1
|
Acheta J, Bhatia U, Haley J, Hong J, Rich K, Close R, Bechler ME, Belin S, Poitelon Y. Piezo channels contribute to the regulation of myelination in Schwann cells. Glia 2022; 70:2276-2289. [PMID: 35903933 PMCID: PMC10638658 DOI: 10.1002/glia.24251] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 12/19/2022]
Abstract
Peripheral nerves and Schwann cells have to sustain constant mechanical constraints, caused by developmental growth as well as stretches associated with movements of the limbs and mechanical compressions from daily activities. In Schwann cells, signaling molecules sensitive to stiffness or stretch of the extracellular matrix, such as YAP/TAZ, have been shown to be critical for Schwann cell development and peripheral nerve regeneration. YAP/TAZ have also been suggested to contribute to tumorigenesis, neuropathic pain, and inherited disorders. Yet, the role of mechanosensitive ion channels in myelinating Schwann cells is vastly unexplored. Here we comprehensively assessed the expression of mechanosensitive ion channels in Schwann cells and identified that PIEZO1 and PIEZO2 are among the most abundant mechanosensitive ion channels expressed by Schwann cells. Using classic genetic ablation studies, we show that PIEZO1 is a transient inhibitor of radial and longitudinal myelination in Schwann cells. Contrastingly, we show that PIEZO2 may be required for myelin formation, as the absence of PIEZO2 in Schwann cells delays myelin formation. We found an epistatic relationship between PIEZO1 and PIEZO2, at both the morphological and molecular levels. Finally, we show that PIEZO1 channels affect the regulation of YAP/TAZ activation in Schwann cells. Overall, we present here the first demonstration that PIEZO1 and PIEZO2 contribute to mechanosensation in Schwann cells as well myelin development in the peripheral nervous system.
Collapse
Affiliation(s)
- Jenica Acheta
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Urja Bhatia
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Jeanette Haley
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Jiayue Hong
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Kyle Rich
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Rachel Close
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Marie E. Bechler
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York, USA
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Sophie Belin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Yannick Poitelon
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| |
Collapse
|
2
|
Meyer LJ, Lotze FP, Riess ML. Simulated traumatic brain injury in in-vitro mouse neuronal and brain endothelial cell culture models. J Pharmacol Toxicol Methods 2022; 114:107159. [PMID: 35149185 PMCID: PMC11151826 DOI: 10.1016/j.vascn.2022.107159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/02/2022] [Accepted: 02/04/2022] [Indexed: 11/18/2022]
Abstract
Traumatic brain injury can lead to fatal outcomes such as disability and death. Every year, it affects many patients all over the world. Not only the primary ischemic event, but also the subsequent reperfusion can cause severe brain injury. This so-called ischemia/reperfusion injury combined with mechanical forces lead to cellular disruption. Hence, this paper describes a special in-vitro model, mimicking traumatic brain injury by combining both hypoxia/reoxygenation and compression to simulate ischemia/reperfusion injury as well as the mechanical effects that occur concurrently when suffering traumatic brain injury. Through this approach, stroke, concussion, and traumatic brain injury can be studied on different cell lines in a simplified way. We used two primary mouse brain cell cultures, namely neurons and endothelial cells. Our results show that for the different cell types, different timelines of hypoxia and compression need to be explored to achieve the optimal amount of cellular damage in order to effectively mimic traumatic brain injury. Thus, this model will be useful to test potential treatments of brain injury in future in-vitro studies.
