1
|
Singhal G, Baune BT. A bibliometric analysis of studies on environmental enrichment spanning 1967-2024: patterns and trends over the years. Front Behav Neurosci 2024; 18:1501377. [PMID: 39697184 PMCID: PMC11652173 DOI: 10.3389/fnbeh.2024.1501377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/11/2024] [Indexed: 12/20/2024] Open
Abstract
Environmental Enrichment (EE) has received considerable attention for its potential to enhance cognitive and neurobiological outcomes in animal models. This bibliometric analysis offers a comprehensive evaluation of the EE research spanning from 1967 to 2024, utilizing data extracted from Scopus and analyzed through R and VOSviewer. The volume of publications, citation patterns, and collaborations were systematically reviewed, highlighting important contributions and emerging trends within the field of animal research. Core concepts of EE research are mapped, revealing key themes such as neuroplasticity, cognitive function, and behavioral outcomes. A significant increase in EE research is demonstrated, particularly after the year 2000, reflecting growing scientific and public interest in EE paradigms. This analysis provides insights into the global contributions and collaborative networks that have shaped EE studies over time. The role of EE in advancing the understanding of neurobiological, neurodevelopmental, and neurodegenerative processes is underscored. Influential contributors, leading countries, and high-impact journals in the field of EE are identified, offering a valuable resource for researchers seeking to understand or extend the current knowledge base. The strategic selection of keywords and rigorous data curation methods ensure that the findings accurately reflect the most impactful aspects of EE research in animals. This study serves as an essential reference for future explorations and applications of EE across disciplines. By providing a clear and structured overview of the field, this paper aims to serve as a foundation for ongoing and future research initiatives, encouraging more robust investigations and applications of EE to enhance cognitive and neurological health globally.
Collapse
Affiliation(s)
- Gaurav Singhal
- Division of Otolaryngology - Head & Neck Surgery, Department of Surgery, University of Wisconsin, Madison, WI, United States
| | - Bernhard T. Baune
- Department of Mental Health, University of Münster, Münster, Germany
| |
Collapse
|
2
|
Davis CK, Arruri V, Joshi P, Vemuganti R. Non-pharmacological interventions for traumatic brain injury. J Cereb Blood Flow Metab 2024; 44:641-659. [PMID: 38388365 PMCID: PMC11197135 DOI: 10.1177/0271678x241234770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
Heterogeneity and variability of symptoms due to the type, site, age, sex, and severity of injury make each case of traumatic brain injury (TBI) unique. Considering this, a universal treatment strategy may not be fruitful in managing outcomes after TBI. Most of the pharmacological therapies for TBI aim at modifying a particular pathway or molecular process in the sequelae of secondary injury rather than a holistic approach. On the other hand, non-pharmacological interventions such as hypothermia, hyperbaric oxygen, preconditioning with dietary adaptations, exercise, environmental enrichment, deep brain stimulation, decompressive craniectomy, probiotic use, gene therapy, music therapy, and stem cell therapy can promote healing by modulating multiple neuroprotective mechanisms. In this review, we discussed the major non-pharmacological interventions that are being tested in animal models of TBI as well as in clinical trials. We evaluated the functional outcomes of various interventions with an emphasis on the links between molecular mechanisms and outcomes after TBI.
Collapse
Affiliation(s)
- Charles K Davis
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Vijay Arruri
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Pallavi Joshi
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
- Neuroscience Training Program, University of Wisconsin, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
- Neuroscience Training Program, University of Wisconsin, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| |
Collapse
|
3
|
Nie L, He J, Wang J, Wang R, Huang L, Jia L, Kim YT, Bhawal UK, Fan X, Zille M, Jiang C, Chen X, Wang J. Environmental Enrichment for Stroke and Traumatic Brain Injury: Mechanisms and Translational Implications. Compr Physiol 2023; 14:5291-5323. [PMID: 38158368 DOI: 10.1002/cphy.c230007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Acquired brain injuries, such as ischemic stroke, intracerebral hemorrhage (ICH), and traumatic brain injury (TBI), can cause severe neurologic damage and even death. Unfortunately, currently, there are no effective and safe treatments to reduce the high disability and mortality rates associated with these brain injuries. However, environmental enrichment (EE) is an emerging approach to treating and rehabilitating acquired brain injuries by promoting motor, sensory, and social stimulation. Multiple preclinical studies have shown that EE benefits functional recovery, including improved motor and cognitive function and psychological benefits mediated by complex protective signaling pathways. This article provides an overview of the enriched environment protocols used in animal models of ischemic stroke, ICH, and TBI, as well as relevant clinical studies, with a particular focus on ischemic stroke. Additionally, we explored studies of animals with stroke and TBI exposed to EE alone or in combination with multiple drugs and other rehabilitation modalities. Finally, we discuss the potential clinical applications of EE in future brain rehabilitation therapy and the molecular and cellular changes caused by EE in rodents with stroke or TBI. This article aims to advance preclinical and clinical research on EE rehabilitation therapy for acquired brain injury. © 2024 American Physiological Society. Compr Physiol 14:5291-5323, 2024.
