1
|
Gu HY, Liu N. Mechanism of effect and therapeutic potential of NLRP3 inflammasome in spinal cord injury. Exp Neurol 2025; 384:115059. [PMID: 39571746 DOI: 10.1016/j.expneurol.2024.115059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
Spinal cord injury (SCI) is a serious and disabling central nervous system injury that can trigger various neuropathological conditions, resulting in neuronal damage and release of various pro-inflammatory mediators, leading to neurological dysfunction. Currently, surgical decompression, drugs and rehabilitation are primarily used to relieve symptoms and improve endogenous repair mechanisms; however, they cannot directly promote nerve regeneration and functional recovery. SCI can be divided into primary and secondary injuries. Secondary injury is key to determining the severity of injury, whereas inflammation and cell death are important pathological mechanisms in the process of secondary SCI. The activation of the inflammasome complex is thought to be a necessary step in neuro-inflammation and a key trigger for neuronal death. The NLRP3 inflammasome is a cytoplasmic multiprotein complex that is considered an important factor in the development of SCI. Once the NLRP3 inflammasome is activated after SCI, NLRP3 nucleates the assembly of an inflammasome, leading to caspase 1-mediated proteolytic activation of the interleukin-1β (IL-1β) family of cytokines, and induces an inflammatory, pyroptotic cell death. Inhibition of inflammasomes can effectively inhibit inflammation and cell death in the body and promote the recovery of nerve function after SCI. Therefore, inhibition of NLRP3 inflammasome activation may be a promising approach for the treatment of SCI. In this review, we describe the current understanding of NLRP3 inflammasome activation in SCI pathogenesis and its subsequent impact on SCI and summarize drugs and other potential inhibitors based on NLRP3 inflammasome regulation. The objective of this study was to emphasize the role of the NLRP3 inflammasome in SCI, and provide a new therapeutic strategy and theoretical basis for targeting the NLRP3 inflammasome as a therapy for SCI.
Collapse
Affiliation(s)
- Hou-Yun Gu
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital), Southern Medical University, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China.
| | - Ning Liu
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital), Southern Medical University, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China.
| |
Collapse
|
2
|
Ju C, Liu R, Ma Y, Dong H, Xu R, Hu H, Hao D. Targeted microbiota dysbiosis repair: An important approach to health management after spinal cord injury. Ageing Res Rev 2024:102648. [PMID: 39725357 DOI: 10.1016/j.arr.2024.102648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/18/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
Current research primarily focuses on the pathological mechanisms of spinal cord injury (SCI), seeking to promote spinal cord repair and restore motorial and sensory functions by elucidating mechanisms of cell death or axonal regeneration. However, SCI is almost irreversible, and patients often struggle to regain mobility or self-care abilities after injuries. Consequently, there has been significant interest in modulating systemic symptoms following SCI to improve patients' quality of life. Neuron axonal disconnection and substantial apoptotic events following SCI result in signal transmission loss, profoundly impacting various organ and systems, including the gastrointestinal tract. Dysbiosis can lead to severe bowel dysfunction in patients, substantially lowering their quality of life and significantly reducing life expectancy of them. Therefore, researches focusing on the restoration of the gut microbiota hold promise for potential therapeutic strategies aimed at rehabilitation after SCI. In this paper, we explore the regulatory roles that dietary fiber, short-chain fatty acids (SCFAs), probiotics, and microbiota transplantation play in patients with SCI, summarize the potential mechanisms of post-SCI dysbiosis, and discuss possible strategies to enhance long-term survival of SCI patients. We aim to provide potential insights for future research aimed at ameliorating dysbiosis in SCI patients.
Collapse
Affiliation(s)
- Cheng Ju
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyidong Road, Xi'an, Shaanxi, 710000, China; Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi, 710000, China.
| | - Renfeng Liu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyidong Road, Xi'an, Shaanxi, 710000, China; Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi, 710000, China.
| | - Yanming Ma
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyidong Road, Xi'an, Shaanxi, 710000, China; Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi, 710000, China.
| | - Hui Dong
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyidong Road, Xi'an, Shaanxi, 710000, China; Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi, 710000, China.
| | - Ruiqing Xu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyidong Road, Xi'an, Shaanxi, 710000, China; Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi, 710000, China.
| | - Huimin Hu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyidong Road, Xi'an, Shaanxi, 710000, China; Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi, 710000, China.
| | - Dingjun Hao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyidong Road, Xi'an, Shaanxi, 710000, China; Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi, 710000, China.
| |
Collapse
|
3
|
Dalton J, Huang R, Narayanan R, Kaye ID, Kepler CK. Operative Timing in Cervical Spine Trauma. Clin Spine Surg 2024; 37:388-394. [PMID: 39480047 DOI: 10.1097/bsd.0000000000001707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 09/23/2024] [Indexed: 11/02/2024]
Abstract
STUDY DESIGN Narrative review. OBJECTIVE To review existing literature regarding surgical timing in cervical trauma with a focus on acute traumatic central cord syndrome. SUMMARY OF BACKGROUND DATA Traumatic central cord syndrome is the most common incomplete spinal cord injury. Substantial basic science literature has proposed ischemic and secondary injury-driven mechanisms underpinning the urgency of operative intervention. However, only recently has a relative consensus emerged in the clinical literature regarding the safety, efficacy, and necessity of early operative intervention for acute traumatic central cord syndrome. METHODS A literature search was conducted of studies in PubMed Central and Cochrane Database related to timing in cervical spine trauma. CONCLUSIONS Recently, several major systematic reviews and consensus statements have endorsed the importance and safety of early (<24 h) operative decompression in the setting of traumatic spinal cord injury. Despite decades of conflicting data, a similar trend appears to be emerging for traumatic central cord syndrome. These clinical developments join a large body of basic science work regarding the importance of early decompressive surgery in relieving acute ischemic insult and minimizing the effects of secondary injury. However, further work is needed to delineate optimal surgical timing, especially regarding "ultra-early" (<8 h) protocols, and to aid in creating accelerated screening pathways.
Collapse
Affiliation(s)
- Jonathan Dalton
- Rothman Orthopaedic Institute at Thomas Jefferson University
| | - Rachel Huang
- Rothman Orthopaedic Institute at Thomas Jefferson University
| | | | - Ian David Kaye
- Rothman Orthopaedic Institute at Thomas Jefferson University
| | - Christopher K Kepler
- Rothman Orthopaedic Institute at Thomas Jefferson University
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
4
|
Firdous SM, Khan SA, Maity A. Oxidative stress-mediated neuroinflammation in Alzheimer's disease. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8189-8209. [PMID: 38832985 DOI: 10.1007/s00210-024-03188-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/24/2024] [Indexed: 06/06/2024]
Abstract
Reactive oxygen species (ROS) are metabolic by-products that constitute an indispensable component of physiological processes, albeit their heightened presence may proffer substantial perils to biological entities. Such a proliferation gives rise to a gradual escalation of oxidative stress within the organism, thereby compromising mitochondrial functionality and inflicting harm upon various bodily systems, with a particular predilection for the central nervous system. In its nascent stages, it is plausible that inflammation has been a facilitator in the progression of the malady. The precise role of inflammation in Alzheimer's disease (AD) remains somewhat enigmatic, although it is conceivable that activated microglia and astrocytes might be implicated in the removal of amyloid-β (Aβ) deposits. Nonetheless, prolonged microglial activation is associated with Tau phosphorylation and Aβ aggregation. Research studies have indicated that AD brains upregulate complementary molecules, inflammatory cytokines, acute phase reacting agents, and other inflammatory mediators that may cause neurodegeneration. In this review, oxidative damage products will be discussed as potential peripheral biomarkers for AD and its early stages. The disordered excretion of pro-inflammatory cytokines, chemokines, oxygen, and nitrogen-reactive species, along with the stimulation of the complement system by glial cells, has the potential to disrupt the functionality of neuronal termini. This perturbation, in turn, culminates in compromised synaptic function, a phenomenon empirically linked to the manifestation of cognitive impairments. The management of neurodegenerative conditions in the context of dementia necessitates therapeutic interventions that specifically target the excessive production of inflammatory and oxidative agents. Furthermore, we shall deliberate upon the function of microglia and oxidative injury in the etiology of AD and the ensuing neurodegenerative processes.
Collapse
Affiliation(s)
- Sayed Mohammed Firdous
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Uluberia, Howrah, 711316, West Bengal, India.
| | - Sahabaj Ali Khan
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Uluberia, Howrah, 711316, West Bengal, India
| | - Amritangshu Maity
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Uluberia, Howrah, 711316, West Bengal, India
| |
Collapse
|
5
|
Miao L, Yuan Z, Zhang S, Zhang G. Honokiol alleviates monosodium urate-induced gouty pain by inhibiting voltage-gated proton channels in mice. Inflammopharmacology 2024; 32:2413-2425. [PMID: 38829504 DOI: 10.1007/s10787-024-01498-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/23/2024] [Indexed: 06/05/2024]
Abstract
OBJECTIVE To investigate whether honokiol (HNK) acted as an analgesic in connection with inhibiting the voltage-gated proton channel (Hv1). METHODS The model of gouty arthritis was induced by injecting monosodium urate (MSU) crystals into the hind ankle joint of mice. HNK was given by intragastric administration. Ankle swelling degree and mechanical allodynia were evaluated using ankle joint circumference measurement and von Frey filaments, respectively. Hv1 current, tail current, and action potential in dorsal root ganglion (DRG) neurons were recorded with patch-clamp techniques. RESULTS HNK (10, 20, 40 mg/kg) alleviated inflammatory response and mechanical allodynia in a dose-dependent manner. In normal DRG neurons, 50 µM Zn2+ or 2-GBI significantly inhibited the Hv1 current and the current density of Hv1 increased with increasing pH gradient. The amplitude of Hv1 current significantly increased on the 3rd after MSU treatment, and HNK dose-dependently reversed the upregulation of Hv1 current. Compared with MSU group, 40 mg/kg HNK shifted the activation curve to the direction of more positive voltage and increased reversal potential to the normal level. In addition, 40 mg/kg HNK reversed the down-regulation of tail current deactivation time constant (τtail) but did not alter the neuronal excitability of DRG neurons in gouty mice. CONCLUSION HNK may be a potential analgesic by inhibiting Hv1 current.
Collapse
Affiliation(s)
- Lurong Miao
- Department of Clinical Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Ziqi Yuan
- Department of Clinical Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Shijia Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Guangqin Zhang
- Department of Clinical Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China.
| |
Collapse
|
6
|
He W, Li ZQ, Gu HY, Pan QL, Lin FX. Targeted Therapy of Spinal Cord Injury: Inhibition of Apoptosis Is a Promising Therapeutic Strategy. Mol Neurobiol 2024; 61:4222-4239. [PMID: 38066400 DOI: 10.1007/s12035-023-03814-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/16/2023] [Indexed: 07/11/2024]
Abstract
Spinal cord injury (SCI) is a serious disabling central nervous system injury that can lead to motor, sensory, and autonomic dysfunction below the injury level. SCI can be divided into primary injury and secondary injury according to pathological process. Primary injury is mostly irreversible, while secondary injury is a dynamic regulatory process. Apoptosis is an important pathological event of secondary injury and has a significant effect on the recovery of nerve function after SCI. Nerve cell death can further aggravate the microenvironment of the injured site, leading to neurological dysfunction and thus affect the clinical outcome of patients. Therefore, apoptosis plays a crucial role in the pathological progression of secondary SCI, while inhibiting apoptosis may be a promising therapeutic strategy for SCI. This review will summarize and explore the factors that lead to cell death after SCI, the influence of cross talk between signaling pathways and pathways involved in apoptosis and discuss the influence of apoptosis on SCI, and the therapeutic significance of targeting apoptosis on SCI. This review helps us to understand the role of apoptosis in secondary SCI and provides a theoretical basis for the treatment of SCI based on apoptosis.