Collapse
Affiliation(s)
- Luise J Meyer
- Department of Anesthesiology, Vanderbilt University Medical Center, 1161 21(st) Avenue South, Nashville, TN 37232, USA; Department of Anesthesiology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Felicia P Lotze
- Department of Anesthesiology, Vanderbilt University Medical Center, 1161 21(st) Avenue South, Nashville, TN 37232, USA; Department of Anesthesiology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Matthias L Riess
- Department of Anesthesiology, Vanderbilt University Medical Center, 1161 21(st) Avenue South, Nashville, TN 37232, USA; Anesthesiology, TVHS VA Medical Center, 1310 24(th) Ave South, Nashville, TN 37212, USA; Department of Pharmacology, Vanderbilt University, 465 21(st) Avenue South, Nashville, TN 37232, USA.
| |
Collapse
|
3
|
Varier P, Raju G, Madhusudanan P, Jerard C, Shankarappa SA. A Brief Review of In Vitro Models for Injury and Regeneration in the Peripheral Nervous System. Int J Mol Sci 2022; 23:816. [PMID: 35055003 PMCID: PMC8775373 DOI: 10.3390/ijms23020816] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 02/06/2023] Open
Abstract
Nerve axonal injury and associated cellular mechanisms leading to peripheral nerve damage are important topics of research necessary for reducing disability and enhancing quality of life. Model systems that mimic the biological changes that occur during human nerve injury are crucial for the identification of cellular responses, screening of novel therapeutic molecules, and design of neural regeneration strategies. In addition to in vivo and mathematical models, in vitro axonal injury models provide a simple, robust, and reductionist platform to partially understand nerve injury pathogenesis and regeneration. In recent years, there have been several advances related to in vitro techniques that focus on the utilization of custom-fabricated cell culture chambers, microfluidic chamber systems, and injury techniques such as laser ablation and axonal stretching. These developments seem to reflect a gradual and natural progression towards understanding molecular and signaling events at an individual axon and neuronal-soma level. In this review, we attempt to categorize and discuss various in vitro models of injury relevant to the peripheral nervous system and highlight their strengths, weaknesses, and opportunities. Such models will help to recreate the post-injury microenvironment and aid in the development of therapeutic strategies that can accelerate nerve repair.
Collapse
Affiliation(s)
| | | | | | | | - Sahadev A. Shankarappa
- Centre for Nanosciences & Molecular Medicine, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham, Kochi 682041, India; (P.V.); (G.R.); (P.M.); (C.J.)
| |
Collapse
|
4
|
Deegan AJ, Hendrikson WJ, El Haj AJ, Rouwkema J, Yang Y. Regulation of endothelial cell arrangements within hMSC - HUVEC co-cultured aggregates. Biomed J 2019; 42:166-177. [PMID: 31466710 PMCID: PMC6717755 DOI: 10.1016/j.bj.2019.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 11/25/2018] [Accepted: 01/14/2019] [Indexed: 12/12/2022] Open
Abstract
Background Micro-mass culturing or cellular aggregation is an effective method used to form mineralised bone tissue. Poor core cell viability, however, is often an impeding characteristic of large micro-mass cultures, and equally for large tissue-engineered bone grafts. Because of this, efforts are being made to enhance large graft perfusion, often through pre-vascularisation, which involves the co-culture of endothelial cells and bone cells or stem cells. Methods This study investigated the effects of different aggregation techniques and culture conditions on endothelial cell arrangements in mesenchymal stem cell and human umbilical vein endothelial cell co-cultured aggregates when endothelial cells constituted just 5%. Two different cellular aggregation techniques, i.e. suspension culture aggregation and pellet culture aggregation, were applied alongside two subsequent culturing techniques, i.e. hydrostatic loading and static culturing. Endothelial cell arrangements were assessed under such conditions to indicate potential pre-vascularisation. Results Our study found that the suspension culture aggregates cultured under hydrostatic loading offered the best environment for enhanced endothelial cell regional arrangements, closely followed by the pellet culture aggregates cultured under hydrostatic loading, the suspension culture aggregates cultured under static conditions, and the pellet culture aggregates cultured under static conditions. Conclusions The combination of particular aggregation techniques with dynamic culturing conditions appeared to have a synergistic effect on the cellular arrangements within the co-cultured aggregates.
