focal cortical ischemia, microglia activation in the penumbra reached a peak level, which was significantly attenuated by TH treatments commenced 30min after stroke. The TH treatment decreased the expression of M1 type reactive factors including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-12, IL-23, and inducible nitric oxide synthase (iNOS) measured by RT-PCR and Western blot analyses. Meanwhile, TH treatments increased the expression of M2 type reactive factors including IL-10, Fizz1, Ym1, and arginase-1. In the ischemic brain and in cortical neuronal/BV2 microglia cultures subjected to OGD, TH attenuated the expression of monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1α (MIP-1α), two key chemokines in the regulation of microglia activation and infiltration. Consistently, physical cooling during OGD significantly decreased microglia migration 16h after OGD. Finally, TH improved functional recovery at 1, 3, and 7days after stroke. This study reveals the first evidence for hypothermia mediated regulation on inflammatory factor expression, microglia polarization, migration and indicates that the anti-inflammatory effect is an important mechanism underlying the brain protective effects of a TH therapy.
Collapse
Affiliation(s)
- Jin Hwan Lee
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, United States; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, United States
| | - Zheng Z Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, United States; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, United States
| | - Wenyuan Cao
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Soonmi Won
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Xiaohuan Gu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, United States; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, United States
| | - Megan Winter
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Thomas A Dix
- JT Pharmaceuticals, Mt. Pleasant, SC 29464, United States; Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29401, United States
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, United States; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, United States; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, United States.
| |
Collapse
|
11
|
Kim H, Edwards NJ, Choi HA, Chang TR, Jo KW, Lee K. Treatment Strategies to Attenuate Perihematomal Edema in Patients With Intracerebral Hemorrhage. World Neurosurg 2016; 94:32-41. [PMID: 27373415 DOI: 10.1016/j.wneu.2016.06.093] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 11/24/2022]
Abstract
Spontaneous intracerebral hemorrhage (SICH) continues to be a significant cause of neurologic morbidity and mortality throughout the world. Although recent advances in the treatment of SICH have significantly decreased mortality rates, functional recovery has not been dramatically improved by any intervention to date. There are 2 predominant mechanisms of brain injury from intracerebral hemorrhage: mechanical injury from the primary hematoma (including growth of that hematoma), and secondary injury from perihematomal inflammation. For instance, in the hours to weeks after SICH as the hematoma is being degraded, thrombin and iron are released and can result in neurotoxicity, free radical damage, dysregulated coagulation, and harmful inflammatory cascades; this can clinically and radiologically manifest as perihematomal edema (PHE). PHE can contribute to mass effect, cause acute neurologic deterioration in patients, and has even been associated with poor long-term functional outcomes. PHE therefore lends itself to being a potential therapeutic target. In this article, we will review 1) the pathogenesis and time course of the development of PHE, and 2) the clinical series and trials exploring various methods, with a focus on minimally invasive surgical techniques, to reduce PHE and minimize secondary brain injury. Promising areas of continued research also will be discussed.
Collapse
Affiliation(s)
- Hoon Kim
- Department of Neurosurgery, College of Medicine, Bucheon St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Nancy J Edwards
- Department of Neurosurgery and Neurology, University of Texas Medical School at Houston, Houston, Texas, USA
| | - Huimahn A Choi
- Department of Neurosurgery and Neurology, University of Texas Medical School at Houston, Houston, Texas, USA
| | - Tiffany R Chang
- Department of Neurosurgery and Neurology, University of Texas Medical School at Houston, Houston, Texas, USA
| | - Kwang Wook Jo
- Department of Neurosurgery, College of Medicine, Bucheon St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Kiwon Lee
- Department of Neurosurgery and Neurology, University of Texas Medical School at Houston, Houston, Texas, USA
| |
Collapse
|
12
|
Klahr AC, Nadeau CA, Colbourne F. Temperature Control in Rodent Neuroprotection Studies: Methods and Challenges. Ther Hypothermia Temp Manag 2016; 7:42-49. [PMID: 27327871 DOI: 10.1089/ther.2016.0018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Extensive animal research facilitated the clinical translation of therapeutic hypothermia for cardiac arrest in adults and hypoxic-ischemic injury in infants. Similarly, clinical interest in hypothermia for other brain injuries, such as stroke, has been greatly supported by positive findings in preclinical work. The reliability, validity, and utility of animal models, among many research practices (blinding, randomization, etc.), are key to successful clinical translation. Here, we review methods used to induce and maintain hypothermia in animal models. These include physical and pharmacological methods. We emphasize the advantages and limitations of each approach, and the importance of using clinically relevant cooling protocols and appropriate monitoring and reporting approaches. Moreover, we performed a literature survey of ischemic stroke studies published in 2015 to highlight the continuing risk of temperature confounds in neuroprotection studies. For example, many still do not accurately monitor and report temperature during surgery (23.5%), even though almost half of these studies (46.0%) use pharmaceutical agents that likely influence temperature. We hope this review stimulates awareness and discussion of the importance of temperature in neuroprotective studies.
Collapse
Affiliation(s)
- Ana C Klahr
- 1 Neuroscience and Mental Health Institute, University of Alberta , Edmonton, Canada
| | - Colby A Nadeau
- 2 Department of Psychology, University of Alberta , Edmonton, Canada
| | - Frederick Colbourne
- 1 Neuroscience and Mental Health Institute, University of Alberta , Edmonton, Canada .,2 Department of Psychology, University of Alberta , Edmonton, Canada
| |
Collapse
|
13
|
Hu H, Doll DN, Sun J, Lewis SE, Wimsatt JH, Kessler MJ, Simpkins JW, Ren X. Mitochondrial Impairment in Cerebrovascular Endothelial Cells is Involved in the Correlation between Body Temperature and Stroke Severity. Aging Dis 2016; 7:14-27. [PMID: 26816660 DOI: 10.14336/ad.2015.0906] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 09/06/2015] [Indexed: 02/05/2023] Open
Abstract
Stroke is the second leading cause of death worldwide. The prognostic influence of body temperature on acute stroke in patients has been recently reported; however, hypothermia has confounded experimental results in animal stroke models. This work aimed to investigate how body temperature could prognose stroke severity as well as reveal a possible mitochondrial mechanism in the association of body temperature and stroke severity. Lipopolysaccharide (LPS) compromises mitochondrial oxidative phosphorylation in cerebrovascular endothelial cells (CVECs) and worsens murine experimental stroke. In this study, we report that LPS (0.1 mg/kg) exacerbates stroke infarction and neurological deficits, in the mean time LPS causes temporary hypothermia in the hyperacute stage during 6 hours post-stroke. Lower body temperature is associated with worse infarction and higher neurological deficit score in the LPS-stroke study. However, warming of the LPS-stroke mice compromises animal survival. Furthermore, a high dose of LPS (2 mg/kg) worsens neurological deficits, but causes persistent severe hypothermia that conceals the LPS exacerbation of stroke infarction. Mitochondrial respiratory chain complex I inhibitor, rotenone, replicates the data profile of the LPS-stroke study. Moreover, we have confirmed that rotenone compromises mitochondrial oxidative phosphorylation in CVECs. Lastly, the pooled data analyses of a large sample size (n=353) demonstrate that stroke mice have lower body temperature compared to sham mice within 6 hours post-surgery; the body temperature is significantly correlated with stroke outcomes; linear regression shows that lower body temperature is significantly associated with higher neurological scores and larger infarct volume. We conclude that post-stroke body temperature predicts stroke severity and mitochondrial impairment in CVECs plays a pivotal role in this hypothermic response. These novel findings suggest that body temperature is prognostic for stroke severity in experimental stroke animal models and may have translational significance for clinical stroke patients - targeting endothelial mitochondria may be a clinically useful approach for stroke therapy.