Collapse
Affiliation(s)
- Luwei Nie
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinxin He
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
- Key Laboratory for Brain Science Research and Transformation in the Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Ruike Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Leo Huang
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Lin Jia
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yun Tai Kim
- Division of Functional Food Research, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
- Department of Food Biotechnology, Korea University of Science & Technology, Daejeon, Republic of Korea
| | - Ujjal K Bhawal
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, Japan
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Xiaochong Fan
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Marietta Zille
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Chao Jiang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xuemei Chen
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jian Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
4
|
Pre-Exposure to Environmental Enrichment Protects against Learning and Memory Deficits Caused by Infrasound Exposure. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6208872. [PMID: 35620581 PMCID: PMC9129996 DOI: 10.1155/2022/6208872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/28/2022] [Accepted: 04/28/2022] [Indexed: 11/18/2022]
Abstract
With the development of industrialization in recent years, infrasound has become an important component of public noise. To date, diverse studies have revealed the negative effects of infrasound on the central nervous system (CNS), especially the learning and memory ability. It is widely reported that environmental enrichment (EE) ameliorates the learning and memory deficits in different models of brain injury. Therefore, the present study was designed to determine the possible benefits of pre-exposure to EE in preventing functional deficits following infrasound exposure and their related mechanism. Adult male rats were given enriched or standard housing for 30 days. Following enrichment, the rats were exposed to 16 Hz, 130 dB infrasound for 14 days, and then their learning and memory ability was assessed. Changes to neuroinflammation, apoptosis, and oxidative stress in the hippocampus were also detected. Our results showed that the infrasound-induced deficit in learning and memory was attenuated significantly in EE pre-exposed rats. Pre-exposure to EE could induce a decrease in proinflammatory cytokines and increased anti-inflammatory cytokines and antioxidant properties in the hippocampus. Moreover, pre-exposure to EE also exerted antiapoptosis functions by upregulating the B-cell lymphoma/leukemia-2 (Bcl-2) level and downregulating the P53 level in the hippocampus. In conclusion, the results of the present study suggested that EE is neuroprotective when applied before infrasound exposure, resulting in an improved learning and memory ability by enhancing antioxidant, anti-inflammatory, and antiapoptosis capacities.
Collapse
|
5
|
Burns TF, Rajan R. Temporal activity patterns of layer II and IV rat barrel cortex neurons in healthy and injured conditions. Physiol Rep 2022; 10:e15155. [PMID: 35194970 PMCID: PMC8864447 DOI: 10.14814/phy2.15155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/21/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023] Open
Abstract
Neurons are known to encode information not just by how frequently they fire, but also at what times they fire. However, characterizations of temporal encoding in sensory cortices under conditions of health and injury are limited. Here we characterized and compared the stimulus-evoked activity of 1210 online-sorted units in layers II and IV of rat barrel cortex under healthy and diffuse traumatic brain injury (TBI) (caused by a weight-drop model) conditions across three timepoints post-injury: four days, two weeks, and eight weeks. Temporal activity patterns in the first 50 ms post-stimulus recording showed four categories of responses: no response or 1, 2, or 3 temporally-distinct response components, that is, periods of high unit activity separated by silence. The relative proportions of unit response categories were similar between layers II and IV in healthy conditions but not in early post-TBI conditions. For units with multiple response components, inter-component timings were reliable in healthy and late post-TBI conditions but disrupted by injury. Response component times typically shifted earlier with increasing stimulus intensity and this was more pronounced in layer IV than layer II. Surprisingly, injury caused a reversal of this trend and in the late post-TBI condition no stimulus intensity-dependence differences were observed between layers II and IV. We speculate this indicates a potential compensatory mechanism in response to injury. These results demonstrate how temporal encoding features maladapt or functionally recover differently in sensory cortex after TBI. Such maladaptation or functional recovery is layer-dependent, perhaps due to differences in thalamic input or local inhibitory neuronal makeup.