Collapse
Affiliation(s)
- Anthony J Deegan
- Institute for Science and Technology in Medicine, School of Medicine, Keele University, Stoke-on-Trent, United Kingdom
| | - Wim J Hendrikson
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, AE, the Netherlands
| | - Alicia J El Haj
- Institute for Science and Technology in Medicine, School of Medicine, Keele University, Stoke-on-Trent, United Kingdom
| | - Jeroen Rouwkema
- Department of Biomechanical Engineering, Technical Medical Centre, University of Twente, Enschede, the Netherlands
| | - Ying Yang
- Institute for Science and Technology in Medicine, School of Medicine, Keele University, Stoke-on-Trent, United Kingdom.
| |
Collapse
|
5
|
Modrak M, Sundem L, Gupta R, Zuscik MJ, Elfar J. Pharmacological Attenuation of Electrical Effects in a Model of Compression Neuropathy. J Bone Joint Surg Am 2019; 101:523-530. [PMID: 30893233 PMCID: PMC6738556 DOI: 10.2106/jbjs.18.00162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Peripheral nerve compression and entrapment can be debilitating. Using a validated animal model of peripheral nerve compression, we examined the utility of 2 drugs approved for other uses in humans, 4-aminopyridine (4-AP) and erythropoietin (EPO), as treatments for surgically induced ischemia and as adjuvants to surgical decompression. METHODS Peripheral nerve compression was induced in wild-type mice by placing an inert silicone sleeve around the sciatic nerve. Decompression surgery was performed at 6 weeks with mice receiving 4-AP, EPO, or saline solution either during and after compression or only after decompression. A nerve conduction study and morphometric analyses were performed to compare the extent of the injury and the efficacy of the therapies, and the findings were subjected to statistical analysis. RESULTS During peripheral nerve compression, there was a progressive decline in nerve conduction velocity compared with that in sham-treatment animals, in which nerve conduction velocity remained normal (∼55 m/s). Mice treated with 4-AP or EPO during the compression phase had significantly smaller declines in nerve conduction velocity and increased plateau nerve conduction velocities compared with untreated controls (animals that received saline solution). Histomorphometric analyses of newly decompressed nerves (i.e., nerves that underwent decompression on the day that the mouse was sacrificed) revealed that both treated groups had significantly greater proportions of large (>5-µm) axons than the untreated controls. Following surgical decompression, all animals recovered to a normal baseline nerve conduction velocity by day 15; however, treatment significantly accelerated improvement (in both the 4-AP and the EPO group), even when it was only started after decompression. Histomorphometric analyses at 7 and 15 days following surgical decompression revealed significantly increased myelin thickness and significantly greater proportions of large axons among the treated animals. CONCLUSIONS Both the 4-AP and the EPO-treated group demonstrated improvements in tissue architectural and electrodiagnostic measurements, both during and after peripheral nerve compression, compared with untreated mice. CLINICAL RELEVANCE Peripheral nerve decompression is one of the most commonly performed procedures in orthopaedic surgery. We believe that there is reason for some optimism about the translation of our findings to the clinical setting. Our findings in this murine model suggest that 4-AP and EPO may lessen the effects of nerve entrapment and that the use of these agents after decompression may speed and perhaps otherwise optimize recovery after surgery.