Collapse
Affiliation(s)
- Heng Hu
- 1 Department of Physiology and Pharmacology,; 2 Experimental Stroke Core, Center for Basic and Translational Stroke Research
| | | | | | | | | | - Matthew J Kessler
- 4 Office of Laboratory Animal Resources, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia, 26506 USA
| | - James W Simpkins
- 1 Department of Physiology and Pharmacology,; 2 Experimental Stroke Core, Center for Basic and Translational Stroke Research
| | - Xuefang Ren
- 1 Department of Physiology and Pharmacology,; 2 Experimental Stroke Core, Center for Basic and Translational Stroke Research
| |
Collapse
|
14
|
Approaches for Therapeutic Temperature Management. JOURNAL OF INFUSION NURSING 2016; 39:26-9. [DOI: 10.1097/nan.0000000000000146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Klahr AC, Dietrich K, Dickson CT, Colbourne F. Prolonged Localized Mild Hypothermia Does Not Affect Seizure Activity After Intracerebral Hemorrhage in Rats. Ther Hypothermia Temp Manag 2015; 6:40-7. [PMID: 26717112 DOI: 10.1089/ther.2015.0028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a devastating stroke with high morbidity and mortality. Post-ICH seizures are a common complication, potentially increasing brain injury and the risk of delayed epilepsy. Mild therapeutic hypothermia (HYPO, ∼33°C) is neuroprotective against several brain insults, such as ischemia, while also mitigating seizure incidence and severity in some instances. Therefore, we tested whether brain-selective HYPO reduced electrographic seizure activity after a collagenase-induced striatal ICH in rats. Animals were injected unilaterally with 0.14 U of bacterial collagenase, implanted with a unilateral brain cooling device, and a probe to bilaterally record electroencephalographic (EEG) activity. Cooling began 6 hours after collagenase infusion and was maintained for 48 hours, followed by rewarming over 6 hours. Our protocol did not affect EEG activity in naïve rats, nor did it increase bleeding after ICH (∼50 μL). Epileptiform activity commonly occurred in untreated ICH rats (∼60% of animals), but HYPO did not affect the incidence, timing, total duration of seizures, or the peaks occurring during epileptiform activity. However, longer average duration was detected on the ipsilateral side to stroke in the HYPO group (p < 0.05). Cooling did not affect neurological deficits (e.g., circling), measured 7 and 14 days after ICH, or lesion volume (∼35 mm(3)). In addition, there was no relationship among endpoints (e.g., seizures and lesion size). In summary, HYPO failed to reduce seizure activity after ICH, which fits with our separate findings that cooling does not mitigate thrombin and iron-mediated secondary injury mechanisms thought to cause seizures after ICH. Additional research is needed to identify better HYPO protocols and the use of cotreatments to maximize the benefit of HYPO to ICH patients.
Collapse
Affiliation(s)
- Ana C Klahr
- 1 Neuroscience and Mental Health Institute, University of Alberta , Edmonton, Canada
| | - Kristen Dietrich
- 1 Neuroscience and Mental Health Institute, University of Alberta , Edmonton, Canada
| | - Clayton T Dickson
- 1 Neuroscience and Mental Health Institute, University of Alberta , Edmonton, Canada .,2 Department of Psychology, University of Alberta , Edmonton, Canada
| | - Frederick Colbourne
- 1 Neuroscience and Mental Health Institute, University of Alberta , Edmonton, Canada .,2 Department of Psychology, University of Alberta , Edmonton, Canada
| |
Collapse
|
16
|
Kathirvelu B, Carmichael ST. Intracerebral hemorrhage in mouse models: therapeutic interventions and functional recovery. Metab Brain Dis 2015; 30:449-59. [PMID: 24810632 PMCID: PMC4226812 DOI: 10.1007/s11011-014-9559-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 04/28/2014] [Indexed: 12/11/2022]
Abstract
There has been strong pre-clinical research on mechanisms of initial cell death and tissue injury in intracerebral hemorrhage (ICH). This data has led to the evaluation of several therapeutics for neuroprotection or the mitigation of early tissue damage. Most of these studies have been done in the rat. Also, there has been little study of the mechanisms of tissue repair and recovery. This review examines the testing of candidate therapeutics in mouse models of ICH for their effect on tissue protection and repair. This review will help the readers compare it to the extensively researched rat model of ICH and thus enhance work that are pending in mouse model.
Collapse
Affiliation(s)
- Balachandar Kathirvelu
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA,
| | | |
Collapse
|
17
|
Gao D, Ding F, Lei G, Luan G, Zhang S, Li K, Wang D, Zhang L, Dai D. Effects of focal mild hypothermia on thrombin-induced brain edema formation and the expression of protease activated receptor-1, matrix metalloproteinase-9 and aquaporin 4 in rats. Mol Med Rep 2014; 11:3009-14. [PMID: 25523640 DOI: 10.3892/mmr.2014.3111] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 11/12/2014] [Indexed: 11/05/2022] Open
Abstract
Hypothermia is an effective neuroprotective treatment for brain injury caused by intracerebral hemorrhage (ICH). It is reported to reduce brain edema and neuronal cell death. Thrombin, a coagulation protease released from blood clots, is critical in brain edema formation following ICH. Protease activated receptor‑1 (PAR‑1), matrix metalloproteinase‑9 (MMP‑9) and aquaporin 4 (AQP4) are edema‑associated mediators that have been implicated in ICH pathology. In the present study, thrombin was used to induce brain edema in adult male Sprague‑Dawley rats. Differences between a focal mild hypothermic group (33±0.5˚C) and a normothermic group (37˚C) were investigated. Following hypothermia, brain water content and blood‑brain barrier (BBB) disruption was assessed at 6, 24 and 48 h and subsequently at 3, 5 and 7 days. At the same time, the mRNA and protein expression of PAR‑1, MMP‑9 and AQP4 were also determined. It was identified that brain water content and BBB disruption increased at 6 h and reached a maximal level at 24 h in the normothermic group. The mRNA and protein expression levels of PAR‑1, MMP‑9 and AQP4 started to increase at 24 h and reached a maximal level at 48 h. Focal mild hypothermia tended to significantly reduce brain water content, BBB disruption and PAR‑1, MMP‑9 and AQP expression at 24 and 48 h. The present data suggest that focal mild hypothermia is an effective treatment for edema formation through moderation of the mRNA and protein expression of PAR‑1, MMP‑9 and AQP4.
