1
|
Alhadidi QM, Bahader GA, Arvola O, Kitchen P, Shah ZA, Salman MM. Astrocytes in functional recovery following central nervous system injuries. J Physiol 2024; 602:3069-3096. [PMID: 37702572 PMCID: PMC11421637 DOI: 10.1113/jp284197] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023] Open
Abstract
Astrocytes are increasingly recognised as partaking in complex homeostatic mechanisms critical for regulating neuronal plasticity following central nervous system (CNS) insults. Ischaemic stroke and traumatic brain injury are associated with high rates of disability and mortality. Depending on the context and type of injury, reactive astrocytes respond with diverse morphological, proliferative and functional changes collectively known as astrogliosis, which results in both pathogenic and protective effects. There is a large body of research on the negative consequences of astrogliosis following brain injuries. There is also growing interest in how astrogliosis might in some contexts be protective and help to limit the spread of the injury. However, little is known about how astrocytes contribute to the chronic functional recovery phase following traumatic and ischaemic brain insults. In this review, we explore the protective functions of astrocytes in various aspects of secondary brain injury such as oedema, inflammation and blood-brain barrier dysfunction. We also discuss the current knowledge on astrocyte contribution to tissue regeneration, including angiogenesis, neurogenesis, synaptogenesis, dendrogenesis and axogenesis. Finally, we discuss diverse astrocyte-related factors that, if selectively targeted, could form the basis of astrocyte-targeted therapeutic strategies to better address currently untreatable CNS disorders.
Collapse
Affiliation(s)
- Qasim M Alhadidi
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Pharmacy, Al-Yarmok University College, Diyala, Iraq
| | - Ghaith A Bahader
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Oiva Arvola
- Division of Anaesthesiology, Jorvi Hospital, Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Philip Kitchen
- College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Mootaz M Salman
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Kavli Institute for NanoScience Discovery, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Au NPB, Wu T, Kumar G, Jin Y, Li YYT, Chan SL, Lai JHC, Chan KWY, Yu KN, Wang X, Ma CHE. Low-dose ionizing radiation promotes motor recovery and brain rewiring by resolving inflammatory response after brain injury and stroke. Brain Behav Immun 2024; 115:43-63. [PMID: 37774892 DOI: 10.1016/j.bbi.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/24/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023] Open
Abstract
Traumatic brain injury (TBI) and stroke share a common pathophysiology that worsens over time due to secondary tissue injury caused by sustained inflammatory response. However, studies on pharmacological interventions targeting the complex secondary injury cascade have failed to show efficacy. Here, we demonstrated that low-dose ionizing radiation (LDIR) reduced lesion size and reversed motor deficits after TBI and photothrombotic stroke. Magnetic resonance imaging demonstrated significant reduction of infarct volume in LDIR-treated mice after stroke. Systems-level transcriptomic analysis showed that genes upregulated in LDIR-treated stoke mice were enriched in pathways associated with inflammatory and immune response involving microglia. LDIR induced upregulation of anti-inflammatory- and phagocytosis-related genes, and downregulation of key pro-inflammatory cytokine production. These findings were validated by live-cell assays, in which microglia exhibited higher chemotactic and phagocytic capacities after LDIR. We observed substantial microglial clustering at the injury site, glial scar clearance and reversal of motor deficits after stroke. Cortical microglia/macrophages depletion completely abolished the beneficial effect of LDIR on motor function recovery in stroke mice. LDIR promoted axonal projections (brain rewiring) in motor cortex and recovery of brain activity detected by electroencephalography recordings months after stroke. LDIR treatment delayed by 8 h post-injury still maintained full therapeutic effects on motor recovery, indicating that LDIR is a promising therapeutic strategy for TBI and stroke.
Collapse
Affiliation(s)
| | - Tan Wu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China; Department of Surgery, Chinese University of Hong Kong, Hong Kong, China
| | - Gajendra Kumar
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
| | - Yuting Jin
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
| | | | - Shun Lam Chan
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
| | - Joseph Ho Chi Lai
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Kannie Wai Yan Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Kwan Ngok Yu
- Department of Physics, City University of Hong Kong, Hong Kong, China
| | - Xin Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China; Department of Surgery, Chinese University of Hong Kong, Hong Kong, China
| | - Chi Him Eddie Ma
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China; City University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
3
|
Villapol S, Janatpour ZC, Affram KO, Symes AJ. The Renin Angiotensin System as a Therapeutic Target in Traumatic Brain Injury. Neurotherapeutics 2023; 20:1565-1591. [PMID: 37759139 PMCID: PMC10684482 DOI: 10.1007/s13311-023-01435-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Traumatic brain injury (TBI) is a major public health problem, with limited pharmacological options available beyond symptomatic relief. The renin angiotensin system (RAS) is primarily known as a systemic endocrine regulatory system, with major roles controlling blood pressure and fluid homeostasis. Drugs that target the RAS are used to treat hypertension, heart failure and kidney disorders. They have now been used chronically by millions of people and have a favorable safety profile. In addition to the systemic RAS, it is now appreciated that many different organ systems, including the brain, have their own local RAS. The major ligand of the classic RAS, Angiotensin II (Ang II) acts predominantly through the Ang II Type 1 receptor (AT1R), leading to vasoconstriction, inflammation, and heightened oxidative stress. These processes can exacerbate brain injuries. Ang II receptor blockers (ARBs) are AT1R antagonists. They have been shown in several preclinical studies to enhance recovery from TBI in rodents through improvements in molecular, cellular and behavioral correlates of injury. ARBs are now under consideration for clinical trials in TBI. Several different RAS peptides that signal through receptors distinct from the AT1R, are also potential therapeutic targets for TBI. The counter regulatory RAS pathway has actions that oppose those stimulated by AT1R signaling. This alternative pathway has many beneficial effects on cells in the central nervous system, bringing about vasodilation, and having anti-inflammatory and anti-oxidative stress actions. Stimulation of this pathway also has potential therapeutic value for the treatment of TBI. This comprehensive review will provide an overview of the various components of the RAS, with a focus on their direct relevance to TBI pathology. It will explore different therapeutic agents that modulate this system and assess their potential efficacy in treating TBI patients.
Collapse
Affiliation(s)
- Sonia Villapol
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA
| | - Zachary C Janatpour
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Kwame O Affram
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Aviva J Symes
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| |
Collapse
|
4
|
White MR, VandeVord PJ. Regional variances depict a unique glial-specific inflammatory response following closed-head injury. Front Cell Neurosci 2023; 17:1076851. [PMID: 36909284 PMCID: PMC9996631 DOI: 10.3389/fncel.2023.1076851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/27/2023] [Indexed: 02/17/2023] Open
Abstract
Mild traumatic brain injuries (mTBI) constitute a significant health concern with clinical symptoms ranging from headaches to cognitive deficits. Despite the myriad of symptoms commonly reported following this injury, there is still a lack of knowledge on the various pathophysiological changes that occur. Preclinical studies are at the forefront of discovery delineating the changes that occur within this heterogeneous injury, with the emergence of translational models such as closed-head impact models allowing for further exploration of this injury mechanism. In the current study, male rats were subjected to a closed-head controlled cortical impact (cCCI), producing a concussion (mTBI). The pathological effects of this injury were then evaluated using immunoflourescence seven days following. The results exhibited a unique glial-specific inflammatory response, with both the ipsilateral and contralateral sides of the cortex and hippocampus showing pathological changes following impact. Overall these findings are consistent with glial changes reported following concussions and may contribute to subsequent symptoms.
Collapse
Affiliation(s)
- Michelle R. White
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| | - Pamela J. VandeVord
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
- Salem VA Medical Center, Salem, VA, United States
| |
Collapse
|
5
|
Carmo GP, Grigioni J, Fernandes FAO, Alves de Sousa RJ. Biomechanics of Traumatic Head and Neck Injuries on Women: A State-of-the-Art Review and Future Directions. BIOLOGY 2023; 12:biology12010083. [PMID: 36671775 PMCID: PMC9855362 DOI: 10.3390/biology12010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023]
Abstract
The biomechanics of traumatic injuries of the human body as a consequence of road crashes, falling, contact sports, and military environments have been studied for decades. In particular, traumatic brain injury (TBI), the so-called "silent epidemic", is the traumatic insult responsible for the greatest percentage of death and disability, justifying the relevance of this research topic. Despite its great importance, only recently have research groups started to seriously consider the sex differences regarding the morphology and physiology of women, which differs from men and may result in a specific outcome for a given traumatic event. This work aims to provide a summary of the contributions given in this field so far, from clinical reports to numerical models, covering not only the direct injuries from inertial loading scenarios but also the role sex plays in the conditions that precede an accident, and post-traumatic events, with an emphasis on neuroendocrine dysfunctions and chronic traumatic encephalopathy. A review on finite element head models and finite element neck models for the study of specific traumatic events is also performed, discussing whether sex was a factor in validating them. Based on the information collected, improvement perspectives and future directions are discussed.
Collapse
Affiliation(s)
- Gustavo P. Carmo
- Centre for Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Jeroen Grigioni
- Centre for Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Fábio A. O. Fernandes
- Centre for Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
- LASI—Intelligent Systems Associate Laboratory, 4800-058 Guimaraes, Portugal
| | - Ricardo J. Alves de Sousa
- Centre for Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
- LASI—Intelligent Systems Associate Laboratory, 4800-058 Guimaraes, Portugal
- Correspondence: ; Tel.: +351-234-370-200
| |
Collapse
|
6
|
Xiao M, Hou J, Xu M, Li S, Yang B. Aquaporins in Nervous System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:99-124. [PMID: 36717489 DOI: 10.1007/978-981-19-7415-1_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Aquaporins (AQPs) mediate water flux between the four distinct water compartments in the central nervous system (CNS). In the present chapter, we mainly focus on the expression and function of the nine AQPs expressed in the CNS, which include five members of aquaporin subfamily: AQP1, AQP4, AQP5, AQP6, and AQP8; three members of aquaglyceroporin subfamily: AQP3, AQP7, and AQP9; and one member of superaquaporin subfamily: AQP11. In addition, AQP1, AQP2, and AQP4 expressed in the peripheral nervous system are also reviewed. AQP4, the predominant water channel in the CNS, is involved both in the astrocyte swelling of cytotoxic edema and the resolution of vasogenic edema and is of pivotal importance in the pathology of brain disorders such as neuromyelitis optica, brain tumors, and neurodegenerative disorders. Moreover, AQP4 has been demonstrated as a functional regulator of recently discovered glymphatic system that is a main contributor to clearance of toxic macromolecule from the brain. Other AQPs are also involved in a variety of important physiological and pathological process in the brain. It has been suggested that AQPs could represent an important target in treatment of brain disorders like cerebral edema. Future investigations are necessary to elucidate the pathological significance of AQPs in the CNS.
Collapse
Affiliation(s)
- Ming Xiao
- Jiangsu Province, Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Jiaoyu Hou
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Mengmeng Xu
- Basic Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Shao Li
- Department of Physiology, Dalian Medical University, Dalian, China
| | - Baoxue Yang
- School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|
7
|
Li R, Zhao M, Yao D, Zhou X, Lenahan C, Wang L, Ou Y, He Y. The role of the astrocyte in subarachnoid hemorrhage and its therapeutic implications. Front Immunol 2022; 13:1008795. [PMID: 36248855 PMCID: PMC9556431 DOI: 10.3389/fimmu.2022.1008795] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is an important public health concern with high morbidity and mortality worldwide. SAH induces cell death, blood−brain barrier (BBB) damage, brain edema and oxidative stress. As the most abundant cell type in the central nervous system, astrocytes play an essential role in brain damage and recovery following SAH. This review describes astrocyte activation and polarization after SAH. Astrocytes mediate BBB disruption, glymphatic–lymphatic system dysfunction, oxidative stress, and cell death after SAH. Furthermore, astrocytes engage in abundant crosstalk with other brain cells, such as endothelial cells, neurons, pericytes, microglia and monocytes, after SAH. In addition, astrocytes also exert protective functions in SAH. Finally, we summarize evidence regarding therapeutic approaches aimed at modulating astrocyte function following SAH, which could provide some new leads for future translational therapy to alleviate damage after SAH.
Collapse
Affiliation(s)
- Rong Li
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Zhao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Yao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyue Zhou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cameron Lenahan
- Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| | - Ling Wang
- Department of Operating room, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yibo Ou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue He
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Yue He,
| |
Collapse
|
8
|
Li Y, Zhang J, Wang H, Zhu L, Zhang H, Ma Q, Liu X, Dong L, Lu G. Does erythropoietin affect the outcome and complication rates of patient with traumatic brain injury? A pooled-analysis. Neurol Sci 2022; 43:3783-3793. [PMID: 35044560 DOI: 10.1007/s10072-022-05877-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 01/08/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The aim of this meta-analysis was to review the scientific literature published until April 18, 2021, to summarize existing knowledge on the efficacy and safety of erythropoietin (EPO) for traumatic brain injury (TBI). METHODS This systematic review followed PRISMA guidelines. Randomized controlled trials (RCTs) reporting on the efficacy and safety of EPO in the treatment of TBI were systematically searched in relevant electronic databases according to a pre-designed search strategy. The primary outcomes are the mortality; and secondary outcomes are the good functional outcome (GFO) and adverse events (AEs). RESULTS A total of 10 RCTs involving 2,402 participants fulfilled the inclusion criteria. The results showed that there is a significant difference in terms of the mortality (RR = 0.67, 95% CI = 0.54-0.84, P = 0.0003) and seizure rate (RR = 0.52, 95% CI = 0.29-0.96, P = 0.04) between the EPO groups compared to those in the control groups. However, compared with the control groups, the GFO in the EPO groups was not statistically significant (RR = 1.18, 95% CI = 0.93-1.48, P = 0.17). CONCLUSIONS Findings of the present meta-analysis suggest that the use of EPO could reduce mortality rate in patients with TBI, without increasing the incidence of AEs. EPO has potential research and application value in the treatment of TBI.