Collapse
Affiliation(s)
- Thomas F. Burns
- Biomedicine Discovery InstituteMonash UniversityVictoriaAustralia
| | - Ramesh Rajan
- Biomedicine Discovery InstituteMonash UniversityVictoriaAustralia
| |
Collapse
|
6
|
Jiang S, Wang YQ, Tang Y, Lu X, Guo D. Environmental Enrichment Protects Against Sepsis-Associated Encephalopathy-Induced Learning and Memory Deficits by Enhancing the Synthesis and Release of Vasopressin in the Supraoptic Nucleus. J Inflamm Res 2022; 15:363-379. [PMID: 35079222 PMCID: PMC8776728 DOI: 10.2147/jir.s345108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/07/2022] [Indexed: 12/28/2022] Open
Abstract
Background As a severe complication of sepsis, sepsis-associated encephalopathy (SAE) usually manifests as impaired learning and memory ability in survivors. Previous studies have reported that environmental enrichment (EE) can increase the learning and memory ability in different brain injury models. However, there has been no research on the possible positive effect of EE on SAE. Aim The present study aimed to test the effect of EE on SAE-induced impairment of learning and memory and its related mechanisms. Methods A Morris water maze test (MWM) was used to evaluate the learning and memory ability of SAE rats that received EE housing or not. The expression of vasopressin (VP) was assessed using immunofluorescence microscopy and enzyme-linked immunosorbent assays (ELISAs). The synthesis of VP in the supraoptic nucleus (SON) was determined using quantitative real-time reverse transcription-PCR analysis. Moreover, inflammatory markers and brain-derived neurotrophic factor (BDNF) were detected using ELISA. Results The results showed that SAE induced a decreased learning and memory ability, while EE reversed this impairment. EE also enhanced the synthesis and secretion of VP in the SON. Blocking the action of VP in the hippocampus interrupted the EE-induced amelioration of learning and memory impairment. Moreover, EE induced changes to the levels of BDNF and cytokines in the hippocampus and these effects were mediated by VP binding to the VP receptor 1a. Conclusion Our findings demonstrated that the enhanced synthesis and secretion of VP in the SON are a key determinant responsible for EE-induced alleviation of learning and memory deficits caused by SAE.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Rehabilitation Medicine, the China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
- Correspondence: Shan Jiang, Department of Rehabilitation Medicine, the China-Japan Friendship Hospital, No. 2 Ying Hua Yuan East Street, Beijing, 100029, People’s Republic of China, Tel +86 10 84205288, Fax +86 10 64217749, Email
| | - Yong-Qiang Wang
- Department of Ophthalmology, the Sunshine Union Hospital, Weifang, Shandong, 261071, People’s Republic of China
| | - Yifei Tang
- Department of Rehabilitation Medicine, the China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| | - Xi Lu
- Department of Rehabilitation Medicine, the China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| | - Dan Guo
- Department of Rehabilitation Medicine, the China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| |
Collapse
|
7
|
Elevated Tau in Military Personnel Relates to Chronic Symptoms Following Traumatic Brain Injury. J Head Trauma Rehabil 2021; 35:66-73. [PMID: 31033745 DOI: 10.1097/htr.0000000000000485] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To understand the relationships between traumatic brain injury (TBI), blood biomarkers, and symptoms of posttraumatic stress disorder (PTSD), depression, and postconcussive syndrome symptoms. DESIGN Cross-sectional cohort study using multivariate analyses. PARTICIPANTS One hundred nine military personnel and veterans, both with and without a history of TBI. MAIN MEASURES PTSD Checklist-Civilian Version (PCL-C); Neurobehavioral Symptom Inventory (NSI); Ohio State University TBI Identification Method; Patient Health Questionnaire-9 (PHQ-9); Simoa-measured concentrations of tau, amyloid-beta (Aβ) 40, Aβ42, and neurofilament light (NFL). RESULTS Controlling for age, sex, time since last injury (TSLI), and antianxiety/depression medication use, NFL was trending toward being significantly elevated in participants who had sustained 3 or more TBIs compared with those who had sustained 1 or 2 TBIs. Within the TBI group, partial correlations that controlled for age, sex, TSLI, and antianxiety/depression medication use showed that tau concentrations were significantly correlated with greater symptom severity, as measured with the NSI, PCL, and PHQ-9. CONCLUSIONS Elevations in tau are associated with symptom severity after TBI, while NFL levels are elevated in those with a history of repetitive TBIs and in military personnel and veterans. This study shows the utility of measuring biomarkers chronically postinjury. Furthermore, there is a critical need for studies of biomarkers longitudinally following TBI.