Collapse
Affiliation(s)
- Dapeng Gao
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Feifan Ding
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Gongwen Lei
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Guohui Luan
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Shibao Zhang
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Kesen Li
- Department of Neurology, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| | - Desheng Wang
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Liming Zhang
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Dawei Dai
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
18
|
Wowk S, Ma Y, Colbourne F. Mild Therapeutic Hypothermia Does Not Reduce Thrombin-Induced Brain Injury. Ther Hypothermia Temp Manag 2014; 4:180-7. [DOI: 10.1089/ther.2014.0014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Shannon Wowk
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Yonglie Ma
- Department of Psychology, University of Alberta, Edmonton, Canada
| | - Frederick Colbourne
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
- Department of Psychology, University of Alberta, Edmonton, Canada
| |
Collapse
|
19
|
John RF, Williamson MR, Dietrich K, Colbourne F. Localized hypothermia aggravates bleeding in the collagenase model of intracerebral hemorrhage. Ther Hypothermia Temp Manag 2014; 5:19-25. [PMID: 25386695 DOI: 10.1089/ther.2014.0020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Animal studies testing whether therapeutic hypothermia is neuroprotective after intracerebral hemorrhage (ICH) have been inconclusive. In rodents, ICH is often produced in the striatum by infusing collagenase, which causes prolonged hemorrhaging from multiple vessels. Our previous data shows that this bleeding (hematoma) is worsened by systemic hypothermia given soon after collagenase infusion. In this study we hypothesized that localized brain hypothermia would also aggravate bleeding in this model (0.2 U of collagenase in 1.2 μL of saline). We also evaluated cooling after intrastriatal thrombin infusion (1 U in 30 μL of saline)-a simplified model of ICH thought to cause bleeding. Focal hypothermia was achieved by flushing cold water through an implanted cooling device attached to the skull underneath the temporalis muscle of adult rats. Previous work and data at this time shows this method cools the striatum to ∼33°C, whereas the body remains normothermic. In comparison to normothermic groups, cooling significantly worsened bleeding when instituted at 6 hours (∼94 vs. 42 μL, p=0.018) and 12 hours (79 vs. 61 μL, p=0.042) post-ICH (24-hour survival), but not after a 24-hour delay (36-hour survival). Rats were cooled until euthanasia when hematoma size was determined by a hemoglobin-based spectrophotometry assay. Cooling did not influence cerebral blood volume after just saline or thrombin infusion. The latter is explained by the fact that thrombin did not cause bleeding beyond that caused by saline infusion. In summary, local hypothermia significantly aggravates bleeding many hours after collagenase infusion suggesting that bleeding may have confounded earlier studies with hypothermia. Furthermore, these findings serve as a cautionary note on using cooling even many hours after cerebral bleeding.
Collapse
Affiliation(s)
- Roseleen F John
- 1 Neuroscience and Mental Health Institute, University of Alberta , Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
20
|
Orlowski P, McConnell FK, Payne S. A mathematical model of cellular metabolism during ischemic stroke and hypothermia. IEEE Trans Biomed Eng 2014; 61:484-90. [PMID: 24058013 DOI: 10.1109/tbme.2013.2282603] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Stroke is a major cause of death and disability worldwide. Therapeutic hypothermia is a potentially useful neuroprotective treatment. A mathematical model of brain metabolism during stroke is extended here to simulate the effect of hypothermia on cell survival. Temperature decreases were set to reduce chemical reaction rates and slow diffusion through ion channels according to the Q10 rule. Heat delivery to tissues was set to depend on metabolic heat generation rate and perfusion. Two cooling methods, scalp and vascular, were simulated to approximate temperature variation in the brain during treatment. Cell death was assumed to occur at continued cell membrane depolarization. Simulations showed that hypothermia to 34.5 °C induced within 1-1.5 h of stroke onset could extend cell survival time by at least 5 h in tissue with perfusion reduced by 80% of normal. There was good agreement between simulated metabolite dynamics and those reported in rat model studies.
Collapse
|
21
|
Mokrushin AA, Pavlinova LI, Borovikov SE. Influence of cooling rate on activity of ionotropic glutamate receptors in brain slices at hypothermia. J Therm Biol 2014; 44:5-13. [PMID: 25086967 DOI: 10.1016/j.jtherbio.2014.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 05/23/2014] [Accepted: 05/27/2014] [Indexed: 10/25/2022]
Abstract
Hypothermia is a known approach in the treatment of neurological pathologies. Mild hypothermia enhances the therapeutic window for application of medicines, while deep hypothermia is often accompanied by complications, including problems in the recovery of brain functions. The purpose of present study was to investigate the functioning of glutamate ionotropic receptors in brain slices cooled with different rates during mild, moderate and deep hypothermia. Using a system of gradual cooling combined with electrophysiological recordings in slices, we have shown that synaptic activity mediated by the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and N-methyl-D-aspartate receptors in rat olfactory cortex was strongly dependent on the rate of lowering the temperature. High cooling rate caused a progressive decrease in glutamate receptor activity in brain slices during gradual cooling from mild to deep hypothermia. On the contrary, low cooling rate slightly changed the synaptic responses in deep hypothermia. The short-term potentiation may be induced in slices by electric tetanization at 16 °C in this case. Hence, low cooling rate promoted preservation of neuronal activity and plasticity in the brain tissue.
Collapse
Affiliation(s)
- Anatoly A Mokrushin
- I.P. Pavlov Institute of Physiology, Russian Academy of Science, 199034, Nab. Makarova, 6, Saint-Petersburg, Russia
| | - Larisa I Pavlinova
- I.P. Pavlov Institute of Physiology, Russian Academy of Science, 199034, Nab. Makarova, 6, Saint-Petersburg, Russia; Institute of Experimental Medicine, Russian Academy of Science, 197376, Ul.Akad. Pavlova, 12, Saint-Petersburg, Russia.
| | - Sergey E Borovikov
- Science Center "Bio", 197376 Street L. Tolstoy, Building 7, 5-H (9), Saint-Petersburg, Russia
| |
Collapse
|
22
|
Tang XN, Liu L, Koike MA, Yenari MA. Mild hypothermia reduces tissue plasminogen activator-related hemorrhage and blood brain barrier disruption after experimental stroke. Ther Hypothermia Temp Manag 2014; 3:74-83. [PMID: 23781399 DOI: 10.1089/ther.2013.0010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Therapeutic hypothermia has shown neuroprotective promise, but whether it can be used to improve outcome in stroke has yet to be determined in patients. Recombinant tissue plasminogen activator (rt-PA) is only given to a minority of patients with acute ischemic stroke, and is not without risk, namely significant brain hemorrhage.We explored whether mild hypothermia, in combination with rt-PA, influences the safety of rt-PA. Mice were subjected to middle cerebral artery occlusion (MCAO) using a filament model, followed by 24 hours reperfusion.Two paradigms were studied. In the first paradigm, cooling and rt-PA treatment began at the same time upon reperfusion, whereas in the second paradigm, cooling began soon after ischemia onset, and rt-PA began after rewarming and upon reperfusion. Experimental groups included: tPA treatment at normothermia (37°C), rt-PA treatment at hypothermia (33°C), no rt-PA at normothermia, and no rt-PA treatment at hypothermia. Infarct size, neurological deficit scores, blood brain barrier (BBB) permeability, brain hemorrhage, and expression of endogenous tissue plasminogen activator (tPA) and its inhibitor, plasminogen activator inhibitor (PAI-1) were assessed. For both paradigms, hypothermia reduced infarct size and neurological deficits compared to normothermia, regardless of whether rt-PA was given. rt-PA treatment increased brain hemorrhage and BBB disruption compared to normothermia, and this was prevented by cooling. However, mortality was higher when rt-PA and cooling were administered at the same time, beginning 1–2 hours post MCAO. Endogenous tPA expression was reduced in hypothermic mice, whereas PAI-1 levels were unchanged by cooling. In the setting of rt-PA treatment, hypothermia reduces brain hemorrhage, and BBB disruption, suggesting that combination therapy with mild hypothermia and rt-PA appears safe.