Collapse
Affiliation(s)
- Maxwell Modrak
- School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Leigh Sundem
- School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Ranjan Gupta
- Department of Orthopaedic Surgery, University of California at Irvine, Irvine, California
| | - Michael J. Zuscik
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, New York
| | - John Elfar
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania
| |
Collapse
|
6
|
Reinwald Y, Leonard KHL, Henstock JR, Whiteley JP, Osborne JM, Waters SL, Levesque P, El Haj AJ. Evaluation of the growth environment of a hydrostatic force bioreactor for preconditioning of tissue-engineered constructs. Tissue Eng Part C Methods 2015; 21:1-14. [PMID: 24967717 DOI: 10.1089/ten.tec.2013.0476] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Bioreactors have been widely acknowledged as valuable tools to provide a growth environment for engineering tissues and to investigate the effect of physical forces on cells and cell-scaffold constructs. However, evaluation of the bioreactor environment during culture is critical to defining outcomes. In this study, the performance of a hydrostatic force bioreactor was examined by experimental measurements of changes in dissolved oxygen (O2), carbon dioxide (CO2), and pH after mechanical stimulation and the determination of physical forces (pressure and stress) in the bioreactor through mathematical modeling and numerical simulation. To determine the effect of hydrostatic pressure on bone formation, chick femur skeletal cell-seeded hydrogels were subjected to cyclic hydrostatic pressure at 0-270 kPa and 1 Hz for 1 h daily (5 days per week) over a period of 14 days. At the start of mechanical stimulation, dissolved O2 and CO2 in the medium increased and the pH of the medium decreased, but remained within human physiological ranges. Changes in physiological parameters (O2, CO2, and pH) were reversible when medium samples were placed in a standard cell culture incubator. In addition, computational modeling showed that the distribution and magnitude of physical forces depends on the shape and position of the cell-hydrogel constructs in the tissue culture format. Finally, hydrostatic pressure was seen to enhance mineralization of chick femur skeletal cell-seeded hydrogels.
Collapse
Affiliation(s)
- Yvonne Reinwald
- 1 Institute of Science and Technology in Medicine, University of Keele , Stoke-on-Trent, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Desert hedgehog is a mediator of demyelination in compression neuropathies. Exp Neurol 2015; 271:84-94. [PMID: 25936873 DOI: 10.1016/j.expneurol.2015.04.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 04/17/2015] [Accepted: 04/23/2015] [Indexed: 11/23/2022]
Abstract
The secreted protein desert hedgehog (dhh) controls the formation of the nerve perineurium during development and is a key component of Schwann cells that ensures peripheral nerve survival. We postulated that dhh may play a critical role in maintaining myelination and investigated its role in demyelination-induced compression neuropathies by using a post-natal model of a chronic nerve injury in wildtype and dhh(-/-) mice. We evaluated demyelination using electrophysiological, morphological, and molecular approaches. dhh transcripts and protein are down-regulated early after injury in wild-type mice, suggesting an intimate relationship between the hedgehog pathway and demyelination. In dhh(-/-) mice, nerve injury induced more prominent and severe demyelination relative to their wild-type counterparts, suggesting a protective role of dhh. Alterations in nerve fiber characteristics included significant decreases in nerve conduction velocity, increased myelin debris, and substantial decreases in internodal length. Furthermore, in vitro studies showed that dhh blockade via either adenovirus-mediated (shRNA) or pharmacological inhibition both resulted in severe demyelination, which could be rescued by exogenous Dhh. Exogenous Dhh was protective against this demyelination and maintained myelination at baseline levels in a custom in vitro bioreactor to applied biophysical forces to myelinated DRG/Schwann cell co-cultures. Together, these results demonstrate a pivotal role for dhh in maintaining myelination. Furthermore, dhh signaling reveals a potential target for therapeutic intervention to prevent and treat demyelination of peripheral nerves in compression neuropathies.
Collapse
|
8
|
Zhang S, Yu R, Zhang Y, Chen K. Cytoprotective effects of urinary trypsin inhibitor on astrocytes injured by sustained compression. Mol Biol Rep 2014; 41:1311-6. [PMID: 24385305 PMCID: PMC3933746 DOI: 10.1007/s11033-013-2976-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 12/24/2013] [Indexed: 01/27/2023]
Abstract
Decreased cell membrane integrity is a primary pathological change observed in traumatic brain injury (TBI) that activates a number of complex intercellular and intracellular pathological events, leading to further neural injury. In this paper, we assessed the effects of urinary trypsin inhibitor (UTI) on astrocyte membrane integrity by determining the percentage of lactate dehydrogenase (LDH) released after sustained compression injury using a hydrostatic pressure model of mechanical-like TBI. Astrocytes isolated from SD rat pups were injured by sustained compression. At a pressure of 0.3 MPa for 5 min, a significant increase in LDH release was observed compared with control samples. Astrocytes displayed extensive structural disruption of mitochondrial cristae reflected in their swelling. Based on our initial results, injured astrocytes were treated with UTI at a final concentration of 500, 1,000, 3,000 or 5,000 U/ml for 24 h. The percentage of LDH released from injured astrocytes was significantly decreased when 1,000 and 3,000 U/ml of UTI were used. In a separate experiment, astrocytes were treated with UTI at a final concentration of 1,000 U/ml immediately, or at 30 min, 2, 6, or 24 h after sustained compression. The percentage of LDH release was significantly reduced (P < 0.05) when astrocytes were treated with UTI immediately or 30 min later. Together, our results suggest that UTI may have protective effects on astrocytes injured by sustained compression injury. Furthermore, the early administration (<2 h after injury) of UTI may result in a better outcome compared with delayed administration.