Collapse
Affiliation(s)
- Yuping Li
- Neuro Intensive Care Unit, Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, China.,Department of Neurosurgery, Yangzhou Clinical Medical College of Xuzhou Medical University, Xuzhou, China
| | - Jun Zhang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Haili Wang
- Department of Clinical Medicine, Dalian Medical University, Dalian Liaoning, China
| | - Lei Zhu
- Neuro Intensive Care Unit, Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Hengzhu Zhang
- Department of Neurosurgery, Yangzhou Clinical Medical College of Xuzhou Medical University, Xuzhou, China
| | - Qiang Ma
- Neuro Intensive Care Unit, Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Xiaoguang Liu
- Neuro Intensive Care Unit, Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Lun Dong
- Neuro Intensive Care Unit, Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, China.,Department of Neurosurgery, Yangzhou Clinical Medical College of Xuzhou Medical University, Xuzhou, China
| | - Guangyu Lu
- Institute of Public Health, Medical College, Yangzhou University, Yangzhou, China.
| |
Collapse
|
9
|
Xu X, Zhi T, Hua L, Jiang K, Chen C. IRAK4 exacerbates traumatic brain injury via activation of TAK1 signaling pathway. Exp Neurol 2022; 351:114007. [PMID: 35149117 DOI: 10.1016/j.expneurol.2022.114007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/29/2022] [Accepted: 02/04/2022] [Indexed: 11/04/2022]
Abstract
Although multiple signaling pathways contributing to the pathophysiological process have been investigated, treatments for traumatic brain injury (TBI) against present targets have not acquired significant clinical progress. Interleukin-1 receptor-associated kinase 4 (IRAK4) is an important factor involved in regulating immunity and inflammation. However, the role of IRAK4 in TBI still remains largely unknown. Therefore, using a controlled cortical impact model (CCI), we investigated the function and molecular mechanism of IRAK4 in the context of TBI. IRAK4 was found to be activated in a time-dependent manner after TBI and mainly expressed in neurons. Inhibition of IRAK4 by siRNAs could significantly alleviates neuroinflammation, neuron apoptosis, brain edema, brain-blood barrier (BBB) dysfunction and improves neurological deficit in the context of CCI. Mechanistically, IRAK4 exacerbates CCI via activation of TAK1 signaling pathway. Interestingly, PF-0665083, an IRAK4 inhibitor, inhibits phosphorylation of IRAK4 and attenuates CCI-induced secondary injury. It could be conclude that IRAK4 plays a critical role in TBI-induced secondary injury and the underlining mechanism may be related to activation of TAK1 signaling pathway. PF-0665083 may serve as a potential treatment strategy to relieve TBI.
Collapse
Affiliation(s)
- Xiupeng Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Tongle Zhi
- Department of Neurosurgery, The First People's Hospital of Yancheng, the Fourth Affiliated Hospital of Nantong University, Yancheng 224006, Jiangsu Province, China
| | - Lingyang Hua
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200000, China
| | - Kuan Jiang
- Department of Neurosurgery, Yixing People's Hospital, Yixing 214200, Jiangsu Province, China
| | - Chen Chen
- Department of Cardiology, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.
| |
Collapse
|
10
|
Huang P, Wan H, Shao C, Li C, Zhang L, He Y. Recent Advances in Chinese Herbal Medicine for Cerebral Ischemic Reperfusion Injury. Front Pharmacol 2022; 12:688596. [PMID: 35111041 PMCID: PMC8801784 DOI: 10.3389/fphar.2021.688596] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022] Open
Abstract
Cerebral ischemic reperfusion injury (CI/RI) is a critical factor that leads to a poor prognosis in patients with ischemic stroke. It is an extremely complicated pathological process that is clinically characterized by high rates of disability and mortality. Current available treatments for CI/RI, including mechanical and drug therapies, are often accompanied by significant side effects. Therefore, it is necessary to discovery new strategies for treating CI/RI. Many studies confirm that Chinese herbal medicine (CHM) was used as a potential drug for treatment of CI/RI with the advantages of abundant resources, good efficacy, and few side effects. In this paper, we investigate the latest drug discoveries and advancements on CI/RI, make an overview of relevant CHM, and systematically summarize the pathophysiology of CI/RI. In addition, the protective effect and mechanism of related CHM, which includes extraction of single CHM and CHM formulation and preparation, are discussed. Moreover, an outline of the limitations of CHM and the challenges we faced are also presented. This review will be helpful for researchers further propelling the advancement of drugs and supplying more knowledge to support the application of previous discoveries in clinical drug applications against CI/RI.
Collapse
Affiliation(s)
- Ping Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haitong Wan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chongyu Shao
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chang Li
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ling Zhang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
11
|
Szczygielski J, Kopańska M, Wysocka A, Oertel J. Cerebral Microcirculation, Perivascular Unit, and Glymphatic System: Role of Aquaporin-4 as the Gatekeeper for Water Homeostasis. Front Neurol 2021; 12:767470. [PMID: 34966347 PMCID: PMC8710539 DOI: 10.3389/fneur.2021.767470] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022] Open
Abstract
In the past, water homeostasis of the brain was understood as a certain quantitative equilibrium of water content between intravascular, interstitial, and intracellular spaces governed mostly by hydrostatic effects i.e., strictly by physical laws. The recent achievements in molecular bioscience have led to substantial changes in this regard. Some new concepts elaborate the idea that all compartments involved in cerebral fluid homeostasis create a functional continuum with an active and precise regulation of fluid exchange between them rather than only serving as separate fluid receptacles with mere passive diffusion mechanisms, based on hydrostatic pressure. According to these concepts, aquaporin-4 (AQP4) plays the central role in cerebral fluid homeostasis, acting as a water channel protein. The AQP4 not only enables water permeability through the blood-brain barrier but also regulates water exchange between perivascular spaces and the rest of the glymphatic system, described as pan-cerebral fluid pathway interlacing macroscopic cerebrospinal fluid (CSF) spaces with the interstitial fluid of brain tissue. With regards to this, AQP4 makes water shift strongly dependent on active processes including changes in cerebral microcirculation and autoregulation of brain vessels capacity. In this paper, the role of the AQP4 as the gatekeeper, regulating the water exchange between intracellular space, glymphatic system (including the so-called neurovascular units), and intravascular compartment is reviewed. In addition, the new concepts of brain edema as a misbalance in water homeostasis are critically appraised based on the newly described role of AQP4 for fluid permeation. Finally, the relevance of these hypotheses for clinical conditions (including brain trauma and stroke) and for both new and old therapy concepts are analyzed.
Collapse
Affiliation(s)
- Jacek Szczygielski
- Department of Neurosurgery, Institute of Medical Sciences, University of Rzeszów, Rzeszów, Poland.,Department of Neurosurgery, Faculty of Medicine and Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Marta Kopańska
- Department of Pathophysiology, Institute of Medical Sciences, University of Rzeszów, Rzeszów, Poland
| | - Anna Wysocka
- Chair of Internal Medicine and Department of Internal Medicine in Nursing, Faculty of Health Sciences, Medical University of Lublin, Lublin, Poland
| | - Joachim Oertel
- Department of Neurosurgery, Faculty of Medicine and Saarland University Medical Center, Saarland University, Homburg, Germany
| |
Collapse
|
12
|
Jha RM, Raikwar SP, Mihaljevic S, Casabella AM, Catapano JS, Rani A, Desai S, Gerzanich V, Simard JM. Emerging therapeutic targets for cerebral edema. Expert Opin Ther Targets 2021; 25:917-938. [PMID: 34844502 PMCID: PMC9196113 DOI: 10.1080/14728222.2021.2010045] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/20/2021] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Cerebral edema is a key contributor to death and disability in several forms of brain injury. Current treatment options are limited, reactive, and associated with significant morbidity. Targeted therapies are emerging based on a growing understanding of the molecular underpinnings of cerebral edema. AREAS COVERED We review the pathophysiology and relationships between different cerebral edema subtypes to provide a foundation for emerging therapies. Mechanisms for promising molecular targets are discussed, with an emphasis on those advancing in clinical trials, including ion and water channels (AQP4, SUR1-TRPM4) and other proteins/lipids involved in edema signaling pathways (AVP, COX2, VEGF, and S1P). Research on novel treatment modalities for cerebral edema [including recombinant proteins and gene therapies] is presented and finally, insights on reducing secondary injury and improving clinical outcome are offered. EXPERT OPINION Targeted molecular strategies to minimize or prevent cerebral edema are promising. Inhibition of SUR1-TRPM4 (glyburide/glibenclamide) and VEGF (bevacizumab) are currently closest to translation based on advances in clinical trials. However, the latter, tested in glioblastoma multiforme, has not demonstrated survival benefit. Research on recombinant proteins and gene therapies for cerebral edema is in its infancy, but early results are encouraging. These newer modalities may facilitate our understanding of the pathobiology underlying cerebral edema.
Collapse
Affiliation(s)
- Ruchira M. Jha
- Department of Neurology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
- Department of Neurosurgery, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Sudhanshu P. Raikwar
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Sandra Mihaljevic
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | | | - Joshua S. Catapano
- Department of Neurosurgery, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Anupama Rani
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Shashvat Desai
- Department of Neurology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore MD, USA
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore MD, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore MD, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore MD, USA
| |
Collapse
|
13
|
Traumatic Brain Injury: Ultrastructural Features in Neuronal Ferroptosis, Glial Cell Activation and Polarization, and Blood-Brain Barrier Breakdown. Cells 2021; 10:cells10051009. [PMID: 33923370 PMCID: PMC8146242 DOI: 10.3390/cells10051009] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/21/2022] Open
Abstract
The secondary injury process after traumatic brain injury (TBI) results in motor dysfunction, cognitive and emotional impairment, and poor outcomes. These injury cascades include excitotoxic injury, mitochondrial dysfunction, oxidative stress, ion imbalance, inflammation, and increased vascular permeability. Electron microscopy is an irreplaceable tool to understand the complex pathogenesis of TBI as the secondary injury is usually accompanied by a series of pathologic changes at the ultra-micro level of the brain cells. These changes include the ultrastructural changes in different parts of the neurons (cell body, axon, and synapses), glial cells, and blood–brain barrier, etc. In view of the current difficulties in the treatment of TBI, identifying the changes in subcellular structures can help us better understand the complex pathologic cascade reactions after TBI and improve clinical diagnosis and treatment. The purpose of this review is to summarize and discuss the ultrastructural changes related to neurons (e.g., condensed mitochondrial membrane in ferroptosis), glial cells, and blood–brain barrier in the existing reports of TBI, to deepen the in-depth study of TBI pathomechanism, hoping to provide a future research direction of pathogenesis and treatment, with the ultimate aim of improving the prognosis of patients with TBI.
Collapse
|
14
|
Biegon A. Considering Biological Sex in Traumatic Brain Injury. Front Neurol 2021; 12:576366. [PMID: 33643182 PMCID: PMC7902907 DOI: 10.3389/fneur.2021.576366] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 01/08/2021] [Indexed: 11/23/2022] Open
Abstract
Published epidemiological studies of traumatic brain injury (TBI) of all severities consistently report higher incidence in men. Recent increases in the participation of women in sports and active military service as well as increasing awareness of the very large number of women who sustain but do not report TBI as a result of intimate partner violence (IPV) suggest that the number of women with TBI is significantly larger than previously believed. Women are also grossly under-represented in clinical and natural history studies of TBI, most of which include relatively small numbers of women, ignore the role of sex- and age-related gonadal hormone levels, and report conflicting results. The emerging picture from recent studies powered to detect effects of biological sex as well as age (as a surrogate of hormonal status) suggest young (i.e., premenopausal) women are more likely to die from TBI relative to men of the same age group, but this is reversed in the 6th and 7th decades of life, coinciding with postmenopausal status in women. New data from concussion studies in young male and female athletes extend this finding to mild TBI, since female athletes who sustained mild TBI are significantly more likely to report more symptoms than males. Studies including information on gonadal hormone status at the time of injury are still too scarce and small to draw reliable conclusions, so there is an urgent need to include biological sex and gonadal hormone status in the design and analysis of future studies of TBI.