Collapse
Affiliation(s)
- Wei He
- Department of Spine Surgery, Ganzhou People's Hospital, Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
| | - Zhi-Qiang Li
- Department of Spine Surgery, Ganzhou People's Hospital, Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
| | - Hou-Yun Gu
- Department of Spine Surgery, Ganzhou People's Hospital, Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
| | - Qi-Lin Pan
- Department of Spine Surgery, Ganzhou People's Hospital, Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
| | - Fei-Xiang Lin
- Department of Spine Surgery, Ganzhou People's Hospital, Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China.
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China.
| |
Collapse
|
7
|
Qi G, Li S, Jiang Q, Yu Z, Peng Z, Li Q, Qi W, Guo M. Network pharmacology analysis and experimental validation to explore the effect and mechanism of tetramethylpyrazine for spinal cord injury. J Chem Neuroanat 2024; 136:102386. [PMID: 38176475 DOI: 10.1016/j.jchemneu.2023.102386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024]
Abstract
OBJECTIVE To investigate the effect and mechanism of Tetramethylpyrazine (TMP) in treating Spinal Cord Injury (SCI) using network pharmacology analysis and animal experiments. METHODS This study was based on public databases, including PharmMapper, BATMAN-TCM, and STRING, as well as KEGG pathway analysis and other methods of network pharmacology were used to preliminarily explore the molecular mechanism of TMP in the treatment of SCI. Using a mouse SCI compression injury model, the efficacy of TMP was evaluated, and the expression of predictive targets on the PI3K/AKT and MAPK signaling pathways was measured using Western blotting and q-PCR. RESULTS Network pharmacology analysis showed that TMP may exert therapeutic effects through the MAPK and PI3K/AKT signaling pathways. In animal experimental validation studies, it was shown that after treatment with TMP, the hind limb motor function scores and ramp test scores of the TMP-treated mice improved significantly. HE staining showed that after treatment with TMP, cavities decreased, fewer glial cells proliferated, and fewer inflammatory cells infiltrated; Nielsen staining showed less neuronal loss. Western blot studies showed that compared with the model group, expression of RAS, ERK1/2, RAF1, PI3K, and p-AKT proteins in the spinal cord tissue of mice treated with high-dose TMP was significantly lower. Accordingly, q-PCR studies showed that compared with the model group, the expression levels of RAS, ERK1/2, RAF1, PI3K, and p-AKT genes in the spinal cords of mice in the high-dose TMP group were significantly lower. CONCLUSION TMP exhibits a good neuroprotective effect after SCI, which may be related to inhibition of the MAPK and PI3K/AKT signaling pathways.
Collapse
Affiliation(s)
- Guodong Qi
- Chongqing Orthopedic Hospital of Traditional Chinese Medicine, Orthopedics Department, Chongqing, China
| | - Shujun Li
- Chongqing Medical University, Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, China
| | - Qiong Jiang
- Chongqing Medical University, Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, China
| | - Zhijuan Yu
- Chongqing Erlang Community Health Service Center, Clinical Laboratory, Chongqing, China
| | - Zhenggang Peng
- Chongqing Orthopedic Hospital of Traditional Chinese Medicine, Orthopedics Department, Chongqing, China
| | - Qiurui Li
- Chongqing Medical University, Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, China
| | - Wei Qi
- Chongqing Orthopedic Hospital of Traditional Chinese Medicine, Orthopedics Department, Chongqing, China.
| | - Mingjun Guo
- Chongqing Orthopedic Hospital of Traditional Chinese Medicine, Orthopedics Department, Chongqing, China.
| |
Collapse
|
8
|
Liu J, Qi L, Bao S, Yan F, Chen J, Yu S, Dong C. The acute spinal cord injury microenvironment and its impact on the homing of mesenchymal stem cells. Exp Neurol 2024; 373:114682. [PMID: 38199509 DOI: 10.1016/j.expneurol.2024.114682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/08/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
Spinal cord injury (SCI) is a highly debilitating condition that inflicts devastating harm on the lives of affected individuals, underscoring the urgent need for effective treatments. By activating inflammatory cells and releasing inflammatory factors, the secondary injury response creates an inflammatory microenvironment that ultimately determines whether neurons will undergo necrosis or regeneration. In recent years, mesenchymal stem cells (MSCs) have garnered increasing attention for their therapeutic potential in SCI. MSCs not only possess multipotent differentiation capabilities but also have homing abilities, making them valuable as carriers and mediators of therapeutic agents. The inflammatory microenvironment induced by SCI recruits MSCs to the site of injury through the release of various cytokines, chemokines, adhesion molecules, and enzymes. However, this mechanism has not been previously reported. Thus, a comprehensive exploration of the molecular mechanisms and cellular behaviors underlying the interplay between the inflammatory microenvironment and MSC homing is crucial. Such insights have the potential to provide a better understanding of how to harness the therapeutic potential of MSCs in treating inflammatory diseases and facilitating injury repair. This review aims to delve into the formation of the inflammatory microenvironment and how it influences the homing of MSCs.
Collapse
Affiliation(s)
- Jinyi Liu
- Department of Anatomy, Medical College of Nantong University, Nantong, China
| | - Longju Qi
- Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Shengzhe Bao
- Department of Anatomy, Medical College of Nantong University, Nantong, China
| | - Fangsu Yan
- Department of Anatomy, Medical College of Nantong University, Nantong, China
| | - Jiaxi Chen
- Department of Anatomy, Medical College of Nantong University, Nantong, China
| | - Shumin Yu
- Department of Anatomy, Medical College of Nantong University, Nantong, China
| | - Chuanming Dong
- Department of Anatomy, Medical College of Nantong University, Nantong, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China.
| |
Collapse
|
9
|
Wang S, Liu A, Xu C, Hou J, Hong J. GLP-1(7-36) protected against oxidative damage and neuronal apoptosis in the hippocampal CA region after traumatic brain injury by regulating ERK5/CREB. Mol Biol Rep 2024; 51:313. [PMID: 38374452 PMCID: PMC10876747 DOI: 10.1007/s11033-024-09244-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/11/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Glucagon-like peptide-1 (GLP-1) (7-36) amide, an endogenous active form of GLP-1, has been shown to modulate oxidative stress and neuronal cell survival in various neurological diseases. OBJECTIVE This study investigated the potential effects of GLP-1(7-36) on oxidative stress and apoptosis in neuronal cells following traumatic brain injury (TBI) and explored the underlying mechanisms. METHODS Traumatic brain injury (TBI) models were established in male SD rats for in vivo experiments. The extent of cerebral oedema was assessed using wet-to-dry weight ratios following GLP-1(7-36) intervention. Neurological dysfunction and cognitive impairment were evaluated through behavioural experiments. Histopathological changes in the brain were observed using haematoxylin and eosin staining. Oxidative stress levels in hippocampal tissues were measured. TUNEL staining and Western blotting were employed to examine cell apoptosis. In vitro experiments evaluated the extent of oxidative stress and neural apoptosis following ERK5 phosphorylation activation. Immunofluorescence colocalization of p-ERK5 and NeuN was analysed using immunofluorescence cytochemistry. RESULTS Rats with TBI exhibited neurological deterioration, increased oxidative stress, and enhanced apoptosis, which were ameliorated by GLP-1(7-36) treatment. Notably, GLP-1(7-36) induced ERK5 phosphorylation in TBI rats. However, upon ERK5 inhibition, oxidative stress and neuronal apoptosis levels were elevated, even in the presence of GLP-1(7-36). CONCLUSION In summary, this study suggested that GLP-1(7-36) suppressed oxidative damage and neuronal apoptosis after TBI by activating ERK5/CREB.
Collapse
Affiliation(s)
- Shuwei Wang
- Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, 063000, Hebei, China
| | - Aijun Liu
- Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, 063000, Hebei, China
| | - Chaopeng Xu
- Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, 063000, Hebei, China
| | - Jingxuan Hou
- Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, 063000, Hebei, China
| | - Jun Hong
- Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, 063000, Hebei, China.
| |
Collapse
|
10
|
Noguchi T, Katoh H, Nomura S, Okada K, Watanabe M. The GLP-1 receptor agonist exenatide improves recovery from spinal cord injury by inducing macrophage polarization toward the M2 phenotype. Front Neurosci 2024; 18:1342944. [PMID: 38426018 PMCID: PMC10902060 DOI: 10.3389/fnins.2024.1342944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024] Open
Abstract
Although a wide variety of mechanisms take part in the secondary injury phase of spinal cord injury (SCI), inflammation is the most important factor implicated in the sequelae after SCI. Being central to the inflammation reaction, macrophages and their polarization are a topic that has garnered wide interest in the studies of SCI secondary injury. The glucagon-like peptide 1 (GLP-1) receptor agonist exenatide has been shown to enhance the endoplasmic reticulum stress response and improve motor function recovery after spinal cord injury (SCI). Since exenatide has also been reported to induce the production of M2 cells in models of cerebral infarction and neurodegenerative diseases, this study was conducted to examine the effects of exenatide administration on the inflammation process that ensues after spinal cord injury. In a rat contusion model of spinal cord injury, the exenatide group received a subcutaneous injection of 10 μg exenatide immediately after injury while those in the control group received 1 mL of phosphate-buffered saline. Quantitative RT-PCR and immunohistochemical staining were used to evaluate the effects of exenatide administration on the macrophages infiltrating the injured spinal cord, especially with regard to macrophage M1 and M2 profiles. The changes in hind limb motor function were assessed based on Basso, Beattie, Bresnahan locomotor rating scale (BBB scale) scores. The improvement in BBB scale scores was significantly higher in the exenatide group from day 7 after injury and onwards. Quantitative RT-PCR revealed an increase in the expression of M2 markers and anti-inflammatory interleukins in the exenatide group that was accompanied by a decrease in the expression of M1 markers and inflammatory cytokines. Immunohistochemical staining showed no significant difference in M1 macrophage numbers between the two groups, but a significantly higher number of M2 macrophages was observed in the exenatide group on day 3 after injury. Our findings suggest that exenatide administration promoted the number of M2-phenotype macrophages after SCI, which may have led to the observed improvement in hind limb motor function in a rat model of SCI.
Collapse
Affiliation(s)
| | - Hiroyuki Katoh
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| | | | | | | |
Collapse
|
11
|
孙 晓, 史 航, 张 磊, 刘 中, 李 克, 钱 玲, 朱 星, 杨 康, 付 强, 丁 华. [Exosomes from ectoderm mesenchymal stem cells inhibits lipopolysaccharide-induced microglial M1 polarization and promotes survival of H 2O 2-exposed PC12 cells by suppressing inflammatory response and oxidative stress]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:119-128. [PMID: 38293983 PMCID: PMC10878899 DOI: 10.12122/j.issn.1673-4254.2024.01.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Indexed: 02/01/2024]
Abstract
OBJECTIVE To investigate the potential value of exosomes derived from rat ectoderm mesenchymal stem cells (EMSCs-exo) for repairing secondary spinal cord injury. METHODS EMSCs-exo were obtained using ultracentrifugation from EMSCs isolated from rat nasal mucosa, identified by transmission electron microscope, nanoparticle tracking analysis (NTA), and Western blotting, and quantified using the BCA method. Neonatal rat microglia purified by differential attachment were induced with 100 μg/L lipopolysaccharide (LPS) and treated with 37.5 or 75 mg/L EMSCs-exo. PC12 cells were exposed to 400 μmol/L H2O2 and treated with EMSCs-exo at 37.5 or 75 mg/L. The protein and mRNA expressions of Arg1 and iNOS in the treated cells were determined with Western blotting and qRT- PCR, and the concentrations of IL- 6, IL-10, and IGF-1 in the supernatants were measured with ELISA. The viability and apoptosis of PC12 cells were detected using CCK-8 assay and flow cytometry. RESULTS The isolated rat EMSCs showed high expressions of nestin, CD44, CD105, and vimentin. The obtained EMSCs-exo had a typical cup-shaped structure under transmission electron microscope with an average particle size of 142 nm and positivity for CD63, CD81, and TSG101 but not vimentin. In LPS-treated microglia, EMSCs-exo treatment at 75 mg/L significantly increased Arg1 protein level and lowered iNOS protein expression (P < 0.05). EMSCs-exo treatment at 75 mg/L, as compared with the lower concentration at 37.5 mg/L, more strongly increased Arg1 mRNA expression and IGF-1 and IL-10 production and decreased iNOS mRNA expression and IL-6 production in LPS-induced microglia, and more effectively promoted cell survival and decreased apoptosis rate of H2O2-induced PC12 cells (P < 0.05). CONCLUSION EMSCs-exo at 75 mg/L can effectively reduce the proportion of M1 microglia and alleviate neuronal apoptosis under oxidative stress to promote neuronal survival, suggesting its potential in controlling secondary spinal cord injury.