Collapse
|
8
|
Pritchett-Corning KR. Environmental Complexity and Research Outcomes. ILAR J 2020; 60:239-251. [PMID: 32559304 DOI: 10.1093/ilar/ilaa007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 11/14/2022] Open
Abstract
Environmental complexity is an experimental paradigm as well as a potential part of animals' everyday housing experiences. In experimental uses, researchers add complexity to stimulate brain development, delay degenerative brain changes, elicit more naturalistic behaviors, and test learning and memory. Complexity can exacerbate or mitigate behavioral problems, give animals a sense of control, and allow for expression of highly driven, species-typical behaviors that can improve animal welfare. Complex environments should be designed thoughtfully with the animal's natural behaviors in mind, reported faithfully in the literature, and evaluated carefully for unexpected effects.
Collapse
Affiliation(s)
- Kathleen R Pritchett-Corning
- Office of Animal Resources, Faculty of Arts and Sciences, Harvard University, Cambridge, Massachusetts.,Department of Comparative Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
9
|
Lengel D, Huh JW, Barson JR, Raghupathi R. Progesterone treatment following traumatic brain injury in the 11-day-old rat attenuates cognitive deficits and neuronal hyperexcitability in adolescence. Exp Neurol 2020; 330:113329. [PMID: 32335121 DOI: 10.1016/j.expneurol.2020.113329] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/13/2020] [Accepted: 04/22/2020] [Indexed: 12/18/2022]
Abstract
Traumatic brain injury (TBI) in children younger than 4 years old results in cognitive and psychosocial deficits in adolescence and adulthood. At 4 weeks following closed head injury on postnatal day 11, male and female rats exhibited impairment in novel object recognition memory (NOR) along with an increase in open arm time in the elevated plus maze (EPM), suggestive of risk-taking behaviors. This was accompanied by an increase in intrinsic excitability and frequency of spontaneous excitatory post-synaptic currents (EPSCs), and a decrease in the frequency of spontaneous inhibitory post-synaptic currents in layer 2/3 neurons within the medial prefrontal cortex (PFC), a region that is implicated in both object recognition and risk-taking behaviors. Treatment with progesterone for the first week after brain injury improved NOR memory at the 4-week time point in both sham and brain-injured rats and additionally attenuated the injury-induced increase in the excitability of neurons and the frequency of spontaneous EPSCs. The effect of progesterone on cellular excitability changes after injury may be related to its ability to decrease the mRNA expression of the β3 subunit of the voltage-gated sodium channel and increase the expression of the neuronal excitatory amino acid transporter 3 in the medial PFC in sham- and brain-injured animals and also increase glutamic acid decarboxylase mRNA expression in sham- but not brain-injured animals. Progesterone treatment did not affect injury-induced changes in the EPM test. These results demonstrate that administration of progesterone immediately after TBI in 11-day-old rats reduces cognitive deficits in adolescence, which may be mediated by progesterone-mediated regulation of excitatory signaling mechanisms within the medial PFC.
Collapse
Affiliation(s)
- Dana Lengel
- Program in Neuroscience, Graduate School of Biomedical Sciences and Professional Studies, Drexel University College of Medicine, Philadelphia, PA United States of America
| | - Jimmy W Huh
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Jessica R Barson
- Program in Neuroscience, Graduate School of Biomedical Sciences and Professional Studies, Drexel University College of Medicine, Philadelphia, PA United States of America; Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Ramesh Raghupathi
- Program in Neuroscience, Graduate School of Biomedical Sciences and Professional Studies, Drexel University College of Medicine, Philadelphia, PA United States of America; Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States of America.