Collapse
Affiliation(s)
- Anat Biegon
- Department of Radiology and Neurology, Stony Brook University School of Medicine, Stony Brook, NY, United States
| |
Collapse
|
15
|
Xiong A, Xiong R, Yu J, Liu Y, Liu K, Jin G, Xu J, Yan J. Aquaporin-4 is a potential drug target for traumatic brain injury via aggravating the severity of brain edema. BURNS & TRAUMA 2021; 9:tkaa050. [PMID: 33748293 PMCID: PMC7957347 DOI: 10.1093/burnst/tkaa050] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/25/2020] [Indexed: 04/13/2023]
Abstract
BACKGROUND Traumatic brain edema (TBE) is caused by a specific water channel mediated by membrane aquaporins. Aquaporin-4 (AQP4) plays an especially important role in this process, but the relationship between AQP4 and TBE remains unclear. The purpose of this study was to explore expression of AQP4 in the hippocampus after traumatic brain injury (TBI), as well as the effect of brain edema on skeletal protein and its function in hippocampal neurons. METHODS The adult male Wistar rats we divided into a sham group and a TBI group, the latter of which was further divided into 1, 3, 6, 12, 24 and 72 hours (h) and 15 days (d) post injury subgroups. A proper TBI model was established, and brain edema was assessed in each group by water content. We measured the abundance of various proteins, including hypoxia inducible factor-1α (HIF-1α), AQP4, microtubule-associated protein 2 (MAP2), tau-5 protein, phosphorylated level of TAU, synaptophysin, cyclic adenosine monophosphate response element binding protein (CREB), phosphorylated CREB and general control nonrepressed 2, in each group. Hippocampal neurons and spatial memory test were analyzed in different time points. RESULTS Compared with that in the sham group, the level of AQP4 in hippocampal neurons began to significantly increase at 1 h post TBI and then decreased at 15 d post TBI. During this time frame, AQP4 level peaked at 12 and 72 h, and these peaks were closely correlated with high brain water content. HIF-1α displayed a similar trend. Conversely, levels of MAP2 began to decrease at 1 h post TBI and then increase at 15 d post TBI. In addition, the most severe brain edema in rats was found at 24 h post TBI, with neuronal loss and hippocampal dendritic spine injury. Compared to those in the sham group, rats in the TBI groups had significantly prolonged latency and significantly shortened exploration time. CONCLUSIONS AQP4 level was closely correlated with severity of brain edema, and abnormal levels thereof aggravated such severity after TBI.
Collapse
Affiliation(s)
- Ao Xiong
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450042, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China
| | - Renping Xiong
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China
| | - Jing Yu
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China
| | - Yijia Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Ke Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Ge Jin
- Department of Biochemistry and Molecular Biology, Basic Medical College of Zhengzhou University, Zhengzhou, Henan 450001, China
| | | | - Jun Yan
- Correspondence. Jianzhong Xu. ; Jun Yan,
| |
Collapse
|
16
|
Zhang H, Liu J, Liu Y, Su C, Fan G, Lu W, Feng L. Hypertonic saline improves brain edema resulting from traumatic brain injury by suppressing the NF-κB/IL-1β signaling pathway and AQP4. Exp Ther Med 2020; 20:71. [PMID: 32963601 PMCID: PMC7490798 DOI: 10.3892/etm.2020.9199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 04/17/2020] [Indexed: 12/05/2022] Open
Abstract
Although hypertonic saline (HS) has been extensively applied to treat brain edema in the clinic, the precise mechanism underlying its function remains poorly understood. Therefore, the aim of the present study was to investigate the therapeutic mechanism of HS in brain edema in terms of aquaporins and inflammatory factors. In the present study, traumatic brain injury (TBI) was established in male adult Sprague-Dawley rats, which were continuously administered 10% HS by intravenous injection for 2 days. In addition, brain edema and brain water content were detected by MRI and wet/dry ratio analysis and histological examination, respectively. Immunohistochemical staining for albumin and western blotting for occludin, zonula occludens-1 and claudin-5 was performed to evaluate the integrity of the blood-brain barrier. Aquaporin 4 (AQP4) expression was also analyzed using western blotting and reverse transcription-quantitative PCR, whilst interleukin (IL)-1β and NF-κB levels were measured using ELISA. It was demonstrated that HS treatment significantly reduced brain edema in TBI rats and downregulated AQP4 expression in cerebral cortical tissues around the contusion site. In addition, IL-1β and NF-κB levels were found to be downregulated after 10% HS treatment. Therefore, results from the present study suggested that HS may protect against brain edema induced by TBI by modulating the expression levels of AQP4, NF-κB and IL-1β.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Neurosurgery, Jining No. 1 People's Hospital, Jining, Shandong 272111, P.R. China
| | - Jun Liu
- Department of Neurosurgery, Jining No. 1 People's Hospital, Jining, Shandong 272111, P.R. China
| | - Yunzhen Liu
- Department of Neurosurgery, Jining No. 1 People's Hospital, Jining, Shandong 272111, P.R. China
| | - Chunhai Su
- Department of Neurosurgery, Jining No. 1 People's Hospital, Jining, Shandong 272111, P.R. China
| | - Gaoyang Fan
- Department of Neurosurgery, Jining No. 1 People's Hospital, Jining, Shandong 272111, P.R. China
| | - Wenpeng Lu
- Department of Neurosurgery, Jining No. 1 People's Hospital, Jining, Shandong 272111, P.R. China
| | - Lei Feng
- Department of Neurosurgery, Jining No. 1 People's Hospital, Jining, Shandong 272111, P.R. China
| |
Collapse
|
17
|
Drug development in targeting ion channels for brain edema. Acta Pharmacol Sin 2020; 41:1272-1288. [PMID: 32855530 PMCID: PMC7609292 DOI: 10.1038/s41401-020-00503-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/02/2020] [Indexed: 12/18/2022] Open
Abstract
Cerebral edema is a pathological hallmark of various central nervous system (CNS) insults, including traumatic brain injury (TBI) and excitotoxic injury such as stroke. Due to the rigidity of the skull, edema-induced increase of intracranial fluid significantly complicates severe CNS injuries by raising intracranial pressure and compromising perfusion. Mortality due to cerebral edema is high. With mortality rates up to 80% in severe cases of stroke, it is the leading cause of death within the first week. Similarly, cerebral edema is devastating for patients of TBI, accounting for up to 50% mortality. Currently, the available treatments for cerebral edema include hypothermia, osmotherapy, and surgery. However, these treatments only address the symptoms and often elicit adverse side effects, potentially in part due to non-specificity. There is an urgent need to identify effective pharmacological treatments for cerebral edema. Currently, ion channels represent the third-largest target class for drug development, but their roles in cerebral edema remain ill-defined. The present review aims to provide an overview of the proposed roles of ion channels and transporters (including aquaporins, SUR1-TRPM4, chloride channels, glucose transporters, and proton-sensitive channels) in mediating cerebral edema in acute ischemic stroke and TBI. We also focus on the pharmacological inhibitors for each target and potential therapeutic strategies that may be further pursued for the treatment of cerebral edema.
Collapse
|
18
|
Liu ZH, Chen NY, Tu PH, Wu CT, Chiu SC, Huang YC, Lim SN, Yip PK. DHA Attenuates Cerebral Edema Following Traumatic Brain Injury via the Reduction in Blood-Brain Barrier Permeability. Int J Mol Sci 2020; 21:ijms21176291. [PMID: 32878052 PMCID: PMC7503959 DOI: 10.3390/ijms21176291] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) could result in edema and cause an increase in intracranial pressure of the brain resulting in mortality and morbidity. Although there is hyperosmolarity therapy available for this pathophysiological event, it remains controversial. Recently, several groups have shown docosahexaenoic acid (DHA) to improve functional and histological outcomes following brain injury based on reduction of neuroinflammation and apoptosis. However, the effect of DHA on blood-brain barrier (BBB) dysfunction after brain injury has not been fully studied. Here, a controlled cortical impact rat model was used to test the effect of a single dose of DHA administered 30 min post injury. Modified neurological severity score (mNSS) and forelimb asymmetry were used to determine the functional outcomes. Neuroimaging and histology were used to characterize the edema and BBB dysfunction. The study showed that DHA-treated TBI rats had better mNSS and forelimb asymmetry score than vehicle-treated TBI rats. Temporal analysis of edema using MRI revealed a significant reduction in edema level with DHA treatment compared to vehicle in TBI rats. Histological analysis using immunoglobulin G (IgG) extravasation showed that there was less extravasation, which corresponded with a reduction in aquaporin 4 and astrocytic metalloprotease 9 expression, and greater endothelial occludin expression in the peri-contusional site of the TBI rat brain treated with DHA in comparison to vehicle treatment. In conclusion, the study shows that DHA can exert its functional improvement by prevention of the edema formation via prevention of BBB dysfunction after TBI.
Collapse
Affiliation(s)
- Zhuo-Hao Liu
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Chang Gung Medical College and University, Taoyuan County 333, Taiwan; (P.-h.T.); (Y.-C.H.)
- Correspondence: (Z.-H.L.); (P.K.Y.)
| | - Nan-Yu Chen
- Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung Medical College and University, Taoyuan County 333, Taiwan;
| | - Po-hsun Tu
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Chang Gung Medical College and University, Taoyuan County 333, Taiwan; (P.-h.T.); (Y.-C.H.)
| | - Chen-Te Wu
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Chang Gung Medical College and University, Taoyuan County 333, Taiwan;
| | - Shao-Chieh Chiu
- Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital at Linkou, Taoyuan County 333, Taiwan;
| | - Ying-Cheng Huang
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Chang Gung Medical College and University, Taoyuan County 333, Taiwan; (P.-h.T.); (Y.-C.H.)
| | - Siew-Na Lim
- Department of Neurology, Chang Gung Memorial Hospital at Linkou, Chang Gung Medical College and University, Taoyuan County 333, Taiwan;
| | - Ping K. Yip
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Centre for Neuroscience, Surgery & Trauma, London E1 2AT, UK
- Correspondence: (Z.-H.L.); (P.K.Y.)
| |
Collapse
|
19
|
Szu JI, Patel DD, Chaturvedi S, Lovelace JW, Binder DK. Modulation of posttraumatic epileptogenesis in aquaporin-4 knockout mice. Epilepsia 2020; 61:1503-1514. [PMID: 32484924 DOI: 10.1111/epi.16551] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 05/05/2020] [Accepted: 05/05/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To determine the role of aquaporin-4 (AQP4) in posttraumatic epileptogenesis using long-term video-electroencephalographic (vEEG) recordings. Here, differences in EEG were analyzed between wild-type (WT) and AQP4 knockout (KO) mice and between mice with and without posttraumatic epilepsy (PTE). METHODS WT and AQP4 KO mice were subjected to a single controlled cortical impact traumatic brain injury (TBI) in the frontal cortex, and vEEG was recorded in the ipsilateral hippocampus at 14, 30, 60, and 90 days postinjury (dpi). Intrahippocampal electrical stimulation was also used to assess electrographic seizure threshold and electrographic seizure duration (ESD). RESULTS The mean seizure frequency per day for WT mice was 0.07 ± 0.07, 0.11 ± 0.07, 0.26 ± 0.13, and 0.12 ± 0.10 at 14, 30, 60, and 90 dpi, respectively. The mean seizure frequency per day for AQP4 KO mice was 0.45 ± 0.27, 0.29 ± 0.12, and 0.26 ± 0.19 at 14, 30, and 60 dpi, respectively. The mean seizure duration was 15 ± 2 seconds and 24 ± 3 seconds for WT and AQP4 KO mice, respectively. The percentage of mice that developed PTE were 28% and 37% for WT and AQP4 KO mice, respectively. Power spectral density (PSD) analysis revealed alterations in EEG frequency bands between sham and TBI in both genotypes. Additionally, PSD analysis of spontaneous recurrent seizures revealed alterations in delta power between genotypes. Morlet wavelet analysis detected heterogeneity in EEG seizure subtypes and dynamic EEG power patterns after TBI. Compared with AQP4 KO mice, a significant increase in ESD was observed in WT mice at 14 dpi. SIGNIFICANCE Posttraumatic seizures (PTSs) may be modulated by the astrocyte water channel AQP4. Absence of AQP4 increases the number of spontaneous seizures, increases seizure duration, and alters EEG power patterns of PTSs.
Collapse
Affiliation(s)
- Jenny I Szu
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Dillon D Patel
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Som Chaturvedi
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Jonathan W Lovelace
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Devin K Binder
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| |
Collapse
|
20
|
Li T, Zheng LN, Han XH. Fenretinide attenuates lipopolysaccharide (LPS)-induced blood-brain barrier (BBB) and depressive-like behavior in mice by targeting Nrf-2 signaling. Biomed Pharmacother 2020; 125:109680. [DOI: 10.1016/j.biopha.2019.109680] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/07/2019] [Accepted: 11/16/2019] [Indexed: 11/27/2022] Open
|
21
|
Zusman BE, Kochanek PM, Jha RM. Cerebral Edema in Traumatic Brain Injury: a Historical Framework for Current Therapy. Curr Treat Options Neurol 2020; 22:9. [PMID: 34177248 PMCID: PMC8223756 DOI: 10.1007/s11940-020-0614-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE OF REVIEW The purposes of this narrative review are to (1) summarize a contemporary view of cerebral edema pathophysiology, (2) present a synopsis of current management strategies in the context of their historical roots (many of which date back multiple centuries), and (3) discuss contributions of key molecular pathways to overlapping edema endophenotypes. This may facilitate identification of important therapeutic targets. RECENT FINDINGS Cerebral edema and resultant intracranial hypertension are major contributors to morbidity and mortality following traumatic brain injury. Although Starling forces are physical drivers of edema based on differences in intravascular vs extracellular hydrostatic and oncotic pressures, the molecular pathophysiology underlying cerebral edema is complex and remains incompletely understood. Current management protocols are guided by intracranial pressure measurements, an imperfect proxy for cerebral edema. These include decompressive craniectomy, external ventricular drainage, hyperosmolar therapy, hypothermia, and sedation. Results of contemporary clinical trials assessing these treatments are summarized, with an emphasis on the gap between intermediate measures of edema and meaningful clinical outcomes. This is followed by a brief statement summarizing the most recent guidelines from the Brain Trauma Foundation (4th edition). While many molecular mechanisms and networks contributing to cerebral edema after TBI are still being elucidated, we highlight some promising molecular mechanism-based targets based on recent research including SUR1-TRPM4, NKCC1, AQP4, and AVP1. SUMMARY This review outlines the origins of our understanding of cerebral edema, chronicles the history behind many current treatment approaches, and discusses promising molecular mechanism-based targeted treatments.