Collapse
Affiliation(s)
- 晓鹏 孙
- 江苏大学附属人民医院骨科,江苏 镇江 212000Department of Orthopedics, Affiliated People's Hospital of Jiangsu University, Zhenjiang 212000, China
| | - 航 史
- 江苏大学附属人民医院骨科,江苏 镇江 212000Department of Orthopedics, Affiliated People's Hospital of Jiangsu University, Zhenjiang 212000, China
| | - 磊 张
- 江苏大学附属人民医院骨科,江苏 镇江 212000Department of Orthopedics, Affiliated People's Hospital of Jiangsu University, Zhenjiang 212000, China
| | - 中 刘
- 上海交通大学医学院附属第一人民医院骨科,上海 200080Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - 克威 李
- 上海交通大学医学院附属第一人民医院骨科,上海 200080Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - 玲玲 钱
- 江苏大学医学院,江苏 镇江 212013School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - 星宇 朱
- 江苏大学附属人民医院骨科,江苏 镇江 212000Department of Orthopedics, Affiliated People's Hospital of Jiangsu University, Zhenjiang 212000, China
| | - 康佳 杨
- 江苏大学附属人民医院骨科,江苏 镇江 212000Department of Orthopedics, Affiliated People's Hospital of Jiangsu University, Zhenjiang 212000, China
| | - 强 付
- 上海交通大学医学院附属第一人民医院骨科,上海 200080Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - 华 丁
- 江苏大学附属人民医院骨科,江苏 镇江 212000Department of Orthopedics, Affiliated People's Hospital of Jiangsu University, Zhenjiang 212000, China
| |
Collapse
|
12
|
Kharazinejad E, Hassanzadeh G, Sahebkar A, Yousefi B, Reza Sameni H, Majidpoor J, Golchini E, Taghdiri Nooshabadi V, Mousavi M. The Comparative Effects of Schwann Cells and Wharton's Jelly Mesenchymal Stem Cells on the AIM2 Inflammasome Activity in an Experimental Model of Spinal Cord Injury. Neuroscience 2023; 535:1-12. [PMID: 37890609 DOI: 10.1016/j.neuroscience.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
Inflammasome activation and the consequent release of pro-inflammatory cytokines play a crucial role in the development of sensory/motor deficits following spinal cord injury (SCI). Immunomodulatory activities are exhibited by Schwann cells (SCs) and Wharton's jelly mesenchymal stem cells (WJ-MSCs). In this study, we aimed to compare the effectiveness of these two cell sources in modulating the absent in melanoma 2 (AIM2) inflammasome complex in rats with SCI. The Basso, Beattie, Bresnahan (BBB) test, Nissl staining, and Luxol fast blue (LFB) staining were performed to evaluate locomotor function, neuronal survival, and myelination, respectively. Real-time polymerase chain reaction (RT-PCR), Western blotting, and enzyme-linked immunosorbent assay (ELISA) were employed to analyze the gene and protein expressions of inflammasome components, including AIM2, ASC, caspase-1, interleukin-1β (IL-1β), and IL-18. Both gene and protein expressions of all evaluated factors were decreased after SC or WJ-MSC treatment, with a more pronounced effect observed in the SCs group (P < 0.05). Additionally, SCs promoted neuronal survival and myelination. Moreover, the administration of 3 × 105 cells resulted in motor recovery improvement in both treatment groups (P < 0.05). Although not statistically significant, these effects were more prominent in the SC-treated animals. In conclusion, SC therapy demonstrated greater efficacy in targeting AIM2 inflammasome activation and the associated inflammatory pathway in SCI experiments compared to WJ-MSCs.
Collapse
Affiliation(s)
- Ebrahim Kharazinejad
- Department of Anatomy, Faculty of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Digital Health, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Behpour Yousefi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran; Department of Anatomy, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Hamid Reza Sameni
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran; Department of Tissue Engineering and Applied Cell Science, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Jamal Majidpoor
- Department of Anatomy, Faculty of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Ehsan Golchini
- Department of Operating Room, School of Paramedical Sciences, Alborz University of Medical Sciences, Karaj, Iran
| | - Vajihe Taghdiri Nooshabadi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran; Department of Tissue Engineering and Applied Cell Science, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mahboubeh Mousavi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran; Department of Anatomy, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
13
|
Zhang C, Zhai T, Zhu J, Wei D, Ren S, Yang Y, Gao F, Zhao L. Research Progress of Antioxidants in Oxidative Stress Therapy after Spinal Cord Injury. Neurochem Res 2023; 48:3473-3484. [PMID: 37526867 DOI: 10.1007/s11064-023-03993-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/08/2023] [Accepted: 07/09/2023] [Indexed: 08/02/2023]
Abstract
Spinal cord injury (SCI) is a serious problem in the central nervous system resulting in high disability and mortality with complex pathophysiological mechanisms. Oxidative stress is one of the main secondary reactions of SCI, and its main pathophysiological marker is the production of excess reactive oxygen species. The overproduction of reactive oxygen species and insufficient antioxidant capacity lead to the occurrence of oxidative stress and neuroinflammation, and the dysregulation of oxidative stress and neuroinflammation leads to further aggravation of damage. Oxidative stress can initiate a variety of inflammatory and apoptotic pathways, and targeted antioxidant therapy can greatly reduce oxidative stress and reduce neuroinflammation, which has a certain positive effect on rehabilitation and prognosis in SCI. This article reviewed the research on different types of antioxidants and related treatments in SCI, focusing on the mechanisms of oxidative stress.
Collapse
Affiliation(s)
- Can Zhang
- Medical School of Yan'an University, No. 580 Shengdi Road, Baota District, Yan'an, 716000, Shaanxi, China
| | - Tianyu Zhai
- Medical School of Yan'an University, No. 580 Shengdi Road, Baota District, Yan'an, 716000, Shaanxi, China
| | - Jinghui Zhu
- Medical School of Yan'an University, No. 580 Shengdi Road, Baota District, Yan'an, 716000, Shaanxi, China
| | - Dongmin Wei
- Medical School of Yan'an University, No. 580 Shengdi Road, Baota District, Yan'an, 716000, Shaanxi, China
| | - Shuting Ren
- Medical School of Yan'an University, No. 580 Shengdi Road, Baota District, Yan'an, 716000, Shaanxi, China
| | - Yanling Yang
- Medical School of Yan'an University, No. 580 Shengdi Road, Baota District, Yan'an, 716000, Shaanxi, China
| | - Feng Gao
- Medical School of Yan'an University, No. 580 Shengdi Road, Baota District, Yan'an, 716000, Shaanxi, China
| | - Lin Zhao
- Medical School of Yan'an University, No. 580 Shengdi Road, Baota District, Yan'an, 716000, Shaanxi, China.
| |
Collapse
|
14
|
Alam SMS, Watanabe Y, Steeno BL, Dutta S, Szilagyi HA, Wei A, Suter DM. Neuronal NADPH oxidase is required for neurite regeneration of Aplysia bag cell neurons. J Neurochem 2023; 167:505-519. [PMID: 37818836 PMCID: PMC10842957 DOI: 10.1111/jnc.15977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 01/22/2023] [Accepted: 09/16/2023] [Indexed: 10/13/2023]
Abstract
NADPH oxidase (Nox), a major source of reactive oxygen species (ROS), is involved in neurodegeneration after injury and disease. Nox is expressed in both neuronal and non-neuronal cells and contributes to an elevated ROS level after injury. Contrary to the well-known damaging effect of Nox-derived ROS in neurodegeneration, recently a physiological role of Nox in nervous system development including neurogenesis, neuronal polarity, and axonal growth has been revealed. Here, we tested a role for neuronal Nox in neurite regeneration following mechanical transection in cultured Aplysia bag cell neurons. Using a novel hydrogen peroxide (H2 O2 )-sensing dye, 5'-(p-borophenyl)-2'-pyridylthiazole pinacol ester (BPPT), we found that H2 O2 levels are elevated in regenerating growth cones following injury. Redistribution of Nox2 and p40phox in the growth cone central domain suggests Nox2 activation after injury. Inhibiting Nox with the pan-Nox inhibitor celastrol reduced neurite regeneration rate. Pharmacological inhibition of Nox is correlated with reduced activation of Src2 tyrosine kinase and F-actin content in the growth cone. Taken together, these findings suggest that Nox-derived ROS regulate neurite regeneration following injury through Src2-mediated regulation of actin organization in Aplysia growth cones.
Collapse
Affiliation(s)
- S. M. Sabbir Alam
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Yuichiro Watanabe
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Brooke L. Steeno
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Soumyajit Dutta
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Halie A. Szilagyi
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Alexander Wei
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Daniel M. Suter
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
15
|
Liu J, Hui A, Wang J, Hu Q, Li S, Chen Y, Wu Z, Zhang W. Discovery of acylated isoquercitrin derivatives as potent anti-neuroinflammatory agents in vitro and in vivo. Chem Biol Interact 2023; 383:110675. [PMID: 37579935 DOI: 10.1016/j.cbi.2023.110675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/23/2023] [Accepted: 08/12/2023] [Indexed: 08/16/2023]
Abstract
Neuroinflammation is considered as an important pathological mechanism in neurodegenerative diseases. The natural isoquercitrin (IQ) was reported to have potential anti-neuroinflammatory activity. The acylation of glycoside in IQ enhanced its hydrophobicity, which was expected to enhance the protective effect against inflammation. In this study, three carboxylic acids with anti-neuroinflammatory effects including cinnamic acid, ibuprofen (IBU) and acetylsalicylic acid were introduced into the 6''-OH of IQ through the corresponding vinyl esters intermediates (8a-8c). Ultimately, the acylated IQ derivatives (Compound 9a-9c) were obtained with 35-42% yields using immobilized lipase Novozym 435 as catalyst. Subsequently, their anti-neuroinflammatory activities were evaluated in lipopolysaccharide (LPS)-induced BV2 cells. Compound 9b improved cell viability in the range of ≤50 μM and significantly decreased NO, PGE2 production and TNF-α, IL-1β release and oxidative stress level with a concentration-dependent manner. Also, it could downregulate iNOS, COX-2, TNF-α and IL-1β expression levels, approximately 40% reduction were achieved when 15μM compound 9b was employed. In addition, compound 9b resisted phosphorylation and degradation of IkBαs, suppressing the activation of NF-κB signaling pathway, exhibiting excellent neuroinflammatory inhibition. Moreover, the administration of compound 9b (30, 60 mg/kg) alleviated behavioral disorders and neuronal damages in LPS-induced neuroinflammatory mice. Meanwhile, the decreased TNF-α, IL-1β release, expression and the inhibited glial cells activation were obtained in compound 9b-treated group, which was superior to that of IQ or IBU. Overall, these findings demonstrated that compound 9b, formed by the introduction of ibuprofen into IQ, can serve as a novel promising therapeutic agent for anti-neuroinflammation.