| |
Collapse
|
10
|
Modolo J, Hassan M, Wendling F, Benquet P. Decoding the circuitry of consciousness: From local microcircuits to brain-scale networks. Netw Neurosci 2020; 4:315-337. [PMID: 32537530 PMCID: PMC7286300 DOI: 10.1162/netn_a_00119] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/09/2019] [Indexed: 01/25/2023] Open
Abstract
Identifying the physiological processes underlying the emergence and maintenance of consciousness is one of the most fundamental problems of neuroscience, with implications ranging from fundamental neuroscience to the treatment of patients with disorders of consciousness (DOCs). One major challenge is to understand how cortical circuits at drastically different spatial scales, from local networks to brain-scale networks, operate in concert to enable consciousness, and how those processes are impaired in DOC patients. In this review, we attempt to relate available neurophysiological and clinical data with existing theoretical models of consciousness, while linking the micro- and macrocircuit levels. First, we address the relationships between awareness and wakefulness on the one hand, and cortico-cortical and thalamo-cortical connectivity on the other hand. Second, we discuss the role of three main types of GABAergic interneurons in specific circuits responsible for the dynamical reorganization of functional networks. Third, we explore advances in the functional role of nested oscillations for neural synchronization and communication, emphasizing the importance of the balance between local (high-frequency) and distant (low-frequency) activity for efficient information processing. The clinical implications of these theoretical considerations are presented. We propose that such cellular-scale mechanisms could extend current theories of consciousness.
Collapse
Affiliation(s)
- Julien Modolo
- University of Rennes, INSERM, LTSI-U1099, Rennes, France
| | - Mahmoud Hassan
- University of Rennes, INSERM, LTSI-U1099, Rennes, France
| | | | - Pascal Benquet
- University of Rennes, INSERM, LTSI-U1099, Rennes, France
| |
Collapse
|
11
|
Alves DVDS, Sousa MSB, Tavares MG, Santos LGCD, Batista-de-Oliveira-Hornsby M, Amancio-Dos-Santos A. Environmental enrichment reduces brain excitability in adult rats overnourished during lactation. ARQUIVOS DE NEURO-PSIQUIATRIA 2019; 77:555-559. [PMID: 31508681 DOI: 10.1590/0004-282x20190083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/09/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVE This study aimed to analyze whether exposure to environmental enrichment (EE) during the juvenile phase of life interferes with the electrical activity of the adult rat brain. In addition, the present research also investigated whether this putative effect on brain electrical activity could be affected by prior overnutrition during lactation. Electrophysiology was measured through cortical spreading depression (CSD), a phenomenon related to brain excitability. METHODS Wistar rats were suckled in litters of either nine or three pups, forming the nourished (N) or overnourished (ON) groups, respectively. At 36 days old, half of the animals from each nutritional condition were exposed to EE. The other half was kept in the standard environment (SE). At 90-120 days of life, each animal was anesthetized for CSD recordings. RESULTS Overnutrition during lactation caused increases (p < 0.05) in body and brain weights. The EE decelerated CSD propagation velocity regardless of nutritional state during lactation (p < 0.001). The CSD deceleration in the N-EE group was 23.8% and in the ON-EE group was 15% in comparison with the N-SE and ON-SE groups, respectively. CONCLUSION Our data demonstrated that EE exposure in the juvenile phase of the rat's life reduced brain excitability, and this effect was observed even if animals were overnourished during lactation. An EE could be considered an adjuvant therapeutic resource to modulate brain excitability.