Collapse
|
23
|
Bader EBMK. Clinical q & a: translating therapeutic temperature management from theory to practice. Ther Hypothermia Temp Manag 2014; 3:151-7. [PMID: 24834844 DOI: 10.1089/ther.2013.1510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
24
|
Saad H, Aladawy M. Temperature management in cardiac surgery. Glob Cardiol Sci Pract 2013; 2013:44-62. [PMID: 24689001 PMCID: PMC3963732 DOI: 10.5339/gcsp.2013.7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 03/06/2013] [Indexed: 01/06/2023] Open
|
25
|
Wei S, Sun J, Li J, Wang L, Hall CL, Dix TA, Mohamad O, Wei L, Yu SP. Acute and delayed protective effects of pharmacologically induced hypothermia in an intracerebral hemorrhage stroke model of mice. Neuroscience 2013; 252:489-500. [PMID: 23912033 DOI: 10.1016/j.neuroscience.2013.07.052] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 07/16/2013] [Accepted: 07/18/2013] [Indexed: 12/21/2022]
Abstract
Hemorrhagic stroke, including intracerebral hemorrhage (ICH), is a devastating subtype of stroke; yet, effective clinical treatment is very limited. Accumulating evidence has shown that mild to moderate hypothermia is a promising intervention for ischemic stroke and ICH. Current physical cooling methods, however, are less efficient and often impractical for acute ICH patients. The present investigation tested pharmacologically induced hypothermia (PIH) using the second-generation neurotensin receptor (NTR) agonist HPI-201 (formerly known as ABS-201) in an adult mouse model with ICH. Acute or delayed administrations of HPI-201 (2mg/kg bolus injection followed by 2 injections of 1mg/kg, i.p.) were initiated at 1 or 24h after ICH. HPI-201 induced mild hypothermia within 30 min and body and brain temperatures were maintained at 32.7 ± 0.4°C for at least 6h without causing observable shivering. With the 1-h delayed treatment, HPI-201-induced PIH significantly reduced ICH-induced cell death and brain edema compared to saline-treated ICH animals. When HPI-201-induced hypothermia was initiated 24h after the onset of ICH, it still significantly attenuated brain edema, cell death and blood-brain barrier breakdown. HPI-201 significantly decreased the expression of matrix metallopeptidase-9 (MMP-9), reduced caspase-3 activation, and increased Bcl-2 expression in the ICH brain. Moreover, ICH mice received 1-h delayed HPI-201 treatment performed significantly better in the neurological behavior test 48 h after ICH. All together, these data suggest that systemic injection of HPI-201 is an effective hypothermic strategy that protects the brain from ICH injury with a wide therapeutic window. The protective effect of this PIH therapy is partially mediated through the alleviation of apoptosis and neurovascular damage. We suggest that pharmacological hypothermia using the newly developed neurotensin analogs is a promising therapeutic treatment for ICH.
Collapse
Affiliation(s)
- S Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Smith SE, Ramos RA, Refinetti R, Farthing JP, Paterson PG. Protein-energy malnutrition induces an aberrant acute-phase response and modifies the circadian rhythm of core temperature. Appl Physiol Nutr Metab 2013; 38:844-53. [PMID: 23855272 DOI: 10.1139/apnm-2012-0420] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Protein-energy malnutrition (PEM), present in 12%-19% of stroke patients upon hospital admission, appears to be a detrimental comorbidity factor that impairs functional outcome, but the mechanisms are not fully elucidated. Because ischemic brain injury is highly temperature-sensitive, the objectives of this study were to investigate whether PEM causes sustained changes in temperature that are associated with an inflammatory response. Activity levels were recorded as a possible explanation for the immediate elevation in temperature upon introduction to a low protein diet. Male, Sprague-Dawley rats (7 weeks old) were fed a control diet (18% protein) or a low protein diet (PEM, 2% protein) for either 7 or 28 days. Continuous core temperature recordings from bioelectrical sensor transmitters demonstrated a rapid increase in temperature amplitude, sustained over 28 days, in response to a low protein diet. Daily mean temperature rose transiently by day 2 (p = 0.01), falling to normal by day 4 (p = 0.08), after which mean temperature continually declined as malnutrition progressed. There were no alterations in activity mean (p = 0.3) or amplitude (p = 0.2) that were associated with the early rise in mean temperature. Increased serum alpha-2-macroglobulin (p < 0.001) and decreased serum albumin (p ≤ 0.005) combined with a decrease in serum alpha-1-acid glycoprotein (p < 0.001) suggest an atypical acute-phase response. In contrast, a low protein diet had no effect on the signaling pathway of the pro-inflammatory transcription factor, NFκB, in the hippocampus. In conclusion, PEM induces an aberrant and sustained acute-phase response coupled with long-lasting effects on body temperature.