Collapse
Affiliation(s)
- Jie Liu
- Engineering Research Center of Bio-Process of Ministry of Education, Hefei University of Technology, Hefei, Anhui, 230601, PR China
| | - Ailing Hui
- Engineering Research Center of Bio-Process of Ministry of Education, Hefei University of Technology, Hefei, Anhui, 230601, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230601, PR China.
| | - Jinghe Wang
- Engineering Research Center of Bio-Process of Ministry of Education, Hefei University of Technology, Hefei, Anhui, 230601, PR China
| | - Qingfeng Hu
- Engineering Research Center of Bio-Process of Ministry of Education, Hefei University of Technology, Hefei, Anhui, 230601, PR China
| | - Shengnan Li
- Engineering Research Center of Bio-Process of Ministry of Education, Hefei University of Technology, Hefei, Anhui, 230601, PR China
| | - Yuanli Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui, 230601, PR China
| | - Zeyu Wu
- Engineering Research Center of Bio-Process of Ministry of Education, Hefei University of Technology, Hefei, Anhui, 230601, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230601, PR China
| | - Wencheng Zhang
- Engineering Research Center of Bio-Process of Ministry of Education, Hefei University of Technology, Hefei, Anhui, 230601, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230601, PR China.
| |
Collapse
|
16
|
Shen Y, Luo Y, Liao P, Zuo Y, Jiang R. Role of the Voltage-Gated Proton Channel Hv1 in Nervous Systems. Neurosci Bull 2023; 39:1157-1172. [PMID: 37029856 PMCID: PMC10313628 DOI: 10.1007/s12264-023-01053-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/20/2023] [Indexed: 04/09/2023] Open
Abstract
Hv1 is the only voltage-gated proton-selective channel in mammalian cells. It contains a conserved voltage-sensor domain, shared by a large class of voltage-gated ion channels, but lacks a pore domain. Its primary role is to extrude protons from the cytoplasm upon pH reduction and membrane depolarization. The best-known function of Hv1 is the regulation of cytosolic pH and the nicotinamide adenine dinucleotide phosphate oxidase-dependent production of reactive oxygen species. Accumulating evidence indicates that Hv1 is expressed in nervous systems, in addition to immune cells and others. Here, we summarize the molecular properties, distribution, and physiological functions of Hv1 in the peripheral and central nervous systems. We describe the recently discovered functions of Hv1 in various neurological diseases, including brain or spinal cord injury, ischemic stroke, demyelinating diseases, and pain. We also summarize the current advances in the discovery and application of Hv1-targeted small molecules in neurological diseases. Finally, we discuss the current limitations of our understanding of Hv1 and suggest future research directions.
Collapse
Affiliation(s)
- Yu Shen
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610000, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Yuncheng Luo
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610000, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Ping Liao
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Yunxia Zuo
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610000, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Ruotian Jiang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610000, China.
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610000, China.
| |
Collapse
|
17
|
Kaur J, Mojumdar A. A mechanistic overview of spinal cord injury, oxidative DNA damage repair and neuroprotective therapies. Int J Neurosci 2023; 133:307-321. [PMID: 33789065 DOI: 10.1080/00207454.2021.1912040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Despite substantial development in medical treatment strategies scientists are struggling to find a cure against spinal cord injury (SCI) which causes long term disability and paralysis. The prime rationale behind it is the enlargement of primary lesion due to an initial trauma to the spinal cord which spreads to the neighbouring spinal tissues It begins from the time of traumatic event happened and extends to hours and even days. It further causes series of biological and functional alterations such as inflammation, excitotoxicity and ischemia, and promotes secondary lesion to the cord which worsens the life of individuals affected by SCI. Oxidative DNA damage is a stern consequence of oxidative stress linked with secondary injury causes oxidative base alterations and strand breaks, which provokes cell death in neurons. It is implausible to stop primary damage however it is credible to halt the secondary lesion and improve the quality of the patient's life to some extent. Therefore it is crucial to understand the hidden perspectives of cell and molecular biology affecting the pathophysiology of SCI. Thus the focus of the review is to connect the missing links and shed light on the oxidative DNA damages and the functional repair mechanisms, as a consequence of the injury in neurons. The review will also probe the significance of neuroprotective strategies in the present scenario. HIGHLIGHTSSpinal cord injury, a pernicious condition, causes excitotoxicity and ischemia, ultimately leading to cell death.Oxidative DNA damage is a consequence of oxidative stress linked with secondary injury, provoking cell death in neurons.Base excision repair (BER) is one of the major repair pathways that plays a crucial role in repairing oxidative DNA damages.Neuroprotective therapies curbing SCI and boosting BER include the usage of pharmacological drugs and other approaches.
Collapse
Affiliation(s)
- Jaspreet Kaur
- Department of Neuroscience, University of Copenhagen, Copenhagen N, Denmark
| | - Aditya Mojumdar
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
18
|
The Pathological Activation of Microglia Is Modulated by Sexually Dimorphic Pathways. Int J Mol Sci 2023; 24:ijms24054739. [PMID: 36902168 PMCID: PMC10003784 DOI: 10.3390/ijms24054739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/11/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
Microglia are the primary immunocompetent cells of the central nervous system (CNS). Their ability to survey, assess and respond to perturbations in their local environment is critical in their role of maintaining CNS homeostasis in health and disease. Microglia also have the capability of functioning in a heterogeneous manner depending on the nature of their local cues, as they can become activated on a spectrum from pro-inflammatory neurotoxic responses to anti-inflammatory protective responses. This review seeks to define the developmental and environmental cues that support microglial polarization towards these phenotypes, as well as discuss sexually dimorphic factors that can influence this process. Further, we describe a variety of CNS disorders including autoimmune disease, infection, and cancer that demonstrate disparities in disease severity or diagnosis rates between males and females, and posit that microglial sexual dimorphism underlies these differences. Understanding the mechanism behind differential CNS disease outcomes between men and women is crucial in the development of more effective targeted therapies.
Collapse
|
19
|
Zheng S, Wang C, Lin L, Mu S, Liu H, Hu X, Chen X, Wang S. TNF-α Impairs Pericyte-Mediated Cerebral Microcirculation via the NF-κB/iNOS Axis after Experimental Traumatic Brain Injury. J Neurotrauma 2023; 40:349-364. [PMID: 35972751 DOI: 10.1089/neu.2022.0016] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Secondary structural and functional abnormalities of the neurovascular unit are important pathological mechanisms following traumatic brain injury (TBI). The neurovascular unit maintains blood-brain barrier and vascular integrity through interactions among glial cells, pericytes and endothelial cells. Trauma-induced neuroinflammation and oxidative stress may act as initiating factors for pathological damage after TBI, which in turn impairs cerebral microcirculatory function. Studies have shown that the tumor necrosis factor α (TNF-α)/nuclear factor-κB (NF-κB) pathway regulates inflammation and oxidative damage, but its role in pericyte-mediated cerebral microcirculation are currently unknown. Herein, we assessed TNF-α/NF-κB signaling and inducible nitric oxide synthase (iNOS), and the effects of the TNF-α inhibitor infliximab after TBI. Whether pericyte damage is dependent on the TNF-α/NF-κB/iNOS axis was also evaluated to explore the mechanisms underlying disturbances in the microcirculation after TBI. Microglia are activated after TBI to promote inflammatory factors and free radical release, and upregulate NF-κB and iNOS expression. After lipopolysaccharide treatment, the activity of TNF-α/NF-κB/iNOS in BV2 cells was also upregulated. Inhibition of TNF-α using infliximab reduced NF-κB phosphorylation and nuclear translocation and downregulated iNOS expression, which attenuated the inflammation and oxidative damage. Meanwhile, inhibition of TNF-α reversed pericyte marker loss, and improved pericyte function and microcirculation perfusion after TBI. In conclusion, our study suggests that microglia released TNF-α after TBI, which promoted neuroinflammation and oxidative stress by activating downstream NF-κB/iNOS signals, and this led to pericyte-mediated disturbance of the cerebral microcirculation.
Collapse
Affiliation(s)
- Shaorui Zheng
- Department of Neurosurgery, Fuzong Clinical Medical College, the Second Affiliated Hospital, Fujian Medical University, Fujian Province, China
- Department of Neurosurgery, Affiliated Hospital of Putian University, Fujian Province, China
| | - Cheng Wang
- Department of Neurosurgery, the First Affiliated Hospital of Wannan Medical College, Anhui Province, China
| | - Long Lin
- Department of Neurosurgery, Fuzong Clinical Medical College, the Second Affiliated Hospital, Fujian Medical University, Fujian Province, China
| | - Shuwen Mu
- Department of Neurosurgery, Fuzong Clinical Medical College, the Second Affiliated Hospital, Fujian Medical University, Fujian Province, China
| | - Haibing Liu
- Department of Neurosurgery, the First Affiliated Hospital of Wannan Medical College, Anhui Province, China
| | - Xiaofang Hu
- Department of Neurosurgery, 900th Hospital of PLA, Fujian Province, China
| | - Xiangrong Chen
- Department of Neurosurgery, the Second Affiliated Hospital, Fujian Medical University, Fujian Province, China
| | - Shousen Wang
- Department of Neurosurgery, 900th Hospital of PLA, Fujian Province, China
| |
Collapse
|
20
|
Chen J, Chen T, Wang Y, Meng J, Tan G, Zhao Q, Feng S, Xu L, Pei Q. Oxidative stress disrupts the cytoskeleton of spinal motor neurons. Brain Behav 2023; 13:e2870. [PMID: 36579576 PMCID: PMC9927851 DOI: 10.1002/brb3.2870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND AIM Traumatic spinal cord injury (SCI) is a common and devastating central nervous disease, the treatment of which faces many challenges to the medical community and society as a whole. Treatment measures based on oxidative stress of spinal motor neurons during SCI are expected to help restore biological functions of neurons under injury conditions. However, to date, there are no systematic reports regarding oxidative stress on spinal motor neuron injury. Our aim is to better understand and explain the influences and mechanisms of oxidative stress on spinal motor neurons during SCI. METHODS We first exposed VSC4.1 motor neurons to hydrogen peroxide (H2 O2 ) and evaluated the effects on cell viability, morphology, cycling, and apoptosis, with an emphasis on the changes to the cytoskeleton and the effect of N-acetyl-l-cysteine (NAC) on these changes. Then, we investigated the effects of NAC on these cytoskeletal changes in vitro and in vivo. RESULTS We found that H2 O2 caused severe damage to the normal cytoskeleton, leading to a reduction in neurite length and number, rearrangement of the actin cytoskeleton, and disorder of the microtubules and neurofilaments in VSC4.1. Importantly, NAC attenuated the oxidative damage of spinal motor neurons in vitro and in vivo, promoting the recovery of hindlimb motor ability in mice with SCI at the early stage of injury. CONCLUSION This study shows that oxidative stress plays an important role in the cytoskeleton destruction of spinal motor neurons in SCI, and treatment of SCI on this basis is a promising strategy. These findings will help to elucidate the role of oxidative stress in spinal motor neuron injury in SCI and provide references for further research into the study of the pathology and underlying mechanism of SCI.
Collapse
Affiliation(s)
- Jian Chen
- Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing, China.,Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing University Three Gorges Hospital, Chongqing, China.,School of Graduate, North Sichuan Medical College, Nanchong, China
| | - Tianyu Chen
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yeyang Wang
- Department of Spinal Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Juanjuan Meng
- Central Laboratory, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Guangjiao Tan
- Central Laboratory, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Qiurong Zhao
- Central Laboratory, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Shilong Feng
- Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing, China.,Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Lixin Xu
- Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing, China.,Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Qinqin Pei
- Central Laboratory, Chongqing University Three Gorges Hospital, Chongqing, China
| |
Collapse
|
21
|
Silvestro S, Mazzon E. Nrf2 Activation: Involvement in Central Nervous System Traumatic Injuries. A Promising Therapeutic Target of Natural Compounds. Int J Mol Sci 2022; 24:199. [PMID: 36613649 PMCID: PMC9820431 DOI: 10.3390/ijms24010199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Central nervous system (CNS) trauma, such as traumatic brain injury (TBI) and spinal cord injury (SCI), represents an increasingly important health burden in view of the preventability of most injuries and the complex and expensive medical care that they necessitate. These injuries are characterized by different signs of neurodegeneration, such as oxidative stress, mitochondrial dysfunction, and neuronal apoptosis. Cumulative evidence suggests that the transcriptional factor nuclear factor erythroid 2-related factor 2 (Nrf2) plays a crucial defensive role in regulating the antioxidant response. It has been demonstrated that several natural compounds are able to activate Nrf2, mediating its antioxidant response. Some of these compounds have been tested in experimental models of SCI and TBI, showing different neuroprotective properties. In this review, an overview of the preclinical studies that highlight the positive effects of natural bioactive compounds in SCI and TBI experimental models through the activation of the Nrf2 pathway has been provided. Interestingly, several natural compounds can activate Nrf2 through multiple pathways, inducing a strong antioxidant response against CNS trauma. Therefore, some of these compounds could represent promising therapeutic strategies for these pathological conditions.