Collapse
Affiliation(s)
- Shuang Zhang
- SICU, Fujian Provincial Hospital, Fujian Medical University Affiliated Provincial Teaching Hospital, Fuzhou, 350001 China
| | - Rongguo Yu
- SICU, Fujian Provincial Hospital, Fujian Medical University Affiliated Provincial Teaching Hospital, Fuzhou, 350001 China
| | - Yingrui Zhang
- SICU, Fujian Provincial Hospital, Fujian Medical University Affiliated Provincial Teaching Hospital, Fuzhou, 350001 China
| | - Kai Chen
- SICU, Fujian Provincial Hospital, Fujian Medical University Affiliated Provincial Teaching Hospital, Fuzhou, 350001 China
| |
Collapse
|
9
|
Abstract
Peripheral nerve injuries are common conditions, with broad-ranging groups of symptoms depending on the severity and nerves involved. Although much knowledge exists on the mechanisms of injury and regeneration, reliable treatments that ensure full functional recovery are scarce. This review aims to summarize various ways these injuries are classified in light of decades of research on peripheral nerve injury and regeneration.
Collapse
Affiliation(s)
- Ron M G Menorca
- School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642, USA
| | | | | |
Collapse
|
10
|
Gupta RK, Przekwas A. Mathematical Models of Blast-Induced TBI: Current Status, Challenges, and Prospects. Front Neurol 2013; 4:59. [PMID: 23755039 PMCID: PMC3667273 DOI: 10.3389/fneur.2013.00059] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 05/09/2013] [Indexed: 01/13/2023] Open
Abstract
Blast-induced traumatic brain injury (TBI) has become a signature wound of recent military activities and is the leading cause of death and long-term disability among U.S. soldiers. The current limited understanding of brain injury mechanisms impedes the development of protection, diagnostic, and treatment strategies. We believe mathematical models of blast wave brain injury biomechanics and neurobiology, complemented with in vitro and in vivo experimental studies, will enable a better understanding of injury mechanisms and accelerate the development of both protective and treatment strategies. The goal of this paper is to review the current state of the art in mathematical and computational modeling of blast-induced TBI, identify research gaps, and recommend future developments. A brief overview of blast wave physics, injury biomechanics, and the neurobiology of brain injury is used as a foundation for a more detailed discussion of multiscale mathematical models of primary biomechanics and secondary injury and repair mechanisms. The paper also presents a discussion of model development strategies, experimental approaches to generate benchmark data for model validation, and potential applications of the model for prevention and protection against blast wave TBI.