Collapse
Affiliation(s)
- Shari E Smith
- a College of Pharmacy and Nutrition, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | | | | | | | | |
Collapse
|
27
|
Hiploylee C, Colbourne F. Drug-induced hypothermia: editorial commentary on katz et Al., 2012. Ther Hypothermia Temp Manag 2013; 3:11-2. [PMID: 24837634 DOI: 10.1089/ther.2013.1504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Carmen Hiploylee
- Department of Psychology, University of Alberta , Edmonton, Alberta, Canada
| | | |
Collapse
|
28
|
Lyden MP, Colbourne PF, Lyden P, Schwab S. Preclinical and Clinical Studies Targeting Therapeutic Hypothermia in Cerebral Ischemia and Stroke. Ther Hypothermia Temp Manag 2013; 3:3-6. [DOI: 10.1089/ther.2013.1500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | | | - Patrick Lyden
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Stefan Schwab
- Department of Neurology, University of Erlangen-Nurnberg, Erlangen, Germany
| |
Collapse
|
29
|
Campbell K, Knuckey NW, Brookes LM, Meloni BP. Efficacy of mild hypothermia (35°C) and moderate hypothermia (33°C) with and without magnesium when administered 30min post-reperfusion after 90min of middle cerebral artery occlusion in Spontaneously Hypertensive rats. Brain Res 2013; 1502:47-54. [PMID: 23370002 DOI: 10.1016/j.brainres.2013.01.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/20/2012] [Accepted: 01/22/2013] [Indexed: 11/30/2022]
Abstract
In this study we compared the efficacy of mild (35°C) and moderate (33°C) hypothermia alone and when combined with magnesium in a transient focal cerebral ischaemia rat model. Spontaneously Hypertensive rats were subjected to 90min of transient intraluminal thread middle cerebral artery occlusion (MCAO). Thirty minutes after reperfusion animals were treated with mild (35°C/24h) or moderate (33°C/24h) hypothermia combined with either magnesium (intravenous MgSO4 infusion: 360μmol/kg, then 120μmol/kg/h for 24h) or a similar volume of saline. Control animals were maintained normothermic (37°C/24h) and received vehicle infusion (saline for 24h). Infarct volumes and functional assessment (bi-symmetrical adhesive tape removal) were measured 48h after MCAO induction. After transient MCAO, only moderate hypothermia and mild hypothermia combined with magnesium treatment significantly reduced infarct volumes by 32.9% (P=0.01) and by 24.8% (P=0.046), respectively. Mild hypothermia alone reduced infarct volume by 23.8%, but did not reach statistical significance (P=0.054), while moderate hypothermia combined with magnesium reduced infarct volume by 17.3% (P=0.17). No treatment improved adhesive tape removal time. In summary, moderate hypothermia and mild hypothermia with or without magnesium can reduce infarct volume, however magnesium may reduce the efficacy of moderate hypothermia. Given the potential advantages of mild hypothermia over moderate hypothermia in terms of side-effects and induction, and the potential beneficial effects of magnesium, these findings have important implications for the use of hypothermia for stroke.
Collapse
Affiliation(s)
- Kym Campbell
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia
| | | | | | | |
Collapse
|
30
|
|
31
|
Prolonged therapeutic hypothermia does not adversely impact neuroplasticity after global ischemia in rats. J Cereb Blood Flow Metab 2012; 32:1525-34. [PMID: 22434072 PMCID: PMC3421089 DOI: 10.1038/jcbfm.2012.38] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Hypothermia improves clinical outcome after cardiac arrest in adults. Animal data show that a day or more of cooling optimally reduces edema and tissue injury after cerebral ischemia, especially after longer intervention delays. Lengthy treatments, however, may inhibit repair processes (e.g., synaptogenesis). Thus, we evaluated whether unilateral brain hypothermia (∼33°C) affects neuroplasticity in the rat 2-vessel occlusion model. In the first experiment, we cooled starting 1 hour after ischemia for 2, 4, or 7 days. Another group was cooled for 2 days starting 48 hours after ischemia. One group remained normothermic throughout. All hypothermia treatments started 1 hour after ischemia equally reduced hippocampal CA1 injury in the cooled hemisphere compared with the normothermic side and the normothermic group. Cooling only on days 3 and 4 was not beneficial. Importantly, no treatment influenced neurogenesis (Ki67/Doublecortin (DCX) staining), synapse formation (synaptophysin), or brain-derived neurotropic factor (BDNF) immunohistochemistry. A second experiment confirmed that BDNF levels (ELISA) were equivalent in normothermic and 7-day cooled rats. Last, we measured zinc (Zn), which is important in plasticity, with X-ray fluorescence imaging in normothermic and 7-day cooled rats. Hypothermia did not alter the postischemic distribution of Zn within the hippocampus. In summary, cooling significantly mitigates injury without compromising neuroplasticity.
Collapse
|
32
|
Seo JW, Kim JH, Kim JH, Seo M, Han HS, Park J, Suk K. Time-dependent effects of hypothermia on microglial activation and migration. J Neuroinflammation 2012; 9:164. [PMID: 22776061 PMCID: PMC3470995 DOI: 10.1186/1742-2094-9-164] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 06/14/2012] [Indexed: 12/02/2022] Open
Abstract
Background Therapeutic hypothermia is one of the neuroprotective strategies that improve neurological outcomes after brain damage in ischemic stroke and traumatic brain injury. Microglial cells become activated following brain injury and play an important role in neuroinflammation and subsequent brain damage. The aim of this study was to determine the time-dependent effects of hypothermia on microglial cell activation and migration, which are accompanied by neuroinflammation. Methods Microglial cells in culture were subjected to mild (33 °C) or moderate (29 °C) hypothermic conditions before, during, or after lipopolysaccharide (LPS) or hypoxic stimulation, and the production of nitric oxide (NO), proinflammatory cytokines, reactive oxygen species, and neurotoxicity was evaluated. Effects of hypothermia on microglial migration were also determined in in vitro as well as in vivo settings. Results Early-, co-, and delayed-hypothermic treatments inhibited microglial production of inflammatory mediators to varying degrees: early treatment was the most efficient, and delayed treatment showed time-dependent effects. Delayed hypothermia also suppressed the mRNA levels of proinflammatory cytokines and iNOS, and attenuated microglial neurotoxicity in microglia-neuron co-cultures. Furthermore, delayed hypothermia reduced microglial migration in the Boyden chamber assay and wound healing assay. In a stab injury model, delayed local hypothermia reduced migration of microglia toward the injury site in the rat brain. Conclusion Taken together, our results indicate that delayed hypothermia is sufficient to attenuate microglial activation and migration, and provide the basis of determining the optimal time window for therapeutic hypothermia. Delayed hypothermia may be neuroprotective by inhibiting microglia-mediated neuroinflammation, indicating the therapeutic potential of post-injury hypothermia for patients with brain damages exhibiting some of the inflammatory components.
Collapse
Affiliation(s)
- Jung-Wan Seo
- Department of Pharmacology, Brain Science & Engineering Institute, CMRI, Kyungpook National University School of Medicine, 101 Dong-In, Daegu, Joong-gu, 700-422, South Korea
| | | | | | | | | | | | | |
Collapse
|
33
|
Barber PA, Rushforth D, Agrawal S, Tuor UI. Infrared optical imaging of matrix metalloproteinases (MMPs) up regulation following ischemia reperfusion is ameliorated by hypothermia. BMC Neurosci 2012; 13:76. [PMID: 22742423 PMCID: PMC3441425 DOI: 10.1186/1471-2202-13-76] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 06/18/2012] [Indexed: 12/02/2022] Open
Abstract
Background We investigated the use of a new MMP activatable probe MMPSense™ 750 FAST (MMPSense750) for in-vivo visualization of early MMP activity in ischemic stroke. Following middle cerebral artery occlusion (MCAO) optical imaging was performed. Near-infrared (NIR) fluorescent images of MMPSense activation were acquired using an Olympus fluorescent microscope, 1.25x objective, a CCD camera and an appropriate filter cube for detecting the activated probe with peak excitation and emission at 749 and 775 nm, respectively. Images were acquired starting at 2 or 24 hours after reperfusion over the ipsilateral and contralateral cortex before and for 3 hours after, MMPSense750 was injected. Results Increased intensities ipsilaterally were observed following MMPSense750 injection with ischemic injury but not in sham animals. There were significant ipsilateral and contralateral differences at 15 minutes (P <0.05) in early ischemic reperfusion and at time 0 in 24 hours post ischemia (P <0.05) which persisted at 180 minutes in both these groups (P <0.01), but not following sham surgery. The increase in ipsilateral signal intensity was attenuated by hypothermia. These observations corresponded with a significant increase in the total MMP-9 protein levels, 5 and 24 hours following ischemia reperfusion (P <0.05) and their reduction by hypothermia. Conclusions Matrix-metalloproteinase upregulation in ischemia reperfusion can be imaged acutely in-vivo with NIRF using MMPSense750. Hypothermia attenuated both the optical increase in intensity after MMPSense750 and the increase in MMP-9 protein expression supporting the proof of concept that NIRF imaging using MMPSense can be used to assess potential therapeutic strategies for stroke treatment.