Collapse
Affiliation(s)
- Benjamin E. Zusman
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Institute for Clinical Research Education, University of Pittsburgh, Pittsburgh, PA, USA
- Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Patrick M. Kochanek
- Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Children’s Hospital of Pittsburgh, UPMC, Pittsburgh, PA, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, John G. Rangos Research Center, Pittsburgh, PA, USA
| | - Ruchira M. Jha
- Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, John G. Rangos Research Center, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
22
|
Toro-Urrego N, Turner LF, Avila-Rodriguez MF. New Insights into Oxidative Damage and Iron Associated Impairment in Traumatic Brain Injury. Curr Pharm Des 2020; 25:4737-4746. [DOI: 10.2174/1381612825666191111153802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/28/2019] [Indexed: 12/14/2022]
Abstract
:
Traumatic Brain Injury is considered one of the most prevalent causes of death around the world; more
than seventy millions of individuals sustain the condition per year. The consequences of traumatic brain injury on
brain tissue are complex and multifactorial, hence, the current palliative treatments are limited to improve patients’
quality of life. The subsequent hemorrhage caused by trauma and the ongoing oxidative process generated
by biochemical disturbances in the in the brain tissue may increase iron levels and reactive oxygen species. The
relationship between oxidative damage and the traumatic brain injury is well known, for that reason, diminishing
factors that potentiate the production of reactive oxygen species have a promissory therapeutic use. Iron chelators
are molecules capable of scavenging the oxidative damage from the brain tissue and are currently in use for ironoverload-
derived diseases.
:
Here, we show an updated overview of the underlying mechanisms of the oxidative damage after traumatic brain
injury. Later, we introduced the potential use of iron chelators as neuroprotective compounds for traumatic brain
injury, highlighting the action mechanisms of iron chelators and their current clinical applications.
Collapse
Affiliation(s)
- Nicolas Toro-Urrego
- Laboratorio de Citoarquitectura y Plasticidad Neuronal, Instituto de Investigaciones Cardiológicas, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Liliana F. Turner
- Grupo Modelos Experimentales para las Ciencias Zoohumanas - Departamento de Biología Facultad de Ciencias, Universidad del Tolima- Ibagué, Tolima, Colombia
| | - Marco F. Avila-Rodriguez
- Grupo Modelos Experimentales para las Ciencias Zoohumanas - Departamento de Ciencias Clínicas- Facultad de Ciencias de la Salud, Universidad del Tolima- Ibagué, Tolima, Colombia
| |
Collapse
|
23
|
Halstead MR, Geocadin RG. The Medical Management of Cerebral Edema: Past, Present, and Future Therapies. Neurotherapeutics 2019; 16:1133-1148. [PMID: 31512062 PMCID: PMC6985348 DOI: 10.1007/s13311-019-00779-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Cerebral edema is commonly associated with cerebral pathology, and the clinical manifestation is largely related to the underlying lesioned tissue. Brain edema usually amplifies the dysfunction of the lesioned tissue and the burden of cerebral edema correlates with increased morbidity and mortality across diseases. Our modern-day approach to the medical management of cerebral edema has largely revolved around, an increasingly artificial distinction between cytotoxic and vasogenic cerebral edema. These nontargeted interventions such as hyperosmolar agents and sedation have been the mainstay in clinical practice and offer noneloquent solutions to a dire problem. Our current understanding of the underlying molecular mechanisms driving cerebral edema is becoming much more advanced, with differences being identified across diseases and populations. As our understanding of the underlying molecular mechanisms in neuronal injury continues to expand, so too is the list of targeted therapies in the pipeline. Here we present a brief review of the molecular mechanisms driving cerebral edema and a current overview of our understanding of the molecular targets being investigated.
Collapse
Affiliation(s)
- Michael R Halstead
- Neurosciences Critical Care Division, Departments of Neurology, Anesthesiology-Critical Care Medicine and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA.
| | - Romergryko G Geocadin
- Neurosciences Critical Care Division, Departments of Neurology, Anesthesiology-Critical Care Medicine and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA
| |
Collapse
|
24
|
Yang WT, Wang Y, Shi YH, Fu H, Xu Z, Xu QQ, Zheng GQ. Herbal Compatibility of Ginseng and Rhubarb Exerts Synergistic Neuroprotection in Cerebral Ischemia/Reperfusion Injury of Rats. Front Physiol 2019; 10:1174. [PMID: 31572219 PMCID: PMC6753204 DOI: 10.3389/fphys.2019.01174] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/30/2019] [Indexed: 12/12/2022] Open
Abstract
Objective Ischemic stroke is a complex multifactorial disease caused by interactions among polygenetic, environmental, and lifestyle factors with limited effective treatments. Multi-herbal formulae have long been used for stroke through herbal compatibility in traditional Chinese medicine (TCM); however, there is still a lack of evidence due to their unimaginable complexity. Herbal pairs represent the simplest and basic features of multi-herbal formulae, which are of great significance in clarifying herbal compatibility. Here, we aim to investigate the neuroprotective effects of the herbal compatibility of Ginseng and Rhubarb on a cerebral ischemia/reperfusion (I/R) injury model of rats. Methods Male adult SD rats were randomly divided into a sham group, a normal saline (NS) group, a Ginseng group, a Rhubarb group, and a Ginseng + Rhubarb (GR) group, a Carbenoxolone [CBX, gap junction (GJ) specific inhibitor] group, and a GR + CBX group. Each group was further assigned into four subgroups according to ischemic time (6 h, 1 day, 3 days, and 7 days). The cerebral I/R injury model was established according to the modified Zea Longa method. The Neurological Deficiency Score (NDS) was assessed by the Zea-Longa scale; the cerebral infarction area was detected by TTC (2,3,5-triphenyltetrazolium chloride) staining; and the expression of connexin-43 (Cx43) and aquaporin-4 (AQP4) were detected based on an immunofluorescence technique and quantitative real-time-PCR. Results Compared to the I/R group, both the independent and combined use of Ginseng and Rhubarb can significantly improve NDS (P < 0.05), decrease the percentage of the cerebral infarction area around the infarction penumbra (P < 0.05) and down-regulate the expression of Cx43 and AQP4 after I/R injury (P < 0.05). The GR had more significant effects than that of Ginseng and Rhubarb (P < 0.05). Compared with the GR group, the GR + CBX group significantly improved in NDS (P < 0.05), and decreased the percentage of the cerebral infarction area (P < 0.05) and expression of Cx43 and AQP4 protein (P < 0.05). Conclusion The herbal compatibility of Ginseng and Rhubarb synergistically exerts neuroprotective function during acute cerebral I/R injury, mainly through reducing the expression of Cx43 and AQP4.
Collapse
Affiliation(s)
- Wen-Ting Yang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yong Wang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi-Hua Shi
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huan Fu
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhen Xu
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qing-Qing Xu
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guo-Qing Zheng
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
25
|
Sandsmark DK, Bashir A, Wellington CL, Diaz-Arrastia R. Cerebral Microvascular Injury: A Potentially Treatable Endophenotype of Traumatic Brain Injury-Induced Neurodegeneration. Neuron 2019; 103:367-379. [PMID: 31394062 PMCID: PMC6688649 DOI: 10.1016/j.neuron.2019.06.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/10/2019] [Accepted: 06/03/2019] [Indexed: 02/08/2023]
Abstract
Traumatic brain injury (TBI) is one the most common human afflictions, contributing to long-term disability in survivors. Emerging data indicate that functional improvement or deterioration can occur years after TBI. In this regard, TBI is recognized as risk factor for late-life neurodegenerative disorders. TBI encompasses a heterogeneous disease process in which diverse injury subtypes and multiple molecular mechanisms overlap. To develop precision medicine approaches where specific pathobiological processes are targeted by mechanistically appropriate therapies, techniques to identify and measure these subtypes are needed. Traumatic microvascular injury is a common but relatively understudied TBI endophenotype. In this review, we describe evidence of microvascular dysfunction in human and animal TBI, explore the role of vascular dysfunction in neurodegenerative disease, and discuss potential opportunities for vascular-directed therapies in ameliorating TBI-related neurodegeneration. We discuss the therapeutic potential of vascular-directed therapies in TBI and the use and limitations of preclinical models to explore these therapies.
Collapse
Affiliation(s)
| | - Asma Bashir
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| | - Cheryl L Wellington
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
26
|
Huang Y, Li SN, Zhou XY, Zhang LX, Chen GX, Wang TH, Xia QJ, Liang N, Zhang X. The Dual Role of AQP4 in Cytotoxic and Vasogenic Edema Following Spinal Cord Contusion and Its Possible Association With Energy Metabolism via COX5A. Front Neurosci 2019; 13:584. [PMID: 31258460 PMCID: PMC6587679 DOI: 10.3389/fnins.2019.00584] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 05/23/2019] [Indexed: 02/05/2023] Open
Abstract
Spinal cord edema, mainly including vasogenic and cytotoxic edema, influences neurological outcome after spinal cord contusion (SCC). Aquaporin 4 (AQP4) is the most ubiquitous water channel in the central nervous system (CNS), which is a rate-limiting factor in vasogenic edema expressing in brain injury, and it contributes to the formation of cytotoxic edema locating in astrocytes. However, little is known about the regulatory mechanism of AQP4 within vasogenic and cytotoxic edema in SCC, and whether the regulation mechanism of AQP4 is related to Cytochrome coxidase (COX5A) affecting energy metabolism. Therefore, the SCC model is established by Allen’s method, and the degree of edema and neuronal area is measured. The motor function of rats is evaluated by the Basso, Beattie, and Bresnahan (BBB) scoring system. Meanwhile, AQP4 and COX5A are detected by real-time quantitative PCR (qRT-PCR) and western blot (WB). The localization of targeted protein is exhibited by immunohistochemical staining (IHC) and immunofluorescence (IF). Additionally, the methodology of AQP4 lentivirus-mediated RNA interference (AQP4-RNAi) is used to reveal the effect on edema of SCC and the regulating molecular mechanism. Firstly, we observe that the tissue water content increases after SCC and decreases after the peak value of tissue water content at 3 days (P < 0.05) with abundant expression of AQP4 protein locating around vascular endothelial cells (VECs), which suggests that the increasing AQP4 promotes water reabsorption and improves vasogenic edema in the early stage of SCC. However, the neuronal area is larger than in the sham group in the 7 days (P < 0.05) with the total water content of spinal cord decrease. Meanwhile, AQP4 migrates from VECs to neuronal cytomembrane, which indicates that AQP4 plays a crucial role in aggravating the formation and development of cytotoxic edema in the middle stages of SCC. Secondly, AQP4-RNAi is used to elucidate the mechanism of AQP4 to edema of SCC. The neuronal area shrinks and the area of cytotoxic edema reduces after AQP4 downregulation. The BBB scores are significantly higher than in the vector group after AQP4-RNAi at 5, 7, and 14 (P < 0.05). There is a relationship between AQP4 and COX5A shown by bioinformatics analysis. After AQP4 inhibition, the expression of COX5A is significantly upregulated in the swelling astrocytes. Therefore, the inhibition of AQP4 expression reduces cytotoxic edema in SCC and improves motor function, which may be associated with upregulation of COX5A via affecting energy metabolism. Moreover, it is not clear how the inhibition of AQP4 directly causes the upregulation of COX5A.
Collapse
Affiliation(s)
- Yuan Huang
- Clinical Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Sheng-Nan Li
- Center for Experimental Technology of Preclinical Medicine, Chengdu Medical College, Chengdu, China
| | - Xiu-Ya Zhou
- Center for Experimental Technology of Preclinical Medicine, Chengdu Medical College, Chengdu, China
| | | | - Gang-Xian Chen
- Center for Experimental Technology of Preclinical Medicine, Chengdu Medical College, Chengdu, China
| | - Ting-Hua Wang
- Institute of Neuroscience, Kunming Medical University, Kunming, China.,Institute of Neurological Diseases, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qing-Jie Xia
- Institute of Neurological Diseases, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Nan Liang
- Center for Experimental Technology of Preclinical Medicine, Chengdu Medical College, Chengdu, China
| | - Xiao Zhang
- Center for Experimental Technology of Preclinical Medicine, Chengdu Medical College, Chengdu, China
| |
Collapse
|
27
|
Zhang Z, Zhou M, Liu N, Shi Z, Pang Y, Li D, Qi J, Wu H, An R. The protection of New Interacting Motif E shot (NIMoEsh) in mice with collagenase-induced acute stage of intracerebral hemorrhage. Brain Res Bull 2019; 148:70-78. [PMID: 30935978 DOI: 10.1016/j.brainresbull.2019.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/21/2019] [Accepted: 03/27/2019] [Indexed: 12/23/2022]
Abstract
Aberrant c-Jun N terminal kinase (JNK) activation is broadly involved in the pathogenesis of several acute and chronic neurological diseases. However, the mechanism of JNK activation leading to aggravation of injury after ICH remains unclear. In this study, we confirmed that using NIMoEsh to inhibit JNK activation effectively reduced the level of brain injury following ICH. We evaluated brain outcomes by histology, immunofluorescence, Luxol fast blue/Cresyl violet staining and other experimental methods. We found that NIMoEsh could significantly inhibit the activity of JNK and thus improve inflammation, white-matter damage and neuronal cell death after ICH in mice. Our results suggest that JNK activation plays an important role of brain damage after acute stage of ICH and that NIMoEsh may be a potential target drug for the treatment of ICH.