Collapse
Affiliation(s)
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| |
Collapse
|
22
|
Molecular Mechanisms in the Vascular and Nervous Systems following Traumatic Spinal Cord Injury. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010009. [PMID: 36675958 PMCID: PMC9866624 DOI: 10.3390/life13010009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/26/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Traumatic spinal cord injury (SCI) induces various complex pathological processes that cause physical impairment and psychological devastation. The two phases of SCI are primary mechanical damage (the immediate result of trauma) and secondary injury (which occurs over a period of minutes to weeks). After the mechanical impact, vascular disruption, inflammation, demyelination, neuronal cell death, and glial scar formation occur during the acute phase. This sequence of events impedes nerve regeneration. In the nervous system, various extracellular secretory factors such as neurotrophic factors, growth factors, and cytokines are involved in these events. In the vascular system, the blood-spinal cord barrier (BSCB) is damaged, allowing immune cells to infiltrate the parenchyma. Later, endogenous angiogenesis is promoted during the subacute phase. In this review, we describe the roles of secretory factors in the nervous and vascular systems following traumatic SCI, and discuss the outcomes of their therapeutic application in traumatic SCI.
Collapse
|
23
|
Park YM, Kim JH, Lee JE. Neural Stem Cells Overexpressing Arginine Decarboxylase Improve Functional Recovery from Spinal Cord Injury in a Mouse Model. Int J Mol Sci 2022; 23:ijms232415784. [PMID: 36555425 PMCID: PMC9779865 DOI: 10.3390/ijms232415784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/30/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Current therapeutic strategies for spinal cord injury (SCI) cannot fully facilitate neural regeneration or improve function. Arginine decarboxylase (ADC) synthesizes agmatine, an endogenous primary amine with neuroprotective effects. Transfection of human ADC (hADC) gene exerts protective effects after injury in murine brain-derived neural precursor cells (mNPCs). Following from these findings, we investigated the effects of hADC-mNPC transplantation in SCI model mice. Mice with experimentally damaged spinal cords were divided into three groups, separately transplanted with fluorescently labeled (1) control mNPCs, (2) retroviral vector (pLXSN)-infected mNPCs (pLXSN-mNPCs), and (3) hADC-mNPCs. Behavioral comparisons between groups were conducted weekly up to 6 weeks after SCI, and urine volume was measured up to 2 weeks after SCI. A subset of animals was euthanized each week after cell transplantation for molecular and histological analyses. The transplantation groups experienced significantly improved behavioral function, with the best recovery occurring in hADC-mNPC mice. Transplanting hADC-mNPCs improved neurological outcomes, induced oligodendrocyte differentiation and remyelination, increased neural lineage differentiation, and decreased glial scar formation. Moreover, locomotor and bladder function were both rehabilitated. These beneficial effects are likely related to differential BMP-2/4/7 expression in neuronal cells, providing an empirical basis for gene therapy as a curative SCI treatment option.
Collapse
Affiliation(s)
- Yu Mi Park
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- BK 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- CHA Advanced Research Institute, CHA University, CHA Bio-Complex, 335, Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Republic of Korea
- Department of Biomedical Science, CHA University, CHA Bio-Complex, 335, Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Republic of Korea
| | - Jae Hwan Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- BK 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- BK 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Brain Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Correspondence: ; Tel.: +82-2-2228-1646
| |
Collapse
|
24
|
Wilton A. Risk Factors for Postoperative Complications and In-Hospital Mortality Following Surgery for Cervical Spinal Cord Injury. Cureus 2022; 14:e31960. [DOI: 10.7759/cureus.31960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2022] [Indexed: 11/29/2022] Open
|
25
|
Huang Z, Wang J, Li C, Zheng W, He J, Wu Z, Tang J. Application of natural antioxidants from traditional Chinese medicine in the treatment of spinal cord injury. Front Pharmacol 2022; 13:976757. [PMID: 36278149 PMCID: PMC9579378 DOI: 10.3389/fphar.2022.976757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating central nervous system disease, caused by physical traumas. With the characteristic of high disability rate, catastrophic dysfunction, and enormous burden on the patient’s family, SCI has become a tough neurological problem without efficient treatments. Contemporarily, the pathophysiology of SCI comprises complicated and underlying mechanisms, in which oxidative stress (OS) may play a critical role in contributing to a cascade of secondary injuries. OS substantively leads to ion imbalance, lipid peroxidation, inflammatory cell infiltration, mitochondrial disorder, and neuronal dysfunction. Hence, seeking the therapeutic intervention of alleviating OS and appropriate antioxidants is an essential clinical strategy. Previous studies have reported that traditional Chinese medicine (TCM) has antioxidant, anti-inflammatory, antiapoptotic and neuroprotective effects on alleviating SCI. Notably, the antioxidant effects of some metabolites and compounds of TCM have obtained numerous verifications, suggesting a potential therapeutic strategy for SCI. This review aims at investigating the mechanisms of OS in SCI and highlighting some TCM with antioxidant capacity used in the treatment of SCI.
Collapse
Affiliation(s)
- Zhihua Huang
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Zhongshan, China
| | - Jingyi Wang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Chun Li
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Zhongshan, China
| | - Weihong Zheng
- Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan, China
| | - Junyuan He
- Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan, China
| | - Ziguang Wu
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Zhongshan, China
| | - Jianbang Tang
- Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan, China
- *Correspondence: Jianbang Tang,
| |
Collapse
|
26
|
A novel mutation located in the intermembrane space domain of AFG3L2 causes dominant optic atrophy through decreasing the stability of the encoded protein. Cell Death Dis 2022; 8:361. [PMID: 35970831 PMCID: PMC9378676 DOI: 10.1038/s41420-022-01160-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/18/2022]
Abstract
Dominant optic atrophy (DOA) is the most common hereditary optic neuropathy. Although DOA is caused by mutations in several genes, there are still many cases that have not been diagnosed or misdiagnosed. Herein, we present a large family of 11 patients with DOA. To identify potential pathogenic mutations, whole exome sequencing (WES) was performed on the proband, a 35-year-old woman. WES revealed a novel pathogenic mutation (c.524T>C, p.F175S) in the AFG3L2 intermembrane space domain, rather than in the ATPase domain, which is the hot mutation region associated with most of the previously reported DOA cases. Functional studies on skin fibroblasts generated from patients and HEK293T cells showed that the mutation may impair mitochondrial function and decrease the ability of AFG3L2 protein to enter the mitochondrial inner membrane. In addition, this novel mutation led to protein degradation and reduced the stability of the AFG3L2 protein, which appeared to be associated with the proteasome-ubiquitin pathway.
Collapse
|
27
|
Li P, Liu Y, Li J, Sun Y, Wang H. Resveratrol Glycosides Impede Microglial Apoptosis and Oxidative Stress in Rats for Spinal Cord Injury. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Spinal cord injury (SCI) usually occurs after severe trauma, which can lead to detrimental and unpredictable secondary diseases, including dyskinesia, paraplegia and even quadriplegia, resulting in seriously reduced quality of life among these patients. Oxidative damage is one of the
major pathogenic factors of SCI. Resveratrol biologically exerts a significant antioxidant activity by increasing the levels of antioxidants and sequentially scavenging free radicals, so as to protect multiple organs from damage. This study investigates whether resveratrol can function as
a protective mediator in SCI and the underlying mechanisms, aiming to provide a theoretical hint for the treatment of SCI. After establishment of SCI model in rats, serial doses of resveratrol were administrated. Afterwards, the therapeutic effects of resveratrol glycosides were evaluated
by analyzing the motor function, spinal cord edema, cellular apoptosis and oxidative reaction in rats. Eventually, the potential mechanisms of resveratrol glycosides were studied via Western blotting. Our results showed that the pro-apoptosis proteins were highly expressed in the spinal cord
tissue of rats after SCI. In comparison with healthy rats, those with SCI exhibited significant widespread dead neurons, glial cell apoptosis, oxidative stress and more serious functional defects. Nevertheless, resveratrol glycosides can ameliorate oxidative stress, inhibit the apoptosis of
glial cells and neuronal death after SCI. Importantly, it can induce the activation of the Nrf2/HO-1 signal transduction pathway that mediated the alleviation of SCI in rats. Resveratrol can improve motor dysfunction after SCI, which may be a result of its anti-oxidation and anti-apoptotic
effects via modulating the Nrf2 signal transduction pathway of microglia, which provides a new idea for the treatment of SCI.
Collapse
Affiliation(s)
- Peng Li
- Department of Integrative Medicine, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, 161000, China
| | - Yang Liu
- Department of Neurorehabilitation, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, 161000, China
| | - Jiadi Li
- Bureau of traditional Chinese Medicine, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, 161000, China
| | - Yuwei Sun
- Bureau of traditional Chinese Medicine, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, 161000, China
| | - Haipeng Wang
- Department of Neurology, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, 161000, China
| |
Collapse
|
28
|
Zheng S, Mu S, Li J, Zhang S, Wei L, Wang M, Xu Y, Wang S. Cerebral venous hemodynamic responses in a mouse model of traumatic brain injury. Brain Res 2022; 1792:148014. [PMID: 35839929 DOI: 10.1016/j.brainres.2022.148014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 05/28/2022] [Accepted: 07/10/2022] [Indexed: 11/24/2022]
Abstract
Traumatic brain injury (TBI) is a serious public health problem that endangers human health and is divided into primary and secondary injuries. Previous work has confirmed that changes in cerebral blood flow (CBF) are related to the progression of secondary injury, although clinical studies have shown that CBF monitoring cannot fully and accurately evaluate disease progression. These studies have almost ignored the monitoring of venous blood flow; however, as an outflow channel of the cerebral circulation, it warrants discussion. To explore the regulation of venous blood flow after TBI, the present study established TBI mouse models of different severities, observed changes in cerebral venous blood flow by laser speckle flow imaging, and recorded intracranial pressure (ICP) after brain injury to evaluate the correlation between venous blood flow and ICP. Behavioral and histopathological assessments were performed after the intervention. The results showed that there was a significant negative correlation between ICP and venous blood flow (r = -0.795, P < 0.01), and both recovered to varying degrees in the later stages of observation. The blood flow changes in regional microvessels were similar to those in venous, and the expression of angiogenesis proteins around the impact area was significantly increased. In conclusion, this study based on the TBI mouse model, recorded the changes in venous blood flow and ICP and revealed that venous blood flow can be used as an indicator of the progression of secondary brain injury.
Collapse
Affiliation(s)
- Shaorui Zheng
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, China; Department of Neurosurgery, Affiliated Hospital of Putian University, Putian 351100, China
| | - Shuwen Mu
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, China
| | - Jun Li
- Department of Neurosurgery, The 900th Hospital of Joint Logistic Support Force, Fujian Medical University Fuzong Clinical College, Fuzhou 350025, China
| | - Shangming Zhang
- Department of Neurosurgery, The 900th Hospital of Joint Logistic Support Force, Fujian Medical University Fuzong Clinical College, Fuzhou 350025, China
| | - Liangfeng Wei
- Department of Neurosurgery, The 900th Hospital of Joint Logistic Support Force, Fujian Medical University Fuzong Clinical College, Fuzhou 350025, China
| | - Mingyue Wang
- Department of Pathology, The 900th Hospital of Joint Logistic Support Force, Fujian Medical University Fuzong Clinical College, Fuzhou 350025, China
| | - Yongjun Xu
- Laboratory of Basic Medicine, The 900th Hospital of Joint Logistic Support Force, Fujian Medical University Fuzong Clinical College, Fuzhou 350025, China.
| | - Shousen Wang
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, China; Department of Neurosurgery, The 900th Hospital of Joint Logistic Support Force, Fujian Medical University Fuzong Clinical College, Fuzhou 350025, China.
| |
Collapse
|
29
|
Tsivelekas KK, Evangelopoulos DS, Pallis D, Benetos IS, Papadakis SA, Vlamis J, Pneumaticos SG. Angiogenesis in Spinal Cord Injury: Progress and Treatment. Cureus 2022; 14:e25475. [PMID: 35800787 PMCID: PMC9246426 DOI: 10.7759/cureus.25475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2022] [Indexed: 11/22/2022] Open
Abstract
Traumatic spinal cord injury (SCI) provokes the onset of an intricate pathological process. Initial primary injury ruptures local micro-neuro-vascularcomplex triggering the commencement of multi-factorial secondary sequences which exert significant influence on neurological deterioration progress. Stimulating by local ischemia, neovascularization pathways emerge to provide neuroprotection and improve functional recovery. Although angiogenetic processes are prompted, newly formed vascular system is frequently inadequate to distribute sufficient blood supply and improve axonal recovery. Several treatment interventions have been endeavored to achieve the optimal conditions in SCI microenvironment, enhancing angiogenesis and improve functional recovery. In this study we review the revascularization pathogenesis and importance within the secondary processes and condense the proangiogenic influence of several angiogenetic-targeted treatment interventions.