Collapse
Affiliation(s)
- Raj K Gupta
- Department of Defense Blast Injury Research Program Coordinating Office, U.S. Army Medical Research and Materiel Command , Fort Detrick, MD , USA
| | | |
Collapse
|
11
|
Kondo Y, Ramaker JM, Radcliff AB, Baldassari S, Mayer JA, Ver Hoeve JN, Zhang CL, Chiu SY, Colello RJ, Duncan ID. Spontaneous optic nerve compression in the osteopetrotic (op/op) mouse: a novel model of myelination failure. J Neurosci 2013; 33:3514-25. [PMID: 23426679 PMCID: PMC3677540 DOI: 10.1523/jneurosci.4849-12.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 11/26/2012] [Accepted: 12/28/2012] [Indexed: 12/13/2022] Open
Abstract
We report a focal disturbance in myelination of the optic nerve in the osteopetrotic (op/op) mouse, which results from a spontaneous compression of the nerve resulting from stenosis of the optic canal. The growth of the op/op optic nerve was significantly affected, being maximally suppressed at postnatal day 30 (P30; 33% of age matched control). Myelination of the nerve in the optic canal was significantly delayed at P15, and myelin was almost completely absent at P30. The size of nerves and myelination were conserved both in the intracranial and intraorbital segments at P30, suggesting that the axons in the compressed site are spared in all animals at P30. Interestingly, we observed recovery both in the nerve size and the density of myelinated axons at 7 months in almost half of the optic nerves examined, although some nerves lost axons and became atrophic. In vivo and ex vivo electrophysiological examinations of P30 op/op mice showed that nerve conduction was significantly delayed but not blocked with partial recovery in some mice by 7 months. Transcardial perfusion of FITC-labeled albumin suggested that local ischemia was at least in part the cause of this myelination failure. These results suggest that the primary abnormality is dysmyelination of the optic nerve in early development. This noninvasive model system will be a valuable tool to study the effects of nerve compression on the function and survival of oligodendrocyte progenitor cells/oligodendrocytes and axons and to explore the mechanism of redistribution of oligodendrocyte progenitor cells with compensatory myelination.
Collapse
Affiliation(s)
- Yoichi Kondo
- Department of Medical Sciences, School of Veterinary Medicine
| | | | | | | | - Joshua A. Mayer
- Department of Medical Sciences, School of Veterinary Medicine
| | | | - Chuan-Li Zhang
- Department of Physiology, University of Wisconsin-Madison, Madison, Wisconsin 53706, and
| | - Shing-Yan Chiu
- Department of Physiology, University of Wisconsin-Madison, Madison, Wisconsin 53706, and
| | - Raymond J. Colello
- Department of Anatomy and Neurobiology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Ian D. Duncan
- Department of Medical Sciences, School of Veterinary Medicine
| |
Collapse
|
12
|
Gupta R, Mozaffar T. Reply. Muscle Nerve 2012. [DOI: 10.1002/mus.23457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Lin MY, Frieboes LS, Forootan M, Palispis WA, Mozaffar T, Jafari M, Steward O, Gall CM, Gupta R. Biophysical stimulation induces demyelination via an integrin-dependent mechanism. Ann Neurol 2012; 72:112-23. [PMID: 22829273 DOI: 10.1002/ana.23592] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Chronic nerve compression (CNC) injuries occur when peripheral nerves are subjected to sustained mechanical forces, with increasing evidence implicating Schwann cells as key mediators. Integrins, a family of transmembrane adhesion molecules that are capable of intracellular signaling, have been implicated in a variety of biological processes such as myelination and nerve regeneration. In this study, we seek to define the physical stimuli mediating demyelination and to determine whether integrin plays a role in the demyelinating response. METHODS We used a previously described in vitro model of CNC injury where myelinating neuron-Schwann cell cocultures were subjected to independent manipulations of hydrostatic pressure, hypoxia, and glucose deprivation in a custom bioreactor. We assessed whether demyelination increased in response to applied manipulation and determined whether integrin-associated signaling cascades are upregulated. RESULTS Biophysical stimulation of neural tissue induced demyelination and Schwann cell proliferation without neuronal or glial cytotoxicity or apoptosis. Although glucose deprivation and hypoxia independently had minor effects on myelin stability, together they potentiated the demyelinating effects of hydrostatic compression, and in combination, significantly destabilized myelin. Biophysical stimuli transiently increased phosphorylation of the integrin-associated tyrosine kinase Src within Schwann cells. Silencing this integrin signaling cascade blocked Src activation and prevented pressure-induced demyelination. Colocalization analysis indicated that Src is localized within Schwann cells. INTERPRETATION These results indicate that myelin is sensitive to CNC injury and support the novel concept that myelinating cocultures respond directly to mechanical loading via activating an integrin signaling cascade.