Collapse
Affiliation(s)
| | | | - Maryane Gabriela Tavares
- Universidade Federal de Pernambuco, Centro de Ciências da Saúde, Departamento de Nutrição, Recife PE, Brasil
| | | | | | - Angela Amancio-Dos-Santos
- Universidade Federal de Pernambuco, Centro de Biociências, Departamento de Fisiologia e Farmacologia, Recife PE, Brasil
| |
Collapse
|
12
|
Carron SF, Sun M, Shultz SR, Rajan R. Inhibitory neuronal changes following a mixed diffuse‐focal model of traumatic brain injury. J Comp Neurol 2019; 528:175-198. [DOI: 10.1002/cne.24746] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 01/03/2023]
Affiliation(s)
- Simone F. Carron
- Neuroscience Discovery Program, Biomedicine Discovery Institute, Department of Physiology Monash University Melbourne Victoria Australia
| | - Mujun Sun
- Department of Medicine The University of Melbourne Melbourne Victoria Australia
| | - Sandy R. Shultz
- Department of Medicine and Neuroscience Monash University Melbourne Victoria Australia
- Department of Medicine The University of Melbourne Melbourne Victoria Australia
| | - Ramesh Rajan
- Neuroscience Discovery Program, Biomedicine Discovery Institute, Department of Physiology Monash University Melbourne Victoria Australia
| |
Collapse
|
13
|
Carron SF, Yan EB, Allitt BJ, Rajan R. Immediate and Medium-term Changes in Cortical and Hippocampal Inhibitory Neuronal Populations after Diffuse TBI. Neuroscience 2018; 388:152-170. [PMID: 30036662 DOI: 10.1016/j.neuroscience.2018.07.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 07/09/2018] [Accepted: 07/12/2018] [Indexed: 01/09/2023]
Abstract
Changes in inhibition following traumatic brain injury (TBI) appear to be one of the major factors that contribute to excitation:inhibition imbalance. Neuron pathology, interneurons in particular evolves from minutes to weeks post injury and follows a complex time course. Previously, we showed that in the long-term in diffuse TBI (dTBI), there was select reduction of specific dendrite-targeting neurons in sensory cortex and hippocampus while in motor cortex there was up-regulation of specific dendrite-targeting neurons. We now investigated the time course of dTBI effects on interneurons in neocortex and hippocampus. Brains were labeled with antibodies against calbindin (CB), parvalbumin (PV), calretinin (CR) neuropeptide Y (NPY), and somatostatin (SOM) at 24 h and 2 weeks post dTBI. We found time-dependent, brain area-specific changes in inhibition at 24 h and 2 weeks. At 24 h post-injury, reduction of dendrite-targeting inhibitory neurons occurred in sensory cortex and hippocampus. At 2 weeks, we found compensatory changes in the somatosensory cortex and CA2/3 of hippocampus affected at 24 h, with affected interneuronal populations returning to sham levels. However, DG of hippocampus now showed reduction of dendrite-targeting inhibitory neurons. Finally, with respect to motor cortex, there was an upregulation of dendrite-targeting interneurons in the supragranular layers at 24 h returning to normal levels by 2 weeks. Overall, our findings reconfirm that dendritic inhibition is particularly susceptible to brain trauma, but also show that there are complex brain-area-specific changes in inhibitory neuronal numbers and in compensatory changes, rather than a simple monotonic progression of changes post-dTBI.
Collapse
Affiliation(s)
- Simone F Carron
- Department of Physiology, Monash University, Melbourne, VIC, Australia.
| | - Edwin B Yan
- Department of Physiology, Monash University, Melbourne, VIC, Australia.
| | - Benjamin J Allitt
- Department of Physiology, Monash University, Melbourne, VIC, Australia.
| | - Ramesh Rajan
- Department of Physiology, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Very few options exist for patients who survive severe traumatic brain injury but fail to fully recover and develop a disorder of consciousness (e.g. vegetative state, minimally conscious state). RECENT FINDINGS Among pharmacological approaches, Amantadine has shown the ability to accelerate functional recovery. Although with very low frequency, Zolpidem has shown the ability to improve the level of consciousness transiently and, possibly, also in a sustained fashion. Among neuromodulatory approaches, transcranial direct current stimulation has been shown to transiently improve behavioral responsiveness, but mostly in minimally conscious patients. New evidence for thalamic deep brain stimulation calls into question its cost/benefit trade-off. SUMMARY The growing understanding of the biology of disorders of consciousness has led to a renaissance in the development of therapeutic interventions for patients with disorders of consciousness. High-quality evidence is emerging for pharmacological (i.e. Amantadine) and neurostimulatory (i.e. transcranial direct current stimulation) interventions, although further studies are needed to delineate preconditions, optimal dosages, and timing of administration. Other exciting new approaches (e.g. low intensity focused ultrasound) still await systematic assessment. A crucial future direction should be the use of neuroimaging measures of functional and structural impairment as a means of tailoring patient-specific interventions.