Collapse
|
30
|
Cai W, Shen K, Ji P, Jia Y, Han S, Zhang W, Hu X, Yang X, Han J, Hu D. The Notch pathway attenuates burn-induced acute lung injury in rats by repressing reactive oxygen species. BURNS & TRAUMA 2022; 10:tkac008. [PMID: 35441079 PMCID: PMC9014447 DOI: 10.1093/burnst/tkac008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/02/2022] [Indexed: 12/21/2022]
Abstract
Background Acute lung injury (ALI) is a common complication following severe burns. The underlying mechanisms of ALI are incompletely understood; thus, available treatments are not sufficient to repair the lung tissue after ALI. Methods To investigate the relationship between the Notch pathway and burn-induced lung injury, we established a rat burn injury model by scalding and verified lung injury via lung injury evaluations, including hematoxylin and eosin (H&E) staining, lung injury scoring, bronchoalveolar lavage fluid and wet/dry ratio analyses, myeloperoxidase immunohistochemical staining and reactive oxygen species (ROS) accumulation analysis. To explore whether burn injury affects Notch1 expression, we detected the expression of Notch1 and Hes1 after burn injury. Then, we extracted pulmonary microvascular endothelial cells (PMVECs) and conducted Notch pathway inhibition and activation experiments, via a γ-secretase inhibitor (GSI) and OP9-DLL1 coculture, respectively, to verify the regulatory effect of the Notch pathway on ROS accumulation and apoptosis in burn-serum-stimulated PMVECs. To investigate the regulatory effect of the Notch pathway on ROS accumulation, we detected the expression of oxidative-stress-related molecules such as superoxide dismutase, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) 2, NOX4 and cleaved caspase-3. NOX4-specific small interfering RNA (siRNA) and the inhibitor GKT137831 were used to verify the regulatory effect of the Notch pathway on ROS via NOX4. Results We successfully established a burn model and revealed that lung injury, excessive ROS accumulation and an inflammatory response occurred. Notch1 detection showed that the expression of Notch1 was significantly increased after burn injury. In PMVECs challenged with burn serum, ROS and cell death were elevated. Moreover, when the Notch pathway was suppressed by GSI, ROS and cell apoptosis levels were significantly increased. Conversely, these parameters were reduced when the Notch pathway was activated by OP9-DLL1. Mechanistically, the inhibition of NOX4 by siRNA and GKT137831 showed that the Notch pathway reduced ROS production and cell apoptosis by downregulating the expression of NOX4 in PMVECs. Conclusions The Notch pathway reduced ROS production and apoptosis by downregulating the expression of NOX4 in burn-stimulated PMVECs. The Notch-NOX4 pathway may be a novel therapeutic target to treat burn-induced ALI.
Collapse
Affiliation(s)
- Weixia Cai
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Kuo Shen
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Peng Ji
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yanhui Jia
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Shichao Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Wanfu Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaolong Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xuekang Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Juntao Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
31
|
Cheng Y, Zhang Y, Wu H. Polymeric Fibers as Scaffolds for Spinal Cord Injury: A Systematic Review. Front Bioeng Biotechnol 2022; 9:807533. [PMID: 35223816 PMCID: PMC8864123 DOI: 10.3389/fbioe.2021.807533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/16/2021] [Indexed: 11/30/2022] Open
Abstract
Spinal cord injury (SCI) is a complex neurological condition caused by trauma, inflammation, and other diseases, which often leads to permanent changes in strength and sensory function below the injured site. Changes in the microenvironment and secondary injuries continue to pose challenges for nerve repair and recovery after SCI. Recently, there has been progress in the treatment of SCI with the use of scaffolds for neural tissue engineering. Polymeric fibers fabricated by electrospinning have been increasingly used in SCI therapy owing to their biocompatibility, complex porous structure, high porosity, and large specific surface area. Polymer fibers simulate natural extracellular matrix of the nerve fiber and guide axon growth. Moreover, multiple channels of polymer fiber simulate the bundle of nerves. Polymer fibers with porous structure can be used as carriers loaded with drugs, nerve growth factors and cells. As conductive fibers, polymer fibers have electrical stimulation of nerve function. This paper reviews the fabrication, characterization, and application in SCI therapy of polymeric fibers, as well as potential challenges and future perspectives regarding their application.
Collapse
Affiliation(s)
- Yuanpei Cheng
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yanbo Zhang
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Han Wu
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
32
|
Alfarhan M, Liu F, Shan S, Pichavaram P, Somanath PR, Narayanan SP. Pharmacological Inhibition of Spermine Oxidase Suppresses Excitotoxicity Induced Neuroinflammation in Mouse Retina. Int J Mol Sci 2022; 23:2133. [PMID: 35216248 PMCID: PMC8875684 DOI: 10.3390/ijms23042133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 02/07/2023] Open
Abstract
Polyamine oxidation plays a major role in neurodegenerative diseases. Previous studies from our laboratory demonstrated that spermine oxidase (SMOX, a member of the polyamine oxidase family) inhibition using MDL 72527 reduced neurodegeneration in models of retinal excitotoxicity and diabetic retinopathy. However, the mechanisms behind the neuroprotection offered by SMOX inhibition are not completely studied. Utilizing the experimental model of retinal excitotoxicity, the present study determined the impact of SMOX blockade in retinal neuroinflammation. Our results demonstrated upregulation in the number of cells positive for Iba-1 (ionized calcium-binding adaptor molecule 1), CD (Cluster Differentiation) 68, and CD16/32 in excitotoxicity-induced retinas, while MDL 72527 treatment reduced these changes, along with increases in the number of cells positive for Arginase1 and CD206. When retinal excitotoxicity upregulated several pro-inflammatory genes, MDL 72527 treatment reduced many of them and increased anti-inflammatory genes. Furthermore, SMOX inhibition upregulated antioxidant signaling (indicated by elevated Nrf2 and HO-1 levels) and reduced protein-conjugated acrolein in excitotoxic retinas. In vitro studies using C8-B4 cells showed changes in cellular morphology and increased reactive oxygen species formation in response to acrolein (a product of SMOX activity) treatment. Overall, our findings indicate that the inhibition SMOX pathway reduced neuroinflammation and upregulated antioxidant signaling in the retina.
Collapse
Affiliation(s)
- Moaddey Alfarhan
- Clinical and Experimental Therapeutics Program, Department of Clinical and Administrative Pharmacy, University of Georgia, Augusta, GA 30912, USA; (M.A.); (F.L.); (S.S.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
- Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA;
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Fang Liu
- Clinical and Experimental Therapeutics Program, Department of Clinical and Administrative Pharmacy, University of Georgia, Augusta, GA 30912, USA; (M.A.); (F.L.); (S.S.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
- Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA;
| | - Shengshuai Shan
- Clinical and Experimental Therapeutics Program, Department of Clinical and Administrative Pharmacy, University of Georgia, Augusta, GA 30912, USA; (M.A.); (F.L.); (S.S.); (P.R.S.)
- Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA;
| | | | - Payaningal R. Somanath
- Clinical and Experimental Therapeutics Program, Department of Clinical and Administrative Pharmacy, University of Georgia, Augusta, GA 30912, USA; (M.A.); (F.L.); (S.S.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
| | - S. Priya Narayanan
- Clinical and Experimental Therapeutics Program, Department of Clinical and Administrative Pharmacy, University of Georgia, Augusta, GA 30912, USA; (M.A.); (F.L.); (S.S.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
- Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA;
| |
Collapse
|
33
|
Hensley K, Danekas A, Farrell W, Garcia T, Mehboob W, White M. At the intersection of sulfur redox chemistry, cellular signal transduction and proteostasis: A useful perspective from which to understand and treat neurodegeneration. Free Radic Biol Med 2022; 178:161-173. [PMID: 34863876 DOI: 10.1016/j.freeradbiomed.2021.11.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022]
Abstract
Although we can thoroughly describe individual neurodegenerative diseases from the molecular level through cell biology to histology and clinical presentation, our understanding of them and hence treatment gains have been depressingly limited, partly due to difficulty conceptualizing different diseases as variations within the same overarching pathological rubric. This review endeavors to create such rubric by knitting together the seemingly disparate phenomena of oxidative stress, dysregulated proteostasis, and neuroinflammation into a cohesive triad that highlights mechanistic connectivities. We begin by considering that brain metabolic demands necessitate careful control of oxidative homeostasis, largely through sulfur redox chemistry and glutathione (GSH). GSH is essential for brain antioxidant defense, but also for redox signaling and thus neuroinflammation. Delicate regulation of neuroinflammatory pathways (NFκB, MAPK-p38, and NLRP3 particularly) occurs through S-glutathionylation of protein phosphatases but also through redox-sensing elements like ASK1; the 26S proteasome and cysteine deubiquitinases (DUBs). The relationship amongst triad elements is underscored by our discovery that LanCL1 (lanthionine synthetase-like protein-1) protects against oxidant toxicity; mediates GSH-dependent reactivation of oxidized DUBs; and antagonizes the pro-inflammatory cytokine, tumor necrosis factor-α (TNFα). We highlight currently promising pharmacological efforts to modulate key triad elements and suggest nexus points that might be exploited to further clinical advantage.