Collapse
Affiliation(s)
- Ze Zhang
- Department of Urology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Min Zhou
- Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin 150001, China
| | - Nana Liu
- Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin 150001, China
| | - Zhongkai Shi
- Radioimmunoassay Laboratory Department, Heilongjiang Province Hospital, Harbin 150036, China
| | - Yuxin Pang
- Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin 150001, China
| | - Danyang Li
- Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin 150001, China
| | - Jiping Qi
- Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin 150001, China
| | - He Wu
- Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin 150001, China.
| | - Ruihua An
- Department of Urology, First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
28
|
Szczygielski J, Hubertus V, Kruchten E, Müller A, Albrecht LF, Mautes AE, Schwerdtfeger K, Oertel J. Brain Edema Formation and Functional Outcome After Surgical Decompression in Murine Closed Head Injury Are Modulated by Acetazolamide Administration. Front Neurol 2019; 10:273. [PMID: 30972006 PMCID: PMC6443632 DOI: 10.3389/fneur.2019.00273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/01/2019] [Indexed: 11/13/2022] Open
Abstract
Acetazolamide (ACZ), carbonic anhydrase inhibitor, has been successfully applied in several neurosurgical conditions for diagnostic or therapeutic purposes. Furthermore, neuroprotective and anti-edematous properties of ACZ have been postulated. However, its use in traumatic brain injury (TBI) is limited, since ACZ-caused vasodilatation according to the Monro-Kellie doctrine may lead to increased intracranial blood volume / raise of intracranial pressure. We hypothesized that these negative effects of ACZ will be reduced or prevented, if the drug is administered after already performed decompression. To test this hypothesis, we used a mouse model of closed head injury (CHI) and decompressive craniectomy (DC). Mice were assigned into following experimental groups: sham, DC, CHI, CHI+ACZ, CHI+DC, and CHI+DC+ACZ (n = 8 each group). 1d and 3d post injury, the neurological function was assessed according to Neurological Severity Score (NSS) and Beam Balance Score (BBS). At the same time points, brain edema was quantified by MRI investigations. Functional impairment and edema volume were compared between groups and over time. Among the animals without skull decompression, the group additionally treated with acetazolamide demonstrated the most severe functional impairment. This pattern was reversed among the mice with decompressive craniectomy: CHI+DC treated but not CHI+DC+ACZ treated animals showed a significant neurological deficit. Accordingly, radiological assessment revealed most severe edema formation in the CHI+DC group while in CHI+DC+ACZ animals, volume of brain edema did not differ from DC-only animals. In our CHI model, the response to acetazolamide treatment varies between animals with decompressive craniectomy and those without surgical treatment. Opening the cranial vault potentially creates an opportunity for acetazolamide to exert its beneficial effects while vasodilatation-related risks are attenuated. Therefore, we recommend further exploration of this potentially beneficial drug in translational research projects.
Collapse
Affiliation(s)
- Jacek Szczygielski
- Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany.,Institute of Neuropathology, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany.,Faculty of Medicine, University of Rzeszów, Rzeszów, Poland
| | - Vanessa Hubertus
- Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany.,Department of Neurosurgery, Charité University Medicine, Berlin, Germany
| | - Eduard Kruchten
- Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany.,Institute of Interventional and Diagnostic Radiology, Karlsruhe Municipal Hospital, Karlsruhe, Germany
| | - Andreas Müller
- Department of Radiology, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
| | - Lisa Franziska Albrecht
- Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
| | - Angelika E Mautes
- Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
| | - Karsten Schwerdtfeger
- Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
| | - Joachim Oertel
- Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
| |
Collapse
|
29
|
Glushakova OY, Glushakov AV, Yang L, Hayes RL, Valadka AB. Intracranial Pressure Monitoring in Experimental Traumatic Brain Injury: Implications for Clinical Management. J Neurotrauma 2019; 37:2401-2413. [PMID: 30595079 DOI: 10.1089/neu.2018.6145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is often associated with long-term disability and chronic neurological sequelae. One common contributor to unfavorable outcomes is secondary brain injury, which is potentially treatable and preventable through appropriate management of patients in the neurosurgical intensive care unit. Intracranial pressure (ICP) is currently the predominant neurological-specific physiological parameter used to direct the care of severe TBI (sTBI) patients. However, recent clinical evidence has called into question the association of ICP monitoring with improved clinical outcome. The detailed cellular and molecular derangements associated with intracranial hypertension (IC-HTN) and their relationship to injury phenotype and neurological outcomes are not completely understood. Various animal models of TBI have been developed, but the clinical applicability of ICP monitoring in the pre-clinical setting has not been well-characterized. Linking basic mechanistic studies in translational TBI models with investigation of ICP monitoring that more faithfully replicates the clinical setting will provide clinical investigators with a more informed understanding of the pathophysiology of IC-HTN, thus facilitating development of improved therapies for sTBI patients.
Collapse
Affiliation(s)
- Olena Y Glushakova
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, Virginia, USA
| | | | - Likun Yang
- Department of Neurosurgery, The 101st Hospital of Chinese People's Liberation Army, Xuxi, Jiangsu, China
| | - Ronald L Hayes
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, Virginia, USA.,Banyan Biomarkers, Inc., Alachua, Florida, USA
| | - Alex B Valadka
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
30
|
Farr GW, Hall CH, Farr SM, Wade R, Detzel JM, Adams AG, Buch JM, Beahm DL, Flask CA, Xu K, LaManna JC, McGuirk PR, Boron WF, Pelletier MF. Functionalized Phenylbenzamides Inhibit Aquaporin-4 Reducing Cerebral Edema and Improving Outcome in Two Models of CNS Injury. Neuroscience 2019; 404:484-498. [PMID: 30738082 DOI: 10.1016/j.neuroscience.2019.01.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 01/23/2023]
Abstract
Cerebral edema in ischemic stroke can lead to increased intracranial pressure, reduced cerebral blood flow and neuronal death. Unfortunately, current therapies for cerebral edema are either ineffective or highly invasive. During the development of cytotoxic and subsequent ionic cerebral edema water enters the brain by moving across an intact blood brain barrier and through aquaporin-4 (AQP4) at astrocyte endfeet. Using AQP4-expressing cells, we screened small molecule libraries for inhibitors that reduce AQP4-mediated water permeability. Additional functional assays were used to validate AQP4 inhibition and identified a promising structural series for medicinal chemistry. These efforts improved potency and revealed a compound we designated AER-270, N-[3,5-bis (trifluoromethyl)phenyl]-5-chloro-2-hydroxybenzamide. AER-270 and a prodrug with enhanced solubility, AER-271 2-{[3,5-Bis(trifluoromethyl) phenyl]carbamoyl}-4-chlorophenyl dihydrogen phosphate, improved neurological outcome and reduced swelling in two models of CNS injury complicated by cerebral edema: water intoxication and ischemic stroke modeled by middle cerebral artery occlusion.
Collapse
Affiliation(s)
- George W Farr
- Aeromics, Inc., Cleveland, OH 44106, USA; Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | | | | | - Ramon Wade
- Aeromics, Inc., Cleveland, OH 44106, USA
| | | | | | | | - Derek L Beahm
- Department of Biology, Buffalo State College, Buffalo, NY 14222, USA
| | - Christopher A Flask
- Departments of Radiology, Biomedical Engineering and Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Kui Xu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Joseph C LaManna
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | - Walter F Boron
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | |
Collapse
|
31
|
Jha RM, Kochanek PM. A Precision Medicine Approach to Cerebral Edema and Intracranial Hypertension after Severe Traumatic Brain Injury: Quo Vadis? Curr Neurol Neurosci Rep 2018; 18:105. [PMID: 30406315 PMCID: PMC6589108 DOI: 10.1007/s11910-018-0912-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW Standard clinical protocols for treating cerebral edema and intracranial hypertension after severe TBI have remained remarkably similar over decades. Cerebral edema and intracranial hypertension are treated interchangeably when in fact intracranial pressure (ICP) is a proxy for cerebral edema but also other processes such as extent of mass lesions, hydrocephalus, or cerebral blood volume. A complex interplay of multiple molecular mechanisms results in cerebral edema after severe TBI, and these are not measured or targeted by current clinically available tools. Addressing these underpinnings may be key to preventing or treating cerebral edema and improving outcome after severe TBI. RECENT FINDINGS This review begins by outlining basic principles underlying the relationship between edema and ICP including the Monro-Kellie doctrine and concepts of intracranial compliance/elastance. There is a subsequent brief discussion of current guidelines for ICP monitoring/management. We then focus most of the review on an evolving precision medicine approach towards cerebral edema and intracranial hypertension after TBI. Personalization of invasive neuromonitoring parameters including ICP waveform analysis, pulse amplitude, pressure reactivity, and longitudinal trajectories are presented. This is followed by a discussion of cerebral edema subtypes (continuum of ionic/cytotoxic/vasogenic edema and progressive secondary hemorrhage). Mechanisms of potential molecular contributors to cerebral edema after TBI are reviewed. For each target, we present findings from preclinical models, and evaluate their clinical utility as biomarkers and therapeutic targets for cerebral edema reduction. This selection represents promising candidates with evidence from different research groups, overlap/inter-relatedness with other pathways, and clinical/translational potential. We outline an evolving precision medicine and translational approach towards cerebral edema and intracranial hypertension after severe TBI.
Collapse
Affiliation(s)
- Ruchira M Jha
- Department of Critical Care Medicine, Room 646A, Scaife Hall, 3550 Terrace Street, Pittsburgh, 15261, PA, USA.
- Safar Center for Resuscitation Research John G. Rangos Research Center, 6th Floor; 4401 Penn Avenue, Pittsburgh, PA, 15224, USA.
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Neurological Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Patrick M Kochanek
- Department of Critical Care Medicine, Room 646A, Scaife Hall, 3550 Terrace Street, Pittsburgh, 15261, PA, USA
- Safar Center for Resuscitation Research John G. Rangos Research Center, 6th Floor; 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- UPMC Children's Hospital of Pittsburgh John G. Rangos Research Center, 6th Floor 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| |
Collapse
|
32
|
Szczygielski J, Glameanu C, Müller A, Klotz M, Sippl C, Hubertus V, Schäfer KH, Mautes AE, Schwerdtfeger K, Oertel J. Changes in Posttraumatic Brain Edema in Craniectomy-Selective Brain Hypothermia Model Are Associated With Modulation of Aquaporin-4 Level. Front Neurol 2018; 9:799. [PMID: 30333785 PMCID: PMC6176780 DOI: 10.3389/fneur.2018.00799] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 09/04/2018] [Indexed: 12/19/2022] Open
Abstract
Both hypothermia and decompressive craniectomy have been considered as a treatment for traumatic brain injury. In previous experiments we established a murine model of decompressive craniectomy and we presented attenuated edema formation due to focal brain cooling. Since edema development is regulated via function of water channel proteins, our hypothesis was that the effects of decompressive craniectomy and of hypothermia are associated with a change in aquaporin-4 (AQP4) concentration. Male CD-1 mice were assigned into following groups (n = 5): sham, decompressive craniectomy, trauma, trauma followed by decompressive craniectomy and trauma + decompressive craniectomy followed by focal hypothermia. After 24 h, magnetic resonance imaging with volumetric evaluation of edema and contusion were performed, followed by ELISA analysis of AQP4 concentration in brain homogenates. Additional histopathological analysis of AQP4 immunoreactivity has been performed at more remote time point of 28d. Correlation analysis revealed a relationship between AQP4 level and both volume of edema (r2 = 0.45, p < 0.01, **) and contusion (r2 = 0.41, p < 0.01, **) 24 h after injury. Aggregated analysis of AQP4 level (mean ± SEM) presented increased AQP4 concentration in animals subjected to trauma and decompressive craniectomy (52.1 ± 5.2 pg/mL, p = 0.01; *), but not to trauma, decompressive craniectomy and hypothermia (45.3 ± 3.6 pg/mL, p > 0.05; ns) as compared with animals subjected to decompressive craniectomy only (32.8 ± 2.4 pg/mL). However, semiquantitative histopathological analysis at remote time point revealed no significant difference in AQP4 immunoreactivity across the experimental groups. This suggests that AQP4 is involved in early stages of brain edema formation after surgical decompression. The protective effect of selective brain cooling may be related to change in AQP4 response after decompressive craniectomy. The therapeutic potential of this interaction should be further explored.