Collapse
|
15
|
Environmental enrichment, alone or in combination with various pharmacotherapies, confers marked benefits after traumatic brain injury. Neuropharmacology 2018; 145:13-24. [PMID: 29499273 DOI: 10.1016/j.neuropharm.2018.02.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/21/2018] [Accepted: 02/26/2018] [Indexed: 12/20/2022]
Abstract
Traumatic brain injury (TBI) is a significant health care issue that affects over ten million people worldwide. Treatment options are limited with numerous failures resulting from single therapies. Fortunately, several preclinical studies have shown that combination treatment strategies may afford greater improvement and perhaps can lead to successful clinical translation, particularly if one of the therapies is neurorehabilitation. The aim of this review is to highlight TBI studies that combined environmental enrichment (EE), a preclinical model of neurorehabilitation, with pharmacotherapies. A series of PubMed search strategies yielded only nine papers that fit the criteria. The consensus is that EE provides robust neurobehavioral, cognitive, and histological improvement after experimental TBI and that the combination of EE with some pharmacotherapies can lead to benefits beyond those revealed by single therapies. However, it is noted that EE can be challenged by drugs such as the acetylcholinesterase inhibitor, donepezil, and the antipsychotic drug, haloperidol, which attenuate its efficacy. These findings may help shape clinical neurorehabilitation strategies to more effectively improve patient outcome. Potential mechanisms for the EE and pharmacotherapy-induced effects are also discussed. This article is part of the Special Issue entitled "Neurobiology of Environmental Enrichment".
Collapse
|
16
|
Zhang BL, Fan YS, Wang JW, Zhou ZW, Wu YG, Yang MC, Sun DD, Zhang JN. Cognitive impairment after traumatic brain injury is associated with reduced long-term depression of excitatory postsynaptic potential in the rat hippocampal dentate gyrus. Neural Regen Res 2018; 13:1753-1758. [PMID: 30136690 PMCID: PMC6128047 DOI: 10.4103/1673-5374.238618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury can cause loss of neuronal tissue, remote symptomatic epilepsy, and cognitive deficits. However, the mechanisms underlying the effects of traumatic brain injury are not yet clear. Hippocampal excitability is strongly correlated with cognitive dysfunction and remote symptomatic epilepsy. In this study, we examined the relationship between traumatic brain injury-induced neuronal loss and subsequent hippocampal regional excitability. We used hydraulic percussion to generate a rat model of traumatic brain injury. At 7 days after injury, the mean modified neurological severity score was 9.5, suggesting that the neurological function of the rats was remarkably impaired. Electrophysiology and immunocytochemical staining revealed increases in the slope of excitatory postsynaptic potentials and long-term depression (indicating weakened long-term inhibition), and the numbers of cholecystokinin and parvalbumin immunoreactive cells were clearly reduced in the rat hippocampal dentate gyrus. These results indicate that interneuronal loss and changes in excitability occurred in the hippocampal dentate gyrus. Thus, traumatic brain injury-induced loss of interneurons appears to be associated with reduced long-term depression in the hippocampal dentate gyrus.
Collapse
Affiliation(s)
- Bao-Liang Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Yue-Shan Fan
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Ji-Wei Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Zi-Wei Zhou
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Yin-Gang Wu
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Meng-Chen Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Dong-Dong Sun
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Jian-Ning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| |
Collapse
|
17
|
Does neuroinflammation drive the relationship between tau hyperphosphorylation and dementia development following traumatic brain injury? Brain Behav Immun 2017; 60:369-382. [PMID: 27686843 DOI: 10.1016/j.bbi.2016.09.027] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/06/2016] [Accepted: 09/25/2016] [Indexed: 12/14/2022] Open
Abstract
A history of traumatic brain injury (TBI) is linked to an increased risk for the later development of dementia. This encompasses a variety of neurodegenerative diseases including Alzheimer's Disease (AD) and chronic traumatic encephalopathy (CTE), with AD linked to history of moderate-severe TBI and CTE to a history of repeated concussion. Of note, both AD and CTE are characterized by the abnormal accumulation of hyperphosphorylated tau aggregates, which are thought to play an important role in the development of neurodegeneration. Hyperphosphorylation of tau leads to destabilization of microtubules, interrupting axonal transport, whilst tau aggregates are associated with synaptic dysfunction. The exact mechanisms via which TBI may promote the later tauopathy and its role in the later development of dementia are yet to be fully determined. Following TBI, it is proposed that axonal injury may provide the initial perturbation of tau, by promoting its dissociation from microtubules, facilitating its phosphorylation and aggregation. Altered tau dynamics may then be exacerbated by the chronic persistent inflammatory response that has been shown to persist for decades following the initial impact. Importantly, immune activation has been shown to play a role in accelerating disease progression in other tauopathies, with pro-inflammatory cytokines, like IL-1β, shown to activate kinases that promote tau hyperphosphorylation. Thus, targeting the inflammatory response in the sub-acute phase following TBI may represent a promising target to halt the alterations in tau dynamics that may precede overt neurodegeneration and later development of dementia.
Collapse
|