Collapse
Affiliation(s)
- Kenneth Hensley
- Department of Biochemistry, Cell and Molecular Biology, Arkansas College of Osteopathic Medicine, Fort Smith, AR, 72916, USA.
| | - Alexis Danekas
- Department of Biochemistry, Cell and Molecular Biology, Arkansas College of Osteopathic Medicine, Fort Smith, AR, 72916, USA
| | - William Farrell
- Department of Biochemistry, Cell and Molecular Biology, Arkansas College of Osteopathic Medicine, Fort Smith, AR, 72916, USA
| | - Tiera Garcia
- Department of Biochemistry, Cell and Molecular Biology, Arkansas College of Osteopathic Medicine, Fort Smith, AR, 72916, USA
| | - Wafa Mehboob
- Department of Biochemistry, Cell and Molecular Biology, Arkansas College of Osteopathic Medicine, Fort Smith, AR, 72916, USA
| | - Matthew White
- Department of Biochemistry, Cell and Molecular Biology, Arkansas College of Osteopathic Medicine, Fort Smith, AR, 72916, USA
| |
Collapse
|
34
|
Zhou Q, Jin H, Shi N, Gao S, Wang X, Zhu S, Yan M. Inhibit inflammation and apoptosis of pyrroloquinoline on spinal cord injury in rat. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1360. [PMID: 34733912 PMCID: PMC8506531 DOI: 10.21037/atm-21-1951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022]
Abstract
Background Pyrroloquinoline quinone (PQQ) is a redox cofactor that can participate in a variety of physiological and biochemical processes, such as anti-inflammatory, cytoprotection, anti-aging, and anti-apoptosis. PQQ plays an important protective role in the central nervous system (CNS). However, the effects of PQQ on astrocytes of the CNS and spinal cord injury (SCI) of rats is still unclear. The present study investigates the role of PQQ in inflammation, apoptosis, and autophagy after SCI in rats. And the effect of PQQ on lipopolysaccharide (LPS)-induced apoptosis and inflammation of astrocytes in vitro, to explore the neuroprotective mechanism of PQQ. Methods Sixty specific pathogen free (SPF) SD male rats (200–250 g) were randomly divided into Normal group, Sham group, SCI group, and SCI + PQQ group, with 15 rats in each group. BBB score, HE staining, Nissl staining, Western blot, immunofluorescence, and other methods were used for detection. Results Our results showed that PQQ could upregulate BBB score in SCI rats. In the second place, PQQ can increase the number and improve the morphology of neurons after SCI. The expression of IL-1β, TNF-α, IL-6 was significantly decreased after PQQ treatment. And then, the ratio of B-cell lymphoma-2 (Bcl-2)/Bcl-2 associated X protein (Bax) increased significantly, and the positive signal of NeuN increased obviously after PQQ treatment. There are a large number of co-localizations between Bcl-2 and NeuN. Meanwhile, PQQ could down-regulate the expression of Active-Caspase3, and PQQ treatment could reverse the transfer of Active-Caspase3/Caspase3 from the cytoplasm to the nucleus in neurons and astrocytes after SCI. At the same time, PQQ had no significant effect on the LC3b/a ratio. PQQ could decrease the LAMP2 expression in spinal cord after injury. The expression level of phospho-Akt (p-AKT) increased after SCI and decreased after PQQ treatment. In primary astrocytes, LPS could induce the expression levels of IL-1β, TNF-α, and IL-6, and which were inhibited by PQQ treatment at 12 hours. After treatment with LPS, the expression level of Active-Caspase3 increased, which could be reversed by PQQ treatment for 24 h. Conclusions These results suggest that PQQ can ameliorate the motor function of hind limbs and the pathological changes of neurons and injured spinal cord after SCI, down-regulate the expressions of IL-1β, TNF-α, and IL-6, inhibit apoptosis after SCI, and inhibit LPS-induced apoptosis and inflammation of astrocytes.
Collapse
Affiliation(s)
- Qiao Zhou
- The Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Hui Jin
- The Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Naiqi Shi
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, Australia
| | - Shumei Gao
- The Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xiaoyu Wang
- The Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Shunxing Zhu
- Experimental Animal Center of Nantong University, Nantong, China
| | - Meijuan Yan
- The Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
35
|
Zhao Y, Shi X, Wang J, Mang J, Xu Z. Betulinic Acid Ameliorates Cerebral Injury in Middle Cerebral Artery Occlusion Rats through Regulating Autophagy. ACS Chem Neurosci 2021; 12:2829-2837. [PMID: 34296845 DOI: 10.1021/acschemneuro.1c00198] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cerebral ischemic stroke (CIS) is an acute cerebrovascular disease that is caused by the sudden rupture of blood vessels inside the brain and the intervention of reperfusion to the brain, resulting in severe cerebral injury. Autophagy has been reported to be involved in the occurrence and progression of CIS. Betulinic acid (BA) is a pentacyclic triterpene acid mainly extracted from birch bark. Studies have shown the neuroprotective effects of BA. Here, the effect and mechanism of BA on ischemia-reperfusion induced cerebral injury was explored using a CIS model in vivo via 1 h middle cerebral artery occlusion (MCAO) and 24 h reperfusion in rats and in vitro via oxygen-glucose deprivation/reperfusion (OGD/R) of PC12 cells, respectively. We found that BA not only reduced cerebral injury by reducing oxidative stress but also activated the SIRT1/FoxO1 pathway to suppress autophagy and improve cerebral injury in MCAO rats. These results provide a basis for the potential clinical application of BA.
Collapse
Affiliation(s)
- Yuelin Zhao
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun 130033, P.R. China
| | - Xiaohua Shi
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun 130033, P.R. China
| | - Jiaoqi Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun 130033, P.R. China
| | - Jing Mang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun 130033, P.R. China
| | - Zhongxin Xu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun 130033, P.R. China
| |
Collapse
|
36
|
Hydrogen Sulfide and the Immune System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1315:99-128. [PMID: 34302690 DOI: 10.1007/978-981-16-0991-6_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hydrogen sulfide (H2S) is the "third gasotransmitter" recognized alongside nitric oxide (NO) and carbon monoxide (CO). H2S exhibits an array of biological effects in mammalian cells as revealed by studies showing important roles in the cardiovascular system, in cell signalling processes, post-translational modifications and in the immune system. Regarding the latter, using pharmacological and genetic approaches scientists have shown this molecule to have both pro- and anti-inflammatory effects in mammalian systems. The anti-inflammatory effects of H2S appeared to be due to its inhibitory action on the nuclear factor kappa beta signalling pathway; NF-kB representing a transcription factor involved in the regulation pro-inflammatory mediators like nitric oxide, prostaglandins, and cytokines. In contrast, results from several animal model describe a more complicated picture and report on pro-inflammatory effects linked to exposure to this molecule; linked to dosage used and point of administration of this molecule. Overall, roles for H2S in several inflammatory diseases spanning arthritis, atherosclerosis, sepsis, and asthma have been described by researchers. In light this work fascinating research, this chapter will cover H2S biology and its many roles in the immune system.
Collapse
|
37
|
Liu Z, Yao X, Sun B, Jiang W, Liao C, Dai X, Chen Y, Chen J, Ding R. Pretreatment with kaempferol attenuates microglia-mediate neuroinflammation by inhibiting MAPKs-NF-κB signaling pathway and pyroptosis after secondary spinal cord injury. Free Radic Biol Med 2021; 168:142-154. [PMID: 33823244 DOI: 10.1016/j.freeradbiomed.2021.03.037] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 03/03/2021] [Accepted: 03/26/2021] [Indexed: 12/16/2022]
Abstract
Spinal cord injury (SCI) is a devastating injury that characterized by oxidative stress and inflammatory response. Kaempferol is reported to be an anti-neuroinflammation in neurologic disorders. Nevertheless, the role and mechanism of kaempferol in SCI remains unclear. The present study aims to investigate effects of kaempferol on SCI and its possible underlying mechanisms in in vivo and in vitro models. A C5 hemi-contusion injury was induced in Sprague-Dawley rats to investigate the neuroprotective effects of kaempferol after SCI. For in vitro study, the BV2 microglia cell lines were pretreated with or without kaempferol. A combination of molecular and histological methods was used to clarify the mechanism and explore the signaling pathway both in vivo and in vitro. One-way analysis of variance (ANOVA) was conducted with Bonferroni post hoc tests to examine the differences between groups. The in vivo studies showed that kaempferol could improve the recovery of hindlimb motor function and ameliorate tissue damage in the spinal cord after SCI. Moreover, administration of kaempferol reduced microglia activation and oxidative stress level in the spinal cord. The in vitro studies showed that kaempferol suppressed the microglia activation resulting from the administration of LPS with ATP to BV-2 cells. Pretreated BV2 cells with kaempferol reduced the generation of reactive oxygen species (ROS) by inhibiting NADPH oxidase 4, and then, suppressed the phosphorylation of p38 MAPK and JNK, which subsequently inhibited nuclear translocation of NF-κB p65 to express pro-inflammatory factors. We also observed that kaempferol could inhibite the pyroptosis related proteins (NLRP3 Caspase-1 p10 ASC N-GSDMD) and reduce the release of IL-18 and IL-1β. In conclusion, kaempferol was able to reduce oxidative stress and inflammatory response through down-regulation of ROS dependent MAPKs- NF-κB and pyroptosis signaling pathway, which suggested that kaempferol might be a novel promising therapeutic agent for SCI.
Collapse
Affiliation(s)
- Zhongyuan Liu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xinqiang Yao
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Baihui Sun
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Wangsheng Jiang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Congrui Liao
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xiangheng Dai
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yu Chen
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jianting Chen
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Ruoting Ding
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
38
|
Toyama T, Hoshi T, Noguchi T, Saito Y, Matsuzawa A, Naganuma A, Hwang GW. Methylmercury induces neuronal cell death by inducing TNF-α expression through the ASK1/p38 signaling pathway in microglia. Sci Rep 2021; 11:9832. [PMID: 33972601 PMCID: PMC8110582 DOI: 10.1038/s41598-021-89210-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/15/2021] [Indexed: 02/08/2023] Open
Abstract
We recently found that tumor necrosis factor-α (TNF-α) may be involved in neuronal cell death induced by methylmercury in the mouse brain. Here, we examined the cells involved in the induction of TNF-α expression by methylmercury in the mouse brain by in situ hybridization. TNF-α-expressing cells were found throughout the brain and were identified as microglia by immunostaining for ionized calcium binding adaptor molecule 1 (Iba1). Methylmercury induced TNF-α expression in mouse primary microglia and mouse microglial cell line BV2. Knockdown of apoptosis signal-regulating kinase 1 (ASK1), an inflammatory cytokine up-regulator that is responsible for reactive oxygen species (ROS), decreased methylmercury-induced TNF-α expression through decreased phosphorylation of p38 MAP kinase in BV2 cells. Suppression of methylmercury-induced reactive oxygen species (ROS) by antioxidant treatment largely abolished the induction of TNF-α expression and phosphorylation of p38 by methylmercury in BV2 cells. Finally, in mouse brain slices, the TNF-α antagonist (WP9QY) inhibited neuronal cell death induced by methylmercury, as did the p38 inhibitor SB203580 and liposomal clodronate (a microglia-depleting agent). These results indicate that methylmercury induces mitochondrial ROS that are involved in activation of the ASK1/p38 pathway in microglia and that this is associated with induction of TNF-α expression and neuronal cell death.
Collapse
Affiliation(s)
- Takashi Toyama
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aoba-ku, Aramaki, Sendai, Miyagi, 980-8578, Japan
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Takayuki Hoshi
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aoba-ku, Aramaki, Sendai, Miyagi, 980-8578, Japan
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
- Laboratory of Environmental and Health Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Takuya Noguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aoba-ku, Aramaki, Sendai, Miyagi, 980-8578, Japan
| | - Yoshiro Saito
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Atsushi Matsuzawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aoba-ku, Aramaki, Sendai, Miyagi, 980-8578, Japan
| | - Akira Naganuma
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aoba-ku, Aramaki, Sendai, Miyagi, 980-8578, Japan
| | - Gi-Wook Hwang
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aoba-ku, Aramaki, Sendai, Miyagi, 980-8578, Japan.
- Laboratory of Environmental and Health Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan.
| |
Collapse
|
39
|
He J, Ritzel RM, Wu J. Functions and Mechanisms of the Voltage-Gated Proton Channel Hv1 in Brain and Spinal Cord Injury. Front Cell Neurosci 2021; 15:662971. [PMID: 33897377 PMCID: PMC8063047 DOI: 10.3389/fncel.2021.662971] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/18/2021] [Indexed: 12/25/2022] Open
Abstract
The voltage-gated proton channel Hv1 is a newly discovered ion channel that is highly conserved among species. It is known that Hv1 is not only expressed in peripheral immune cells but also one of the major ion channels expressed in tissue-resident microglia of the central nervous systems (CNS). One key role for Hv1 is its interaction with NADPH oxidase 2 (NOX2) to regulate reactive oxygen species (ROS) and cytosolic pH. Emerging data suggest that excessive ROS production increases and requires proton currents through Hv1 in the injured CNS, and manipulations that ablate Hv1 expression or induce loss of function may provide neuroprotection in CNS injury models including stroke, traumatic brain injury, and spinal cord injury. Recent data demonstrating microglial Hv1-mediated signaling in the pathophysiology of the CNS injury further supports the idea that Hv1 channel may function as a key mechanism in posttraumatic neuroinflammation and neurodegeneration. In this review, we summarize the main findings of Hv1, including its expression pattern, cellular mechanism, role in aging, and animal models of CNS injury and disease pathology. We also discuss the potential of Hv1 as a therapeutic target for CNS injury.