Collapse
Affiliation(s)
- Philip A Barber
- Department of Clinical Neurosciences, Experimental Imaging Centre and Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Canada.
| | | | | | | |
Collapse
|
34
|
Keep RF, Hua Y, Xi G. Intracerebral haemorrhage: mechanisms of injury and therapeutic targets. Lancet Neurol 2012; 11:720-31. [PMID: 22698888 DOI: 10.1016/s1474-4422(12)70104-7] [Citation(s) in RCA: 908] [Impact Index Per Article: 75.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Intracerebral haemorrhage accounts for about 10-15% of all strokes and is associated with high mortality and morbidity. No successful phase 3 clinical trials for this disorder have been completed. In the past 6 years, the number of preclinical and clinical studies focused on intracerebral haemorrhage has risen. Important advances have been made in animal models of this disorder and in our understanding of mechanisms underlying brain injury after haemorrhage. Several therapeutic targets have subsequently been identified that are now being pursued in clinical trials. Many clinical trials have been based on limited preclinical data, and guidelines to justify taking preclinical results to the clinic are needed.
Collapse
Affiliation(s)
- Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
35
|
Connolly ES, Rabinstein AA, Carhuapoma JR, Derdeyn CP, Dion J, Higashida RT, Hoh BL, Kirkness CJ, Naidech AM, Ogilvy CS, Patel AB, Thompson BG, Vespa P. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/american Stroke Association. Stroke 2012; 43:1711-37. [PMID: 22556195 DOI: 10.1161/str.0b013e3182587839] [Citation(s) in RCA: 2278] [Impact Index Per Article: 189.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE The aim of this guideline is to present current and comprehensive recommendations for the diagnosis and treatment of aneurysmal subarachnoid hemorrhage (aSAH). METHODS A formal literature search of MEDLINE (November 1, 2006, through May 1, 2010) was performed. Data were synthesized with the use of evidence tables. Writing group members met by teleconference to discuss data-derived recommendations. The American Heart Association Stroke Council's Levels of Evidence grading algorithm was used to grade each recommendation. The guideline draft was reviewed by 7 expert peer reviewers and by the members of the Stroke Council Leadership and Manuscript Oversight Committees. It is intended that this guideline be fully updated every 3 years. RESULTS Evidence-based guidelines are presented for the care of patients presenting with aSAH. The focus of the guideline was subdivided into incidence, risk factors, prevention, natural history and outcome, diagnosis, prevention of rebleeding, surgical and endovascular repair of ruptured aneurysms, systems of care, anesthetic management during repair, management of vasospasm and delayed cerebral ischemia, management of hydrocephalus, management of seizures, and management of medical complications. CONCLUSIONS aSAH is a serious medical condition in which outcome can be dramatically impacted by early, aggressive, expert care. The guidelines offer a framework for goal-directed treatment of the patient with aSAH.
Collapse
|
36
|
Xie Y, Chen S, Murphy T. Dendritic spines and pre-synaptic boutons are stable despite local deep hypothermic challenge and re-warming in vivo. PLoS One 2012; 7:e36305. [PMID: 22563488 PMCID: PMC3341353 DOI: 10.1371/journal.pone.0036305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 03/30/2012] [Indexed: 11/30/2022] Open
Abstract
Background and Purpose Deep hypothermia to 20°C is used clinically for major pediatric and adult surgical procedures. In particular, it is used in the “standstill operation" where blood flow is stopped for up to 30 min. Patients recovering from these procedures can exhibit neurological deficits. Such deficits could arise from changes to dendritic spines and plasticity-induced changes in network function as a result of cooling and/or re-warming. In the brain, each dendritic spine represents a single excitatory synapse and their number can be reflective of injury or plasticity-induced changes in network function. This research sought to determine whether deep hypothermia and re-warming have detrimental effects on synaptic stability and network function. Methods In vivo 2-photon (2-P) imaging in green/yellow fluorescent protein (GFP/YFP)-expressing transgenic mice was performed to determine whether 4 hours of deep hypothermia and 2 hours of re-warming can have relatively covert effects on dendritic spine and presynaptic bouton stability. At the same time, electroencephalographic (EEG) activity was recorded to evaluate network function during deep hypothermia and re-warming. Results We report that deep hypothermia and subsequent re-warming did not change the stability of dendritic spines or presynaptic boutons in mouse somatosensory cortex measured over 8 hours. As expected, deep hypothermia attenuated ongoing EEG activity over 0.1–80 Hz frequencies. The effects on EEG activity were fully reversible following re-warming. Conclusion These results are consistent with deep hypothermia being a safe treatment which could be applied clinically to those undergoing major elective surgical procedures.
Collapse
Affiliation(s)
- Yicheng Xie
- Kinsmen Laboratory of Neurological Research, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
- Brain Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shangbin Chen
- Kinsmen Laboratory of Neurological Research, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
- Brain Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Timothy Murphy
- Kinsmen Laboratory of Neurological Research, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
- Brain Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
37
|
Auriat AM, Klahr AC, Silasi G, Maclellan CL, Penner M, Clark DL, Colbourne F. Prolonged hypothermia in rat: a safety study using brain-selective and systemic treatments. Ther Hypothermia Temp Manag 2012; 2:37-43. [PMID: 24717136 DOI: 10.1089/ther.2012.0005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hypothermia is an effective neuroprotectant for cardiac arrest and perinatal ischemic injury. Hypothermia also improves outcome after traumatic brain injury and stroke. Although the ideal treatment parameters (duration, delay, and depth) are not fully delineated, prolonged cooling is usually more effective than shorter periods. There is the concern that extended cooling may be hazardous to brain plasticity and cause damage. In order to evaluate this possibility, we assessed the effects of 3 days of systemic hypothermia (32°C) in rats subjected to a sham stroke surgery. There were no detrimental behavioral effects or signs of brain damage. As even longer cooling may be needed in some patients, we cooled (∼32°C) the right hemisphere of rats for 3 or 21 days. Physiological variables, functional outcome, and measures of cell injury were examined. Focal brain cooling for 21 days modestly decreased heart rate, blood pressure, and core temperature. However, focal hypothermia did not affect subsequent behavior (e.g., spontaneous limb usage), cell morphology (e.g., dendritic arborization, ultrastructure), or cause cell death. In conclusion, prolonged mild hypothermia did not harm the brain of normal animals. Further research is now needed to evaluate whether such treatments affect plasticity after brain injury.