Collapse
Affiliation(s)
- Jacek Szczygielski
- Department of Neurosurgery, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany.,Institute of Neuropathology, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany.,Faculty of Medicine, University of Rzeszów, Rzeszów, Poland
| | - Cosmin Glameanu
- Department of Neurosurgery, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Andreas Müller
- Department of Radiology, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Markus Klotz
- Working Group Enteric Nervous System (AGENS), University of Applied Sciences Kaiserslautern, Kaiserslautern, Germany
| | - Christoph Sippl
- Department of Neurosurgery, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Vanessa Hubertus
- Department of Neurosurgery, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany.,Department of Neurosurgery, Charité University Medicine, Berlin, Germany
| | - Karl-Herbert Schäfer
- Working Group Enteric Nervous System (AGENS), University of Applied Sciences Kaiserslautern, Kaiserslautern, Germany
| | - Angelika E Mautes
- Department of Neurosurgery, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Karsten Schwerdtfeger
- Department of Neurosurgery, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Joachim Oertel
- Department of Neurosurgery, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany
| |
Collapse
|
33
|
Jha RM, Molyneaux BJ, Jackson TC, Wallisch JS, Park SY, Poloyac S, Vagni VA, Janesko-Feldman KL, Hoshitsuki K, Minnigh MB, Kochanek PM. Glibenclamide Produces Region-Dependent Effects on Cerebral Edema in a Combined Injury Model of Traumatic Brain Injury and Hemorrhagic Shock in Mice. J Neurotrauma 2018; 35:2125-2135. [PMID: 29648981 PMCID: PMC6098411 DOI: 10.1089/neu.2016.4696] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Cerebral edema is critical to morbidity/mortality in traumatic brain injury (TBI) and is worsened by hypotension. Glibenclamide may reduce cerebral edema by inhibiting sulfonylurea receptor-1 (Sur1); its effect on diffuse cerebral edema exacerbated by hypotension/resuscitation is unknown. We aimed to determine if glibenclamide improves pericontusional and/or diffuse edema in controlled cortical impact (CCI) (5m/sec, 1 mm depth) plus hemorrhagic shock (HS) (35 min), and compare its effects in CCI alone. C57BL/6 mice were divided into five groups (n = 10/group): naïve, CCI+vehicle, CCI+glibenclamide, CCI+HS+vehicle, and CCI+HS+glibenclamide. Intravenous glibenclamide (10 min post-injury) was followed by a subcutaneous infusion for 24 h. Brain edema in injured and contralateral hemispheres was subsequently quantified (wet-dry weight). This protocol brain water (BW) = 80.4% vehicle vs. 78.3% naïve, p < 0.01) but was not reduced by glibenclamide (I%BW = 80.4%). Ipsilateral edema also developed in CCI alone (I%BW = 80.2% vehicle vs. 78.3% naïve, p < 0.01); again unaffected by glibenclamide (I%BW = 80.5%). Contralateral (C) %BW in CCI+HS was increased in vehicle (78.6%) versus naive (78.3%, p = 0.02) but unchanged in CCI (78.3%). At 24 h, glibenclamide treatment in CCI+HS eliminated contralateral cerebral edema (C%BW = 78.3%) with no difference versus naïve. By 72 h, contralateral cerebral edema had resolved (C%BW = 78.5 ± 0.09% vehicle vs. 78.3 ± 0.05% naïve). Glibenclamide decreased 24 h contralateral cerebral edema in CCI+HS. This beneficial effect merits additional exploration in the important setting of TBI with polytrauma, shock, and resuscitation. Contralateral edema did not develop in CCI alone. Surprisingly, 24 h of glibenclamide treatment failed to decrease ipsilateral edema in either model. Interspecies dosing differences versus prior studies may play an important role in these findings. Mechanisms underlying brain edema may differ regionally, with pericontusional/osmolar swelling refractory to glibenclamide but diffuse edema (via Sur1) from combined injury and/or resuscitation responsive to this therapy. TBI phenotype may mandate precision medicine approaches to treat brain edema.
Collapse
Affiliation(s)
- Ruchira M. Jha
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bradley J. Molyneaux
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Travis C. Jackson
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jessica S. Wallisch
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Seo-Young Park
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Samuel Poloyac
- Department of Pharmacy and Therapeutics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Vincent A. Vagni
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Keri L. Janesko-Feldman
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Keito Hoshitsuki
- Department of Pharmacy and Therapeutics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - M. Beth Minnigh
- Department of Pharmacy and Therapeutics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Patrick M. Kochanek
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Anesthesia, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
34
|
Li Y, Xu QQ, Shan CS, Shi YH, Wang Y, Zheng GQ. Combined Use of Emodin and Ginsenoside Rb1 Exerts Synergistic Neuroprotection in Cerebral Ischemia/Reperfusion Rats. Front Pharmacol 2018; 9:943. [PMID: 30233364 PMCID: PMC6127650 DOI: 10.3389/fphar.2018.00943] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/02/2018] [Indexed: 12/24/2022] Open
Abstract
Acute ischemic stroke (AIS) generally causes neurological dysfunction and poses a serious threat to public health. Here, we aimed to assess the independent and combined effects of ginsenoside Rb1 (GRb1) and Emodin on neuroprotection through regulating Connexin 43 (Cx43) and Aquaporin 4 (AQP4) expression in cerebral ischemia/reperfusion (I/R) model rats. Adult male Sprague-Dawley (SD) rats were randomly divided into five groups: sham group, I/R group, Emodin group, GRb1 group and Emodin+GRb1 group. They were further allocated to four subgroups according to the 6h, 1d, 3d, and 7d time points except the sham group. Based on the modified Longa suture method, the focal cerebral I/R model was established by middle cerebral artery occlusion (MCAO). The neurological deficit scores (NDS), blood brain barrier (BBB) permeability and cerebral infarction area were assessed at each corresponding time point. Cx43 and AQP4 levels were assessed by Real-time PCR and Immunofluorescence. Compared with I/R group, both the independent and combined use of GRb1 and Emodin could alleviate NDS, reduce the BBB permeability, reduce the infarction area and down-regulate Cx43 and AQP4 expression at 6h, 1d, 3d, and 7d after I/R (P < 0.05). The Emodin+GRb1 group had more significant effects than Emodin group and GRb1 group (P < 0.05). In conclusion, the combination of Emodin and GRb1 exerts synergistically neuroprotective functions through regulating AQP4 and Cx43 after I/R.
Collapse
Affiliation(s)
- Yan Li
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qing-Qing Xu
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chun-Shuo Shan
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi-Hua Shi
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yong Wang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guo-Qing Zheng
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
35
|
Pathophysiology and treatment of cerebral edema in traumatic brain injury. Neuropharmacology 2018; 145:230-246. [PMID: 30086289 DOI: 10.1016/j.neuropharm.2018.08.004] [Citation(s) in RCA: 244] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/24/2018] [Accepted: 08/03/2018] [Indexed: 12/30/2022]
Abstract
Cerebral edema (CE) and resultant intracranial hypertension are associated with unfavorable prognosis in traumatic brain injury (TBI). CE is a leading cause of in-hospital mortality, occurring in >60% of patients with mass lesions, and ∼15% of those with normal initial computed tomography scans. After treatment of mass lesions in severe TBI, an important focus of acute neurocritical care is evaluating and managing the secondary injury process of CE and resultant intracranial hypertension. This review focuses on a contemporary understanding of various pathophysiologic pathways contributing to CE, with a subsequent description of potential targeted therapies. There is a discussion of identified cellular/cytotoxic contributors to CE, as well as mechanisms that influence blood-brain-barrier (BBB) disruption/vasogenic edema, with the caveat that this distinction may be somewhat artificial since molecular processes contributing to these pathways are interrelated. While an exhaustive discussion of all pathways with putative contributions to CE is beyond the scope of this review, the roles of some key contributors are highlighted, and references are provided for further details. Potential future molecular targets for treating CE are presented based on pathophysiologic mechanisms. We thus aim to provide a translational synopsis of present and future strategies targeting CE after TBI in the context of a paradigm shift towards precision medicine. This article is part of the Special Issue entitled "Novel Treatments for Traumatic Brain Injury".
Collapse
|
36
|
Khalaf S, Ahmad AS, Chamara KR, Doré S. Unique Properties Associated with the Brain Penetrant Iron Chelator HBED Reveal Remarkable Beneficial Effects after Brain Trauma. J Neurotrauma 2018; 36:43-53. [PMID: 29743006 PMCID: PMC6306957 DOI: 10.1089/neu.2017.5617] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Iron is postulated to contribute to secondary injury after brain trauma through various pathways including oxidative stress and inflammation. Therefore, one goal is to limit iron toxicity by either directly limiting iron activity, or limiting the secondary cascade mediated by iron, therefore rescuing the brain from damage after trauma. The N,N'-Di(2-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid monohydrochloride (HBED) is a unique iron chelator that has the ability to cross the intact blood-brain barrier; it has a higher affinity to iron, and it has a longer half-life than most commonly used chelators. A controlled-cortical impact model of traumatic brain injury (TBI) was induced in mice. Mice were subcutaneously injected with HBED immediately after TBI, then at 12 h after, followed by a twice-a-day regimen until an end-point of 3 days. Neurobehavioral tests were performed daily. Cortical injury volume, hemispheric enlargement, and hippocampal swelling were quantified. Perls' iron immunostaining along with markers of gliosis, oxidative stress, and aquaporin (AQP) 4 were also performed. Data revealed that HBED treatment significantly decreases motor deficits and improves recovery after TBI. It also reduces cortical injury volume by 36.6 ± 6.8% (p < 0.001), hippocampal swelling by 23.4 ± 3.8% (p < 0.05), and total hemispheric volume by 13.3 ± 2.7% (p < 0.01). These effects are related to a reduction in microgliosis and oxidiative stress markers in the impacted corpus callosum area by 39.8 ± 7.3%, and by 80.5 ± 0.8% (p < 0.05), respectively. AQP4 staining is also attenuated in the hippocampus of HBED-treated mice. Therefore, our results suggest that HBED should be considered as a therapeutic tool to facilitate the recovery process following brain trauma.
Collapse
Affiliation(s)
- Saher Khalaf
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Abdullah Shafique Ahmad
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - K.V.D. Ranga Chamara
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Sylvain Doré
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, Florida
- Departments of Neurology, Psychiatry, Pharmaceutics, Psychology, and Neuroscience, University of Florida, Gainesville, Florida
| |
Collapse
|
37
|
Rodriguez-Grande B, Obenaus A, Ichkova A, Aussudre J, Bessy T, Barse E, Hiba B, Catheline G, Barrière G, Badaut J. Gliovascular changes precede white matter damage and long-term disorders in juvenile mild closed head injury. Glia 2018; 66:1663-1677. [DOI: 10.1002/glia.23336] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/09/2018] [Accepted: 03/16/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Beatriz Rodriguez-Grande
- CNRS UMR5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux; Bordeaux France
| | - Andre Obenaus
- CNRS UMR5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux; Bordeaux France
- Department of Pediatrics; Loma Linda University School of Medicine; Loma Linda California
- Basic Science Department; Loma Linda University School of Medicine; Loma Linda California
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences; UC Riverside; Riverside California
- Department of Pediatrics; University of California, Irvine; Irvine California
| | - Aleksandra Ichkova
- CNRS UMR5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux; Bordeaux France
| | - Justine Aussudre
- CNRS UMR5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux; Bordeaux France
| | - Thomas Bessy
- CNRS UMR5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux; Bordeaux France
| | - Elodie Barse
- CNRS UMR5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux; Bordeaux France
- EPHE, PSL; Bordeaux France
| | - Bassem Hiba
- CNRS UMR5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux; Bordeaux France
| | - Gwénaëlle Catheline
- CNRS UMR5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux; Bordeaux France
- EPHE, PSL; Bordeaux France
| | - Grégory Barrière
- CNRS UMR5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux; Bordeaux France
| | - Jerome Badaut
- CNRS UMR5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux; Bordeaux France
- Basic Science Department; Loma Linda University School of Medicine; Loma Linda California
| |
Collapse
|
38
|
Main BS, Villapol S, Sloley SS, Barton DJ, Parsadanian M, Agbaegbu C, Stefos K, McCann MS, Washington PM, Rodriguez OC, Burns MP. Apolipoprotein E4 impairs spontaneous blood brain barrier repair following traumatic brain injury. Mol Neurodegener 2018; 13:17. [PMID: 29618365 PMCID: PMC5885297 DOI: 10.1186/s13024-018-0249-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 03/21/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Traumatic Brain Injury (TBI) is a major cause of disability and mortality, to which there is currently no comprehensive treatment. Blood Brain Barrier (BBB) dysfunction is well documented in human TBI patients, yet the molecular mechanisms that underlie this neurovascular unit (NVU) pathology remains unclear. The apolipoprotein-E (apoE) protein has been implicated in controlling BBB integrity in an isoform dependent manner, via suppression of Cyclophilin A (CypA)-Matrix metallopeptidase-9 (MMP-9) signaling cascades, however the contribution of this pathway in TBI-induced BBB permeability is not fully investigated. METHODS We exposed C57Bl/6 mice to controlled cortical impact and assessed NVU and BBB permeability responses up to 21 days post-injury. We pharmacologically probed the role of the CypA-MMP-9 pathway in BBB permeability after TBI using Cyclosporin A (CsA, 20 mg/kg). Finally, as the apoE4 protein is known to be functionally deficient compared to the apoE3 protein, we used humanized APOE mice as a clinically relevant model to study the role of apoE on BBB injury and repair after TBI. RESULTS In C57Bl/6 mice there was an inverse relationship between soluble apoE and BBB permeability, such that damaged BBB stabilizes as apoE levels increase in the days following TBI. TBI mice displayed acute pericyte loss, increased MMP-9 production and activity, and reduced tight-junction expression. Treatment with the CypA antagonist CsA in C57Bl/6 mice attenuates MMP-9 responses and enhances BBB repair after injury, demonstrating that MMP-9 plays an important role in the timing of spontaneous BBB repair after TBI. We also show that apoe mRNA is present in both astrocytes and pericytes after TBI. We report that APOE3 and APOE4 mice have similar acute BBB responses to TBI, but APOE3 mice display faster spontaneous BBB repair than APOE4 mice. Isolated microvessel analysis reveals delayed pericyte repopulation, augmented and sustained MMP-9 expression at the NVU, and impaired stabilization of Zonula Occludens-1, Occludin and Claudin-5 expression at tight junctions in APOE4 mice after TBI compared to APOE3 mice. CONCLUSIONS These data confirm apoE as an important modulator of spontaneous BBB stabilization following TBI, and highlights the APOE4 allele as a risk factor for poor outcome after TBI.