Collapse
Affiliation(s)
- Michael Y Lin
- Department of Orthopedic Surgery, University of California, Irvine, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Higuera GA, van Boxtel A, van Blitterswijk CA, Moroni L. The physics of tissue formation with mesenchymal stem cells. Trends Biotechnol 2012; 30:583-90. [PMID: 22959896 DOI: 10.1016/j.tibtech.2012.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 06/29/2012] [Accepted: 07/30/2012] [Indexed: 01/22/2023]
Abstract
Cells react to various forms of physical phenomena that promote and maintain the formation of tissues. The best example of this are cells of musculoskeletal origin, such as mesenchymal stem cells (MSCs), which consistently proliferate or differentiate under cues from hydrostatic pressure, diffusive mass transport, shear stress, surface chemistry, mechanotransduction, and molecular kinetics. To date, no other cell type shows greater receptiveness to macroscopic and microscopic cues, highlighting the acute sensitivity of MSCs and the importance of physical principles in tissue homeostasis. In this review, we describe the literature that has shown how physical phenomena govern MSCs biology and provide insight into the mechanisms and strategies that can spur new biotechnological applications with tissue biology.
Collapse
Affiliation(s)
- Gustavo A Higuera
- Department of Tissue Regeneration, Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | | | | | | |
Collapse
|
15
|
Gupta R, Nassiri N, Hazel A, Bathen M, Mozaffar T. Chronic nerve compression alters Schwann cell myelin architecture in a murine model. Muscle Nerve 2012; 45:231-41. [PMID: 22246880 DOI: 10.1002/mus.22276] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Myelinating Schwann cells compartmentalize their outermost layer to form actin-rich channels known as Cajal bands. Herein we investigate changes in Schwann cell architecture and cytoplasmic morphology in a novel mouse model of carpal tunnel syndrome. METHODS Chronic nerve compression (CNC) injury was created in wild-type and slow-Wallerian degeneration (Wld(S) ) mice. Over 12 weeks, nerves were electrodiagnostically assessed, and Schwann cell morphology was thoroughly evaluated. RESULTS A decline in nerve conduction velocity and increase in g-ratio is observed without early axonal damage. Schwann cells display shortened internodal lengths and severely disrupted Cajal bands. Quite surprisingly, the latter is reconstituted without improvements to nerve conduction velocity. CONCLUSIONS Chronic entrapment injuries like carpal tunnel syndrome are primarily mediated by the Schwann cell response, where decreases in internodal length and myelin thickness disrupt the efficiency of impulse propagation. Restitution of Cajal bands is not sufficient for remyelination after CNC injury.
Collapse
Affiliation(s)
- Ranjan Gupta
- Department of Orthopaedic Surgery, University of California at Irvine, 2226 Gillespie Neuroscience Research Facility, Irvine, California 92697, USA.
| | | | | | | | | |
Collapse
|
16
|
Wallman L, Åkesson E, Ceric D, Andersson PH, Day K, Hovatta O, Falci S, Laurell T, Sundström E. Biogrid--a microfluidic device for large-scale enzyme-free dissociation of stem cell aggregates. LAB ON A CHIP 2011; 11:3241-3248. [PMID: 21850297 DOI: 10.1039/c1lc20316a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Culturing stem cells as free-floating aggregates in suspension facilitates large-scale production of cells in closed systems, for clinical use. To comply with GMP standards, the use of substances such as proteolytic enzymes should be avoided. Instead of enzymatic dissociation, the growing cell aggregates may be mechanically cut at passage, but available methods are not compatible with large-scale cell production and hence translation into the clinic becomes a severe bottle-neck. We have developed the Biogrid device, which consists of an array of micrometerscale knife edges, micro-fabricated in silicon, and a manifold in which the microgrid is placed across the central fluid channel. By connecting one side of the Biogrid to a syringe or a pump and the other side to the cell culture, the culture medium with suspended cell aggregates can be aspirated, forcing the aggregates through the microgrid, and ejected back to the cell culture container. Large aggregates are thereby dissociated into smaller fragments while small aggregates pass through the microgrid unaffected. As proof-of-concept, we demonstrate that the Biogrid device can be successfully used for repeated passage of human neural stem/progenitor cells cultured as so-called neurospheres, as well as for passage of suspension cultures of human embryonic stem cells. We also show that human neural stem/progenitor cells tolerate transient pressure changes far exceeding those that will occur in a fluidic system incorporating the Biogrid microgrids. Thus, by using the Biogrid device it is possible to mechanically passage large quantities of cells in suspension cultures in closed fluidic systems, without the use of proteolytic enzymes.