Collapse
Affiliation(s)
- Angela M Auriat
- Department of Psychology and Center for Neuroscience, University of Alberta , Edmonton, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
The likelihood of translating therapeutic interventions for stroke rests on the quality of preclinical science. Given the limited success of putative treatments for ischemic stroke and the reasons put forth to explain it, we sought to determine whether such problems hamper progress for intracerebral hemorrhage (ICH). Approximately 10% to 20% of strokes result from an ICH, which results in considerable disability and high mortality. Several animal models reproduce ICH and its underlying pathophysiology, and these models have been widely used to evaluate treatments. As yet, however, none has successfully translated. In this review, we focus on rodent models of ICH, highlighting differences among them (e.g., pathophysiology), issues with experimental design and analysis, and choice of end points. A Pub Med search for experimental ICH (years: 2007 to 31 July 2011) found 121 papers. Of these, 84% tested neuroprotectants, 11% tested stem cell therapies, and 5% tested rehabilitation therapies. We reviewed these to examine study quality (e.g., use of blinding procedures) and choice of end points (e.g., behavioral testing). Not surprisingly, the problems that have plagued the ischemia field are also prevalent in ICH literature. Based on these data, several recommendations are put forth to facilitate progress in identifying effective treatments for ICH.
Collapse
|
39
|
Campos F, Blanco M, Barral D, Agulla J, Ramos-Cabrer P, Castillo J. Influence of temperature on ischemic brain: Basic and clinical principles. Neurochem Int 2012; 60:495-505. [DOI: 10.1016/j.neuint.2012.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Revised: 01/31/2012] [Accepted: 02/04/2012] [Indexed: 12/24/2022]
|
40
|
Colbourne F. Comparing hypothermia and magnesium after global ischemia-editorial commentary on li et Al., 2011. Ther Hypothermia Temp Manag 2012; 2:10. [PMID: 24717132 DOI: 10.1089/ther.2012.1503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
41
|
Faridar A, Bershad EM, Emiru T, Iaizzo PA, Suarez JI, Divani AA. Therapeutic hypothermia in stroke and traumatic brain injury. Front Neurol 2011; 2:80. [PMID: 22207862 PMCID: PMC3246360 DOI: 10.3389/fneur.2011.00080] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 11/22/2011] [Indexed: 11/30/2022] Open
Abstract
Therapeutic hypothermia (TH) is considered to improve survival with favorable neurological outcome in the case of global cerebral ischemia after cardiac arrest and perinatal asphyxia. The efficacy of hypothermia in acute ischemic stroke (AIS) and traumatic brain injury (TBI), however, is not well studied. Induction of TH typically requires a multimodal approach, including the use of both pharmacological agents and physical techniques. To date, clinical outcomes for patients with either AIS or TBI who received TH have yielded conflicting results; thus, no adequate therapeutic consensus has been reached. Nevertheless, it seems that by determining optimal TH parameters and also appropriate applications, cooling therapy still has the potential to become a valuable neuroprotective intervention. Among the various methods for hypothermia induction, intravascular cooling (IVC) may have the most promise in the awake patient in terms of clinical outcomes. Currently, the IVC method has the capability of more rapid target temperature attainment and more precise control of temperature. However, this technique requires expertise in endovascular surgery that can preclude its application in the field and/or in most emergency settings. It is very likely that combining neuroprotective strategies will yield better outcomes than utilizing a single approach.
Collapse
Affiliation(s)
- Alireza Faridar
- Department of Neurology, University of Minnesota Minneapolis, MN, USA
| | | | | | | | | | | |
Collapse
|
42
|
Therapeutic hypothermia influences cell genesis and survival in the rat hippocampus following global ischemia. J Cereb Blood Flow Metab 2011; 31:1725-35. [PMID: 21364603 PMCID: PMC3170941 DOI: 10.1038/jcbfm.2011.25] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Delayed hypothermia salvages CA1 neurons from global ischemic injury. However, the effects of this potent neuroprotectant on endogenous repair mechanisms, such as neurogenesis, have not been clearly examined. In this study, we quantified and phenotyped newly generated cells within the hippocampus following untreated and hypothermia-treated ischemia. We first show that CA1 pyramidal neurons did not spontaneously regenerate after ischemia. We then compared the level of neuroprotection when hypothermia was initiated either during or after ischemia. Treatment efficacy decreased with longer delays, but hypothermia delayed for up to 12 hours was neuroprotective. Although bromodeoxyuridine (BrdU) incorporation was elevated in ischemic groups, CA1 neurogenesis did not occur as the BrdU label did not colocalize with neuronal nuclei (NeuN) in any of the groups. Instead, the majority of BrdU-labeled cells were Iba-positive microglia, and neuroprotective hypothermia decreased the delayed generation of microglia during the third postischemic week. Conversely, hypothermia delayed for 12 hours significantly increased the survival of newly generated dentate granule cells at 4 weeks after ischemia. Thus, our findings show that CA1 neurogenesis does not contribute to hypothermic neuroprotection. Importantly, we also show that prolonged hypothermia positively interacts with postischemic repair processes, such as neurogenesis, resulting in improved functional outcome.
Collapse
|
43
|
Zgavc T, Ceulemans AG, Sarre S, Michotte Y, Hachimi-Idrissi S. Experimental and clinical use of therapeutic hypothermia for ischemic stroke: opportunities and limitations. Stroke Res Treat 2011; 2011:689290. [PMID: 21789271 PMCID: PMC3140058 DOI: 10.4061/2011/689290] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 05/11/2011] [Indexed: 01/04/2023] Open
Abstract
Stroke remains a disease with a serious impact on quality of life but few effective treatments exist. There is an urgent need to develop and/or improve neuroprotective strategies to combat this. Many drugs proven to be neuroprotective in experimental models fail to improve patient outcome in a clinical setting. An emerging treatment, therapeutic hypothermia (TH), is a promising neuroprotective therapy in stroke management. Several studies with TH in experimental models and small clinical trials have shown beneficial effects. Despite this, implementation into the clinical setting is still lacking due to methodological considerations as well as hypothermia-related complications. This paper discusses the possible opportunities and limitations of the use of TH in animal models and the translation into the clinic.