Collapse
Affiliation(s)
- Bevan S Main
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Sonia Villapol
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Stephanie S Sloley
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - David J Barton
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Maia Parsadanian
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Chinyere Agbaegbu
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Kathryn Stefos
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Mondona S McCann
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Patricia M Washington
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Olga C Rodriguez
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Mark P Burns
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA. .,Department of Neuroscience, Georgetown University Medical Center, New Research Building-EG11, 3970 Reservoir Rd, NW, Washington, D.C, 20057, USA.
| |
Collapse
|
39
|
Leinonen V, Vanninen R, Rauramaa T. Raised intracranial pressure and brain edema. HANDBOOK OF CLINICAL NEUROLOGY 2018; 145:25-37. [PMID: 28987174 DOI: 10.1016/b978-0-12-802395-2.00004-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Acutely increased intracranial pressure (ICP) is a life-threatening neurosurgical emergency. Optimal management strategy is selected according to the causative process. Typical causes are intracranial bleeds like traumatic subdural, epidural, or intracerebral hematoma (ICH); spontaneous ICH, intraventricular hemorrhage, subarachnoid hemorrhage, and hydrocephalus. When occurring without significant brain injury and treated effectively before herniation, a full recovery can be expected. In intraparenchymal injuries a full recovery is unlikely since dead cells in the central nervous system leave an "empty hole," to be replaced by cerebrospinal fluid. The clinical recovery is based on the surviving cells that are able to make new synapses. Surgery may decrease ICP by removing significant mass effect. In all conditions, when notable injury of brain parenchyma occurs, brain edema may gradually increase ICP and further worsen the clinical condition. This is seen typically in large brain infarctions when the formation of brain edema may lead to increased ICP for hours and days. Brain edema is traditionally classified as vasogenic or cytotoxic but according to current knowledge is rather a continuum, starting with cytotoxic cell swelling followed by ionic edema and then vasogenic edema. Here we review the causes of increased ICP, including mechanisms of brain edema, with clinical examples.
Collapse
Affiliation(s)
- Ville Leinonen
- Department of Neurosurgery, Institute of Clinical Medicine, University of Eastern Finland and Department of Neurosurgery, NeuroCenter, Kuopio University Hospital, Kuopio, Finland.
| | - Ritva Vanninen
- Department of Radiology, Institute of Clinical Medicine, University of Eastern Finland and Department of Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Tuomas Rauramaa
- Department of Pathology, Institute of Clinical Medicine, University of Eastern Finland and Department of Pathology, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
40
|
Verkman AS, Smith AJ, Phuan PW, Tradtrantip L, Anderson MO. The aquaporin-4 water channel as a potential drug target in neurological disorders. Expert Opin Ther Targets 2017; 21:1161-1170. [PMID: 29072508 DOI: 10.1080/14728222.2017.1398236] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Aquaporin-4 (AQP4) is a water transporting protein expressed at the plasma membrane of astrocytes throughout the central nervous system (CNS). Analysis of AQP4 knockout mice has suggested its broad involvement in brain water balance, neuroexcitation, glial scarring, neuroinflammation, and even neurodegenerative and neuropsychiatric disorders. Broad clinical utility of AQP4 modulators has been speculated. Area covered: This review covers the biology of AQP4, evidence for its roles in normal CNS function and neurological disorders, and progress in AQP4 drug discovery. Expert opinion: Critical examination of available data reduces the lengthy potential applications list to AQP4 inhibitors for early therapy of ischemic stroke and perhaps for reduction of glial scarring following CNS injury. Major challenges in identification and clinical development of AQP4 inhibitors include the apparent poor druggability of AQPs, the many homologous AQP isoforms with broad tissue distribution and functions, technical issues with water transport assays, predicted undesired CNS and non-CNS actions, and the need for high blood-brain barrier permeation. To date, despite considerable effort, validated small-molecule AQP4 inhibitors have not been advanced. However, a biologic ('aquaporumab') is in development for neuromyelitis optica, an autoimmune inflammatory demyelinating disease where CNS pathology is initiated by binding of anti-AQP4 autoantibodies to astrocyte AQP4.
Collapse
Affiliation(s)
- Alan S Verkman
- a Departments of Medicine and Physiology , University of California , San Francisco , CA , USA
| | - Alex J Smith
- a Departments of Medicine and Physiology , University of California , San Francisco , CA , USA
| | - Puay-Wah Phuan
- a Departments of Medicine and Physiology , University of California , San Francisco , CA , USA
| | - Lukmanee Tradtrantip
- a Departments of Medicine and Physiology , University of California , San Francisco , CA , USA
| | - Marc O Anderson
- a Departments of Medicine and Physiology , University of California , San Francisco , CA , USA.,b Department of Chemistry and Biochemistry , San Francisco State University , San Francisco , CA , USA
| |
Collapse
|
41
|
Jha RM, Puccio AM, Okonkwo DO, Zusman BE, Park SY, Wallisch J, Empey PE, Shutter LA, Clark RSB, Kochanek PM, Conley YP. ABCC8 Single Nucleotide Polymorphisms are Associated with Cerebral Edema in Severe TBI. Neurocrit Care 2017; 26:213-224. [PMID: 27677908 DOI: 10.1007/s12028-016-0309-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Cerebral edema (CE) in traumatic brain injury (TBI) is the consequence of multiple underlying mechanisms and is associated with unfavorable outcomes. Genetic variability in these pathways likely explains some of the clinical heterogeneity observed in edema development. A role for sulfonylurea receptor-1 (Sur1) in CE is supported. However, there are no prior studies examining the effect of genetic variability in the Sur1 gene (ABCC8) on the development of CE. We hypothesize that ABCC8 single nucleotide polymorphisms (SNPs) are predictive of CE. METHODS DNA was extracted from 385 patients. SNPs in ABCC8 were genotyped using the Human Core Exome v1.2 (Illumina). CE measurements included acute CT edema, mean and peak intracranial pressure (ICP), and need for decompressive craniotomy. RESULTS Fourteen SNPs with minor allele frequency >0.2 were identified. Four SNPS rs2283261, rs3819521, rs2283258, and rs1799857 were associated with CE measures. In multiple regression models, homozygote-variant genotypes in rs2283261, rs3819521, and rs2283258 had increased odds of CT edema (OR 2.45, p = 0.007; OR 2.95, p = 0.025; OR 3.00, p = 0.013), had higher mean (β = 3.13, p = 0.000; β = 2.95, p = 0.005; β = 3.20, p = 0.008), and peak ICP (β = 8.00, p = 0.001; β = 7.64, p = 0.007; β = 6.89, p = 0.034). The homozygote wild-type genotype of rs1799857 had decreased odds of decompressive craniotomy (OR 0.47, p = 0.004). CONCLUSIONS This is the first report assessing the impact of ABCC8 genetic variability on CE development in TBI. Minor allele ABCC8 SNP genotypes had increased risk of CE, while major SNP alleles were protective-potentially suggesting an evolutionary advantage. These findings could guide risk stratification, treatment responders, and the development of novel targeted or gene-based therapies against CE in TBI and other neurological disorders.
Collapse
Affiliation(s)
- Ruchira M Jha
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA, 15261, USA. .,Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA. .,Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA. .,Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA. .,Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Ava M Puccio
- Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - David O Okonkwo
- Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Benjamin E Zusman
- Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Seo-Young Park
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jessica Wallisch
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA, 15261, USA.,Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Philip E Empey
- Department of Pharmacy and Therapeutics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA.,Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lori A Shutter
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA, 15261, USA.,Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert S B Clark
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA, 15261, USA.,Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Anesthesiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Patrick M Kochanek
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA, 15261, USA.,Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Anesthesiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yvette P Conley
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
42
|
Metabotropic glutamate receptor 5 deficiency inhibits neutrophil infiltration after traumatic brain injury in mice. Sci Rep 2017; 7:9998. [PMID: 28855570 PMCID: PMC5577182 DOI: 10.1038/s41598-017-10201-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/07/2017] [Indexed: 11/08/2022] Open
Abstract
Both brain native inflammatory cells and infiltrated peripheral white blood cells (WBCs) are primary participants in the brain inflammatory damage post-TBI. Metabotropic glutamate receptor 5 (mGluR5) has been reported to regulate microglias and astrocytes to affect inflammation after TBI, but its effect on modulating infiltrated peripheral WBCs remains unclear. In a mouse moderate TBI model, we found that mGluR5 knockout (KO) significantly reduced neutrophil infiltration and inflammatory cytokine expression in the brain at 24 hours post TBI, which was accompanied by improved neurological dysfunction. Further investigation indicated that mGluR5 KO reduced the permeability of blood-brain barrier (BBB), the entrance for neutrophils to enter brain, and markedly decreased the mRNA levels of neutrophil-associated chemokines in brain tissue, including CXCL1, CXCL2, CCL2, CCL4 and CCL5. Using brain microvascular endothelial cells (BMECs), neutrophils and a BBB model in vitro, we confirmed the inhibitory effect of mGluR5 deficiency on neutrophil infiltration and demonstrated that blockade of protein kinase C (PKC) signaling was involved in it. These results provide insight into the role of mGluR5 in the regulation of inflammation in the acute phase of TBI, which may provide novel clues for TBI therapy.
Collapse
|
43
|
Shi Z, Zhang W, Lu Y, Lu Y, Xu L, Fang Q, Wu M, Jia M, Wang Y, Dong L, Yan X, Yang S, Yuan F. Aquaporin 4-Mediated Glutamate-Induced Astrocyte Swelling Is Partially Mediated through Metabotropic Glutamate Receptor 5 Activation. Front Cell Neurosci 2017; 11:116. [PMID: 28503134 PMCID: PMC5408017 DOI: 10.3389/fncel.2017.00116] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/07/2017] [Indexed: 12/17/2022] Open
Abstract
Astrocytes are one of the most abundant cell types in the mammalian central nervous system (CNS), and astrocyte swelling is the primary event associated with brain edema. Glutamate, the principal excitatory amino acid neurotransmitter in the CNS, is released at high levels after brain injury including cerebral ischemia. This leads to astrocyte swelling, which we previously demonstrated is related to metabotropic glutamate receptor (mGluR) activation. Aquaporin 4 (AQP4), the predominant water channel in the brain, is expressed in astrocyte endfeet and plays an important role in brain edema following ischemia. Studies recently showed that mGluR5 is also expressed on astrocytes. Therefore, it is worth investigating whether AQP4 mediates the glutamate-induced swelling of astrocytes via mGluR5. In the present study, we found that 1 mM glutamate induced astrocyte swelling, quantified by the cell perimeter, but it had no effect on astrocyte viability measured by the cell counting kit-8 (CCK-8) and lactate dehydrogenase (LDH) assays. Quantitative reverse transcription polymerase chain reaction analyses revealed that AQP4, among AQP1, 4, 5, 9 and 11, was the main molecular expressed in cultured astrocytes. Glutamate-induced cell swelling was accompanied by a concentration-dependent change in AQP4 expression. Furthermore, RNAi technology revealed that AQP4 gene silencing inhibited glutamate-induced astrocyte swelling. Moreover, we found that mGluR5 expression was greatest among the mGluRs in cultured astrocytes and was co-expressed with AQP4. Activation of mGluR5 in cultured astrocytes using (S)-3,5-dihydroxyphenylglycine (DHPG), an mGluR5 agonist, mimicked the effect of glutamate. This effect was abolished by co-incubation with the mGluR5 antagonist fenobam but was not influenced by DL-threo-β-benzyloxyaspartic acid (DL-TBOA), a glutamate transporter inhibitor. Finally, experiments in a rat model of transient middle cerebral artery occlusion (tMCAO) revealed that co-expression of mGluR5 and AQP4 was increased in astrocyte endfeet around capillaries in the penumbra, and this was accompanied by brain edema. Collectively, these results suggest that glutamate induces cell swelling and alters AQP4 expression in astrocytes via mGluR5 activation, which may provide a novel approach for the treatment of edema following brain injury.