Collapse
Affiliation(s)
- Lars Wallman
- Division of Nanobiotechnology, Department of Measurement Technology and Industrial Electrical Engineering, Lund University, P.O. Box 118, S-22100 Lund, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Eyckmans J, Boudou T, Yu X, Chen CS. A hitchhiker's guide to mechanobiology. Dev Cell 2011; 21:35-47. [PMID: 21763607 DOI: 10.1016/j.devcel.2011.06.015] [Citation(s) in RCA: 331] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 05/27/2011] [Accepted: 06/09/2011] [Indexed: 01/27/2023]
Abstract
More than a century ago, it was proposed that mechanical forces could drive tissue formation. However, only recently with the advent of enabling biophysical and molecular technologies are we beginning to understand how individual cells transduce mechanical force into biochemical signals. In turn, this knowledge of mechanotransduction at the cellular level is beginning to clarify the role of mechanics in patterning processes during embryonic development. In this perspective, we will discuss current mechanotransduction paradigms, along with the technologies that have shaped the field of mechanobiology.
Collapse
Affiliation(s)
- Jeroen Eyckmans
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
18
|
Tapadia M, Mozaffar T, Gupta R. Compressive neuropathies of the upper extremity: update on pathophysiology, classification, and electrodiagnostic findings. J Hand Surg Am 2010; 35:668-77. [PMID: 20223605 PMCID: PMC4715364 DOI: 10.1016/j.jhsa.2010.01.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2009] [Accepted: 01/12/2010] [Indexed: 02/02/2023]
Abstract
Clinical examination and electrodiagnostic studies remain the gold standard for diagnosis of nerve injuries. Diagnosis of chronic nerve compression (CNC) injuries can be difficult in patients with confounding factors such as diabetes. The treatment of nerve entrapment ranges from medical to surgical management, depending on the nerve involved and on the severity and duration of compression. Considerable insights have been made at the molecular level, differentiating between nerve crush injuries and CNC injuries. Although the myelin changes after CNC injury were previously thought to be a mild form of Wallerian degeneration, recent evidence points to a distinct pathophysiology involving Schwann cell mechanosensitivity. Future areas of research include Schwann cell transplantation in the treatment regimen, the correlation between demyelination and the onset of pain, and the role of Schwann cell integrins in transducing the mechanical forces involved in nerve compression injuries to Schwann cells.
Collapse
Affiliation(s)
- Minal Tapadia
- Peripheral Nerve Research Laboratory, University of California, Irvine; Irvine, CA
| | - Tahseen Mozaffar
- Department of Neurology, University of California, Irvine; Irvine, CA
- Peripheral Nerve Research Laboratory, University of California, Irvine; Irvine, CA
| | - Ranjan Gupta
- Department of Orthopaedic Surgery, University of California, Irvine; Irvine, CA
- Department of Anatomy and Neurobiology, University of California, Irvine; Irvine, CA
- Department of Biomedical Engineering, University of California, Irvine; Irvine, CA
- Peripheral Nerve Research Laboratory, University of California, Irvine; Irvine, CA
| |
Collapse
|