Collapse
Affiliation(s)
- Tine Zgavc
- Department of Pharmaceutical Chemistry and Drug Analysis, Center for Neuroscience, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | | | | | | | | |
Collapse
|
44
|
Silasi G, Colbourne F. Unilateral brain hypothermia as a method to examine efficacy and mechanisms of neuroprotection against global ischemia. Ther Hypothermia Temp Manag 2011; 1:87-94. [PMID: 24716998 DOI: 10.1089/ther.2011.0005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hypothermia, especially applied during ischemia, is the gold-standard neuroprotectant. When delayed, cooling must often be maintained for a day or more to achieve robust, permanent protection. Most animal and clinical studies use whole-body cooling-an arduous technique that can cause systemic complications. Brain-selective cooling may avoid such problems. Thus, in this rat study, we used a method that cools one hemisphere without affecting the contralateral side or the body. Localized brain hypothermia was achieved by flushing cold water through a metal tube attached to the rats' skull. First, in anesthetized rats we measured temperature in the cooled and contralateral hemisphere to demonstrate selective unilateral cooling. Subsequent telemetry recordings in awake rats confirmed that brain cooling did not cause systemic hypothermia during prolonged treatment. Additionally, we subjected rats to transient global ischemia and after recovering from anesthesia they remained at normothermia or had their right hemisphere cooled for 2 days (∼32°C-33°C). Hypothermia significantly lessened CA1 injury and microglia activation on the right side at 1 and 4 week survival times. Near-complete injury and a strong microglia response occurred in the left (normothermic) hippocampus as occurred in both hippocampi of the untreated group. Thus, this focal cooling method is suitable for evaluating the efficacy and mechanisms of hypothermic neuroprotection in global ischemia models. This method also has advantages over many current systemic cooling protocols in rodents, namely: (1) lower cost, (2) simplicity, (3) safety and suitability for long-term cooling, and (4) an internal control-the normothermic hemisphere.
Collapse
Affiliation(s)
- Gergely Silasi
- 1 Centre for Neuroscience, University of Alberta , Edmonton, AB, Canada
| | | |
Collapse
|
45
|
Staykov D, Huttner HB, Köhrmann M, Bardutzky J, Schellinger PD. Novel approaches to the treatment of intracerebral haemorrhage. Int J Stroke 2011; 5:457-65. [PMID: 21050402 DOI: 10.1111/j.1747-4949.2010.00487.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Intracerebral haemorrhage is the most devastating subtype of stroke. It affects approximately two million patients worldwide every year and is a major cause of morbidity and mortality. After decades of research, we still face the fact that there is no evidence-based treatment strategy for this disease. However, research has contributed to a better understanding of the pathophysiology of intracerebral haemorrhage and also to the identification of new treatment targets. Several novel aspects of treatment of spontaneous intracerebral haemorrhage are reviewed in the present article.
Collapse
Affiliation(s)
- Dimitre Staykov
- Department of Neurology, University Clinic Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany
| | | | | | | | | |
Collapse
|
46
|
Kallmünzer B, Kollmar R. Temperature Management in Stroke – an Unsolved, but Important Topic. Cerebrovasc Dis 2011; 31:532-43. [DOI: 10.1159/000324621] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 01/21/2011] [Indexed: 11/19/2022] Open
|
47
|
Abstract
The collagenase and whole blood intracerebral hemorrhage (ICH) models are widely used to identify mechanisms of injury and to evaluate treatments. Despite preclinical successes, to date, no treatment tested in phase III clinical trials has benefited ICH patients. These failures call into question the predictive value of current ICH models. By highlighting differences between these common rodent models of ICH, we sought to help investigators choose the more appropriate model for their study and to encourage the use of both whenever possible. For instance, we previously reported substantial differences in the bleeding profile, progression of cell death, and functional outcome between these models. These and other differences influence the efficacy and mechanisms of action of various treatment modalities. Thus, in this review, we also summarize neuroprotective and rehabilitation findings in each model. We conclude that differences between ICH models along with our current inability to identify the more clinically predictive model necessitate that preclinical assessments should normally be done in both. Such an approach, coupled with better assessment practices, will likely improve chances of future clinical success.
Collapse
|
48
|
Yenari MA, Hemmen TM. Therapeutic hypothermia for brain ischemia: where have we come and where do we go? Stroke 2010; 41:S72-4. [PMID: 20876510 DOI: 10.1161/strokeaha.110.595371] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mild hypothermia is an established neuroprotectant in the laboratory, showing remarkable and consistent effects across multiple laboratories and models of brain injury. At the clinical level, mild hypothermia has shown benefits in patients who have experienced cardiac arrest and in some pediatric populations experiencing hypoxic brain insults. Its role, however, in stroke therapy has yet to be established. Translating preclinical data to the clinical arena presents unique challenges with regard to cooling in patients who are generally awake and may require additional therapies, such as reperfusion. We review the state of therapeutic hypothermia in ischemic and hemorrhagic stroke and provide an outlook for its role in stroke therapy.
Collapse
Affiliation(s)
- Midori A Yenari
- Department of Neurology, University of California, San Francisco, CA 94121, USA.
| | | |
Collapse
|
49
|
Wang J. Preclinical and clinical research on inflammation after intracerebral hemorrhage. Prog Neurobiol 2010; 92:463-77. [PMID: 20713126 DOI: 10.1016/j.pneurobio.2010.08.001] [Citation(s) in RCA: 470] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 07/24/2010] [Accepted: 08/09/2010] [Indexed: 12/15/2022]
Abstract
Intracerebral hemorrhage (ICH) is one of the most lethal stroke subtypes. Despite the high morbidity and mortality associated with ICH, its pathophysiology has not been investigated as well as that of ischemic stroke. Available evidence from preclinical and clinical studies suggests that inflammatory mechanisms are involved in the progression of ICH-induced secondary brain injury. For example, in preclinical ICH models, microglial activation has been shown to occur within 1h, much earlier than neutrophil infiltration. Recent advances in our understanding of neuroinflammatory pathways have revealed several new molecular targets, and related therapeutic strategies have been tested in preclinical ICH models. This review summarizes recent progress made in preclinical models of ICH, surveys preclinical and clinical studies of inflammatory cells (leukocytes, macrophages, microglia, and astrocytes) and inflammatory mediators (matrix metalloproteinases, nuclear factor erythroid 2-related factor 2, heme oxygenase, and iron), and highlights the emerging areas of therapeutic promise.
Collapse
Affiliation(s)
- Jian Wang
- Department of Anesthesiology/Critical Care Medicine, The Johns Hopkins University, School of Medicine, 720 Rutland Avenue, Traylor Building 809, Baltimore, MD 21205, USA.
| |
Collapse
|
50
|
Dickinson R, Franks NP. Bench-to-bedside review: Molecular pharmacology and clinical use of inert gases in anesthesia and neuroprotection. Crit Care 2010; 14:229. [PMID: 20836899 PMCID: PMC2945072 DOI: 10.1186/cc9051] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In the past decade there has been a resurgence of interest in the clinical use of inert gases. In the present paper we review the use of inert gases as anesthetics and neuroprotectants, with particular attention to the clinical use of xenon. We discuss recent advances in understanding the molecular pharmacology of xenon and we highlight specific pharmacological targets that may mediate its actions as an anesthetic and neuroprotectant. We summarize recent in vitro and in vivo studies on the actions of helium and the other inert gases, and discuss their potential to be used as neuroprotective agents.
Collapse
Affiliation(s)
- Robert Dickinson
- Biophysics Section, Blackett Laboratory, Imperial College London, South Kensington, London SW7 2AZ, UK.
| | | |
Collapse
|