Collapse
Affiliation(s)
- Zhongfang Shi
- Department of Pathophysiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical UniversityBeijing, China.,China National Clinical Research Center for Neurological DiseasesBeijing, China.,Beijing Key Laboratory of Central Nervous System InjuryBeijing, China.,Center of Stroke, Beijing Institute for Brain DisordersBeijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseaseBeijing, China
| | - Wei Zhang
- Department of Pathophysiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical UniversityBeijing, China.,China National Clinical Research Center for Neurological DiseasesBeijing, China.,Beijing Key Laboratory of Central Nervous System InjuryBeijing, China.,Center of Stroke, Beijing Institute for Brain DisordersBeijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseaseBeijing, China
| | - Yang Lu
- Department of Pathophysiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical UniversityBeijing, China.,China National Clinical Research Center for Neurological DiseasesBeijing, China.,Beijing Key Laboratory of Central Nervous System InjuryBeijing, China.,Center of Stroke, Beijing Institute for Brain DisordersBeijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseaseBeijing, China
| | - Yi Lu
- Department of Pathophysiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical UniversityBeijing, China.,China National Clinical Research Center for Neurological DiseasesBeijing, China.,Beijing Key Laboratory of Central Nervous System InjuryBeijing, China.,Center of Stroke, Beijing Institute for Brain DisordersBeijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseaseBeijing, China
| | - Lixin Xu
- Department of Pathophysiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical UniversityBeijing, China.,China National Clinical Research Center for Neurological DiseasesBeijing, China.,Beijing Key Laboratory of Central Nervous System InjuryBeijing, China.,Center of Stroke, Beijing Institute for Brain DisordersBeijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseaseBeijing, China
| | - Qing Fang
- Department of Pathophysiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical UniversityBeijing, China.,China National Clinical Research Center for Neurological DiseasesBeijing, China.,Beijing Key Laboratory of Central Nervous System InjuryBeijing, China.,Center of Stroke, Beijing Institute for Brain DisordersBeijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseaseBeijing, China
| | - Min Wu
- Department of Pathophysiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical UniversityBeijing, China.,China National Clinical Research Center for Neurological DiseasesBeijing, China.,Beijing Key Laboratory of Central Nervous System InjuryBeijing, China.,Center of Stroke, Beijing Institute for Brain DisordersBeijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseaseBeijing, China
| | - Mei Jia
- Department of Pathophysiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical UniversityBeijing, China.,China National Clinical Research Center for Neurological DiseasesBeijing, China.,Beijing Key Laboratory of Central Nervous System InjuryBeijing, China.,Center of Stroke, Beijing Institute for Brain DisordersBeijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseaseBeijing, China
| | - Yujiao Wang
- Department of Pathophysiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical UniversityBeijing, China.,China National Clinical Research Center for Neurological DiseasesBeijing, China.,Beijing Key Laboratory of Central Nervous System InjuryBeijing, China.,Center of Stroke, Beijing Institute for Brain DisordersBeijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseaseBeijing, China
| | - Liping Dong
- Department of Pathophysiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical UniversityBeijing, China.,China National Clinical Research Center for Neurological DiseasesBeijing, China.,Beijing Key Laboratory of Central Nervous System InjuryBeijing, China.,Center of Stroke, Beijing Institute for Brain DisordersBeijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseaseBeijing, China
| | - Xu Yan
- Department of Pathophysiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical UniversityBeijing, China.,China National Clinical Research Center for Neurological DiseasesBeijing, China.,Beijing Key Laboratory of Central Nervous System InjuryBeijing, China.,Center of Stroke, Beijing Institute for Brain DisordersBeijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseaseBeijing, China
| | - Shaohua Yang
- Department of Pathophysiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical UniversityBeijing, China.,China National Clinical Research Center for Neurological DiseasesBeijing, China.,Beijing Key Laboratory of Central Nervous System InjuryBeijing, China.,Center of Stroke, Beijing Institute for Brain DisordersBeijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseaseBeijing, China.,Department of Pharmacology and Neuroscience, University of North Texas Health Science CenterFort Worth, TX, USA
| | - Fang Yuan
- Department of Pathophysiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical UniversityBeijing, China.,China National Clinical Research Center for Neurological DiseasesBeijing, China.,Beijing Key Laboratory of Central Nervous System InjuryBeijing, China.,Center of Stroke, Beijing Institute for Brain DisordersBeijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseaseBeijing, China
| |
Collapse
|
44
|
Hubbard JA, Szu JI, Binder DK. The role of aquaporin-4 in synaptic plasticity, memory and disease. Brain Res Bull 2017; 136:118-129. [PMID: 28274814 DOI: 10.1016/j.brainresbull.2017.02.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 12/25/2022]
Abstract
Since the discovery of aquaporins, it has become clear that the various mammalian aquaporins play critical physiological roles in water and ion balance in multiple tissues. Aquaporin-4 (AQP4), the principal aquaporin expressed in the central nervous system (CNS, brain and spinal cord), has been shown to mediate CNS water homeostasis. In this review, we summarize new and exciting studies indicating that AQP4 also plays critical and unanticipated roles in synaptic plasticity and memory formation. Next, we consider the role of AQP4 in Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), multiple sclerosis (MS), neuromyelitis optica (NMO), epilepsy, traumatic brain injury (TBI), and stroke. Each of these conditions involves changes in AQP4 expression and/or distribution that may be functionally relevant to disease physiology. Insofar as AQP4 is exclusively expressed on astrocytes, these data provide new evidence of "astrocytopathy" in the etiology of diverse neurological diseases.
Collapse
Affiliation(s)
- Jacqueline A Hubbard
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, United States
| | - Jenny I Szu
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, United States
| | - Devin K Binder
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, United States.
| |
Collapse
|
45
|
Jha RM, Puccio AM, Chou SHY, Chang CCH, Wallisch JS, Molyneaux BJ, Zusman BE, Shutter LA, Poloyac SM, Janesko-Feldman KL, Okonkwo DO, Kochanek PM. Sulfonylurea Receptor-1: A Novel Biomarker for Cerebral Edema in Severe Traumatic Brain Injury. Crit Care Med 2017; 45:e255-e264. [PMID: 27845954 PMCID: PMC5550829 DOI: 10.1097/ccm.0000000000002079] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Cerebral edema is a key poor prognosticator in traumatic brain injury. There are no biomarkers identifying patients at-risk, or guiding mechanistically-precise therapies. Sulfonylurea receptor-1-transient receptor potential cation channel M4 is upregulated only after brain injury, causing edema in animal studies. We hypothesized that sulfonylurea receptor-1 is measurable in human cerebrospinal fluid after severe traumatic brain injury and is an informative biomarker of edema and outcome. DESIGN A total of 119 cerebrospinal fluid samples were collected from 28 severe traumatic brain injury patients. Samples were retrieved at 12, 24, 48, 72 hours and before external ventricular drain removal. Fifteen control samples were obtained from patients with normal pressure hydrocephalus. Sulfonylurea receptor- 1 was quantified by enzyme-linked immunosorbent assay. Outcomes included CT edema, intracranial pressure measurements, therapies targeting edema, and 3-month Glasgow Outcome Scale score. MAIN RESULTS Sulfonylurea receptor-1 was present in all severe traumatic brain injury patients (mean = 3.54 ± 3.39 ng/mL, peak = 7.13 ± 6.09 ng/mL) but undetectable in all controls (p < 0.001). Mean and peak sulfonylurea receptor-1 was higher in patients with CT edema (4.96 ± 1.13 ng/mL vs 2.10 ± 0.34 ng/mL; p = 0.023). There was a temporal delay between peak sulfonylurea receptor-1 and peak intracranial pressure in 91.7% of patients with intracranial hypertension. There was no association between mean/peak sulfonylurea receptor-1 and mean/peak intracranial pressure, proportion of intracranial pressure greater than 20 mm Hg, use of edema-directed therapies, decompressive craniotomy, or 3-month Glasgow Outcome Scale. However, decreasing sulfonylurea receptor-1 trajectories between 48 and 72 hours were significantly associated with improved cerebral edema and clinical outcome. Area under the multivariate model receiver operating characteristic curve was 0.881. CONCLUSIONS This is the first report quantifying human cerebrospinal fluid sulfonylurea receptor-1. Sulfonylurea receptor-1 was detected in severe traumatic brain injury, absent in controls, correlated with CT-edema and preceded peak intracranial pressure. Sulfonylurea receptor-1 trajectories between 48 and 72 hours were associated with outcome. Because a therapy inhibiting sulfonylurea receptor-1 is available, assessing cerebrospinal fluid sulfonylurea receptor-1 in larger studies is warranted to evaluate our exploratory findings regarding its diagnostic, and monitoring utility, as well as its potential to guide targeted therapies in traumatic brain injury and other diseases involving cerebral edema.
Collapse
Affiliation(s)
- Ruchira M Jha
- 1Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA. 2Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA. 3Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA. 4Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA. 5Clinical and Translational Science, School of Medicine, University of Pittsburgh, Pittsburgh, PA. 6Department of Biostatistics, School of Medicine, University of Pittsburgh, Pittsburgh, PA. 7Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA. 8Department of Anesthesiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Aquaporins (AQPs ) mediate water flux between the four distinct water compartments in the central nervous system (CNS). In the present chapter, we mainly focus on the expression and function of the 9 AQPs expressed in the CNS, which include five members of aquaporin subfamily: AQP1, AQP4, AQP5, AQP6, and AQP8; three members of aquaglyceroporin subfamily: AQP3, AQP7, and AQP9; and one member of superaquaporin subfamily: AQP11. In addition, AQP1, AQP2 and AQP4 expressed in the peripheral nervous system (PNS) are also reviewed. AQP4, the predominant water channel in the CNS, is involved both in the astrocyte swelling of cytotoxic edema and the resolution of vasogenic edema, and is of pivotal importance in the pathology of brain disorders such as neuromyelitis optica , brain tumors and Alzheimer's disease. Other AQPs are also involved in a variety of important physiological and pathological process in the brain. It has been suggested that AQPs could represent an important target in treatment of brain disorders like cerebral edema. Future investigations are necessary to elucidate the pathological significance of AQPs in the CNS.
Collapse
|
47
|
Winkler EA, Minter D, Yue JK, Manley GT. Cerebral Edema in Traumatic Brain Injury. Neurosurg Clin N Am 2016; 27:473-88. [DOI: 10.1016/j.nec.2016.05.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
48
|
Finan JD, Cho FS, Kernie SG, Morrison B. Intracerebroventricular administration of chondroitinase ABC reduces acute edema after traumatic brain injury in mice. BMC Res Notes 2016; 9:160. [PMID: 26969621 PMCID: PMC4788921 DOI: 10.1186/s13104-016-1968-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/29/2016] [Indexed: 11/29/2022] Open
Abstract
Background Brain edema is a significant challenge facing clinicians managing severe traumatic brain injury (TBI) in the acute period. If edema reaches a critical point, it leads to runaway intracranial hypertension that, in turn, leads to severe morbidity or death if left untreated. Clinical data on the efficacy of standard interventions is mixed. The goal of this study was to validate a novel therapeutic strategy for reducing post-traumatic brain edema in a mouse model. Prior in vitro work reported that the brain swells due to coupled electrostatic and osmotic forces generated by large, negatively charged, immobile molecules in the matrix that comprises brain tissue. Chondroitinase ABC (ChABC) digests chondroitin sulfate proteoglycan, a molecule that contributes to this negative charge. Therefore, we administered ChABC by intracerebroventricular (ICV) injection after controlled cortical impact TBI in the mouse and measured associated changes in edema. Results Almost half of the edema induced by injury was eliminated by ChABC treatment. Conclusions ICV administration of ChABC may be a novel and effective method of treating post-traumatic brain edema in the acute period.
Collapse
Affiliation(s)
- John D Finan
- Department of Neurosurgery, NorthShore University Health System, 1001 University Place, Evanston, IL, 60201, USA
| | - Frances S Cho
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, Mail Code 8904, 1210 Amsterdam Avenue, New York, NY, 10027, USA
| | - Steven G Kernie
- Department of Pediatrics and Pathology and Cell Biology, Columbia University Medical Center, 3959 Broadway, CHN 10-24, New York, NY, 10032, USA
| | - Barclay Morrison
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, Mail Code 8904, 1210 Amsterdam Avenue, New York, NY, 10027, USA.
| |
Collapse
|
49
|
Sajja VSSS, Hlavac N, VandeVord PJ. Role of Glia in Memory Deficits Following Traumatic Brain Injury: Biomarkers of Glia Dysfunction. Front Integr Neurosci 2016; 10:7. [PMID: 26973475 PMCID: PMC4770450 DOI: 10.3389/fnint.2016.00007] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 02/05/2016] [Indexed: 12/15/2022] Open
Abstract
Historically, glial cells have been recognized as a structural component of the brain. However, it has become clear that glial cells are intimately involved in the complexities of neural networks and memory formations. Astrocytes, microglia, and oligodendrocytes have dynamic responsibilities which substantially impact neuronal function and activities. Moreover, the importance of glia following brain injury has come to the forefront in discussions to improve axonal regeneration and functional recovery. The numerous activities of glia following injury can either promote recovery or underlie the pathobiology of memory deficits. This review outlines the pathological states of glial cells which evolve from their positive supporting roles to those which disrupt synaptic function and neuroplasticity following injury. Evidence suggests that glial cells interact extensively with neurons both chemically and physically, reinforcing their role as pivotal for higher brain functions such as learning and memory. Collectively, this mini review surveys investigations of how glial dysfunction following brain injury can alter mechanisms of synaptic plasticity and how this may be related to an increased risk for persistent memory deficits. We also include recent findings, that demonstrate new molecular avenues for clinical biomarker discovery.
Collapse
Affiliation(s)
- Venkata S S S Sajja
- Cellular Imaging Section and Vascular Biology Program, Department of Radiology and Radiological Science, Institute for Cell Engineering, Johns Hopkins University School of Medicine Baltimore, MA, USA
| | - Nora Hlavac
- Department of Biomedical Engineering and Mechanics, Virginia Tech University Blacksburg, VA, USA
| | - Pamela J VandeVord
- Department of Biomedical Engineering and Mechanics, Virginia Tech University Blacksburg, VA, USA
| |
Collapse
|