Collapse
Affiliation(s)
- Junyun He
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, United States
| | - Rodney M Ritzel
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, United States
| | - Junfang Wu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, United States.,University of Maryland Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
40
|
Fedullo AL, Ciccotti M, Giannotta P, Alviti F, Bernardi M, Raguzzini A, Toti E, Sciarra T, Peluso I. Hormetic Effects of Bioactive Compounds from Foods, Beverages, and Food Dressing: The Potential Role in Spinal Cord Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6615752. [PMID: 33747346 PMCID: PMC7943269 DOI: 10.1155/2021/6615752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/13/2021] [Accepted: 02/20/2021] [Indexed: 01/18/2023]
Abstract
Spinal cord injury (SCI) is a damage or trauma to the spinal cord resulting in a total or partial loss of motor and sensory function. SCI is characterized by a disequilibrium between the production of reactive oxygen species and the levels of antioxidant defences, causing oxidative stress and neuroinflammation. This review is aimed at highlighting the hormetic effects of some compounds from foods, beverages, and food dressing that are able to reduce oxidative stress in patients with SCI. Although curcumin, ginseng, and green tea have been proposed for SCI management, low levels of antioxidant vitamins have been reported in individuals with SCI. Mediterranean diet includes food rich in vitamins and antioxidants. Moreover, food dressing, including spices, herbs, and extra virgin olive oil (EVOO), contains multiple components with hormetic effects. The latter involves the activation of the nuclear factor erythroid-derived 2, consequently increasing the antioxidant enzymes and decreasing inflammation. Furthermore, EVOO improves the bioavailability of carotenoids and could be a delivery system for bioactive compounds. In conclusion, Mediterranean dressing in addition to plant foods can have an important effect on redox balance in individuals with SCI.
Collapse
Affiliation(s)
- Anna Lucia Fedullo
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), Rome, Italy
| | | | | | - Federica Alviti
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Board of Physical Medicine and Rehabilitation, Sapienza University of Rome, Rome, Italy
| | - Marco Bernardi
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Rome 00185, Italy
| | - Anna Raguzzini
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), Rome, Italy
| | - Elisabetta Toti
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), Rome, Italy
| | - Tommaso Sciarra
- Joint Veteran Center, Scientific Department, Army Medical Center, Rome, Italy
| | - Ilaria Peluso
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), Rome, Italy
| |
Collapse
|
41
|
Baumgartner JE, Baumgartner LS, Baumgartner ME, Moore EJ, Messina SA, Seidman MD, Shook DR. Progenitor cell therapy for acquired pediatric nervous system injury: Traumatic brain injury and acquired sensorineural hearing loss. Stem Cells Transl Med 2021; 10:164-180. [PMID: 33034162 PMCID: PMC7848325 DOI: 10.1002/sctm.20-0026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 08/18/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022] Open
Abstract
While cell therapies hold remarkable promise for replacing injured cells and repairing damaged tissues, cell replacement is not the only means by which these therapies can achieve therapeutic effect. For example, recent publications show that treatment with varieties of adult, multipotent stem cells can improve outcomes in patients with neurological conditions such as traumatic brain injury and hearing loss without directly replacing damaged or lost cells. As the immune system plays a central role in injury response and tissue repair, we here suggest that multipotent stem cell therapies achieve therapeutic effect by altering the immune response to injury, thereby limiting damage due to inflammation and possibly promoting repair. These findings argue for a broader understanding of the mechanisms by which cell therapies can benefit patients.
Collapse
Affiliation(s)
- James E. Baumgartner
- Advent Health for ChildrenOrlandoFloridaUSA
- Department of Neurological SurgeryUniversity of Central Florida College of MedicineOrlandoFloridaUSA
| | | | | | - Ernest J. Moore
- Department of Audiology and Speech Language PathologyUniversity of North TexasDentonTexasUSA
| | | | - Michael D. Seidman
- Advent Health CelebrationCelebrationFloridaUSA
- Department of OtorhinolaryngologyUniversity of Central FloridaOrlandoFloridaUSA
| | | |
Collapse
|
42
|
Liu B, Zhao G, Jin L, Shi J. Nicotinamide Improves Cognitive Function in Mice With Chronic Cerebral Hypoperfusion. Front Neurol 2021; 12:596641. [PMID: 33569040 PMCID: PMC7868534 DOI: 10.3389/fneur.2021.596641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/05/2021] [Indexed: 01/04/2023] Open
Abstract
Normal brain function requires steady blood supply to maintain stable energy state. When blood supply to the brain becomes suboptimal for a long period of time, chronic cerebral hypoperfusion (CCH) and a variety of brain changes may occur. CCH causes white matter injury and cognitive impairment. The present study investigated the effect of nicotinamide (NAM) on CCH-induced cognitive impairment and white matter damage in mice. Male C57Bl/6J mice aged 10–12 weeks (mean age = 11 ± 1 weeks) and weighing 24 - 29 g (mean weight = 26.5 ± 2.5 g) were randomly assigned to three groups (eight mice/group): sham group, CCH group and NAM group. Chronic cerebral hypoperfusion (CCH) was induced using standard methods. The treatment group mice received intraperitoneal injection of NAM at a dose of 200 mg/kg body weight (bwt) daily for 30 days. Learning, memory, anxiety, and depression-like behaviors were measured using Morris water maze test (MWMT), open field test (OFT), sucrose preference test (SPT), and forced swim test (FST), respectively. White matter damage and remodeling were determined via histological/ immunohistochemical analyses, and western blotting, respectively. The results showed that the time spent in target quadrant, number of crossings and escape latency were significantly lower in CCH group than in sham group, but they were significantly increased by NAM (p < 0.05). Mice in NAM group moved significantly faster and covered longer distances, when compared with those in CCH group (p < 0.05). The percentage of time spent in open arms and the number of entries to the open arms were significantly lower in CCH group than in NAM group (p < 0.05). Moreover, anhedonia and histologic scores (index of myelin injury) were significantly higher in CCH group than in sham group, but they were significantly reduced by NAM (p < 0.05). The results of immunohistochemical staining and Western blotting showed that the protein expressions of 2′, 3′-cyclic-nucleotide 3′-phosphodiesterase (CNPase) and synaptophysin were significantly downregulated in CCH group, relative to sham group, but they were significantly upregulated by NAM (p < 0.05). These results indicate that NAM improves cognitive function in mice with CCH.
Collapse
Affiliation(s)
- Bin Liu
- Department of Geriatrics, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Guifeng Zhao
- Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Sheng Jing Hospital of China Medical University, Shenyang, China
| | - Ling Jin
- Department of Geriatrics, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Jingping Shi
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| |
Collapse
|
43
|
Slomnicki LP, Myers SA, Saraswat Ohri S, Parsh MV, Andres KR, Chariker JH, Rouchka EC, Whittemore SR, Hetman M. Improved locomotor recovery after contusive spinal cord injury in Bmal1 -/- mice is associated with protection of the blood spinal cord barrier. Sci Rep 2020; 10:14212. [PMID: 32848194 PMCID: PMC7450087 DOI: 10.1038/s41598-020-71131-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/10/2020] [Indexed: 11/09/2022] Open
Abstract
The transcription factor BMAL1/ARNTL is a non-redundant component of the clock pathway that regulates circadian oscillations of gene expression. Loss of BMAL1 perturbs organismal homeostasis and usually exacerbates pathological responses to many types of insults by enhancing oxidative stress and inflammation. Surprisingly, we observed improved locomotor recovery and spinal cord white matter sparing in Bmal1-/- mice after T9 contusive spinal cord injury (SCI). While acute loss of neurons and oligodendrocytes was unaffected, Bmal1 deficiency reduced the chronic loss of oligodendrocytes at the injury epicenter 6 weeks post SCI. At 3 days post-injury (dpi), decreased expression of genes associated with cell proliferation, neuroinflammation and disruption of the blood spinal cord barrier (BSCB) was also observed. Moreover, intraspinal extravasation of fibrinogen and immunoglobulins was decreased acutely at dpi 1 and subacutely at dpi 7. Subacute decrease of hemoglobin deposition was also observed. Finally, subacutely reduced levels of the leukocyte marker CD45 and even greater reduction of the pro-inflammatory macrophage receptor CD36 suggest not only lower numbers of those cells but also their reduced inflammatory potential. These data indicate that Bmal1 deficiency improves SCI outcome, in part by reducing BSCB disruption and hemorrhage decreasing cytotoxic neuroinflammation and attenuating the chronic loss of oligodendrocytes.
Collapse
Affiliation(s)
- Lukasz P Slomnicki
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville, Louisville, KY, 40202, USA
| | - Scott A Myers
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville, Louisville, KY, 40202, USA
| | - Sujata Saraswat Ohri
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, 40202, USA.
- Department of Neurological Surgery, University of Louisville, Louisville, KY, 40202, USA.
- Kentucky Spinal Cord Injury Research Center, University of Louisville, 511 S. Floyd St., MDR616, Louisville, KY, 40292, USA.
| | - Molly V Parsh
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville, Louisville, KY, 40202, USA
| | - Kariena R Andres
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville, Louisville, KY, 40202, USA
| | - Julia H Chariker
- Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY, 40202, USA
- Kentucky Biomedical Research Infrastructure Network Bioinformatics Core, University of Louisville, Louisville, KY, 40202, USA
| | - Eric C Rouchka
- Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY, 40202, USA
- Kentucky Biomedical Research Infrastructure Network Bioinformatics Core, University of Louisville, Louisville, KY, 40202, USA
| | - Scott R Whittemore
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville, Louisville, KY, 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, 40202, USA
| | - Michal Hetman
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, 40202, USA.
- Department of Neurological Surgery, University of Louisville, Louisville, KY, 40202, USA.
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA.
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, 40202, USA.
- Kentucky Spinal Cord Injury Research Center, University of Louisville, 511 S. Floyd St., MDR616, Louisville, KY, 40292, USA.
| |
Collapse
|
44
|
Li X, Li M, Tian L, Chen J, Liu R, Ning B. Reactive Astrogliosis: Implications in Spinal Cord Injury Progression and Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9494352. [PMID: 32884625 PMCID: PMC7455824 DOI: 10.1155/2020/9494352] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/06/2020] [Accepted: 07/31/2020] [Indexed: 12/11/2022]
Abstract
Astrocytes are the most populous glial cells in the central nervous system (CNS). They are essential to CNS physiology and play important roles in the maintenance of homeostasis, development of synaptic plasticity, and neuroprotection. Nevertheless, under the influence of certain factors, astrocytes may also exert detrimental effects through a process of reactive astrogliosis. Previous studies have shown that astrocytes have more than one type of polarization. Two types have been extensively researched. One is a damaging change that occurs under inflammation and has been termed A1 astrocyte, while the other is a restorative change that occurs under ischemic induction and was termed A2 astrocyte. Researchers are now increasingly paying attention to the role of astrocytes in spinal cord injury (SCI), degenerative diseases, chronic pain, neurological tumors, and other CNS disorders. In this review, we discuss (a) the characteristics of polarized astrocytes, (b) the relationship between astrocyte polarization and SCI, and (c) new implications of reactive astrogliosis for future SCI therapies.
Collapse
Affiliation(s)
- Xinyu Li
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No. 105, Jiefang Road, Jinan, Shandong 250013, China
| | - Meng Li
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No. 105, Jiefang Road, Jinan, Shandong 250013, China
| | - Lige Tian
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No. 105, Jiefang Road, Jinan, Shandong 250013, China
| | - Jianan Chen
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No. 105, Jiefang Road, Jinan, Shandong 250013, China
| | - Ronghan Liu
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No. 105, Jiefang Road, Jinan, Shandong 250013, China
| | - Bin Ning
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No. 105, Jiefang Road, Jinan, Shandong 250013, China
| |
Collapse
|
45
|
Li Y, Cao T, Ritzel RM, He J, Faden AI, Wu J. Dementia, Depression, and Associated Brain Inflammatory Mechanisms after Spinal Cord Injury. Cells 2020; 9:cells9061420. [PMID: 32521597 PMCID: PMC7349379 DOI: 10.3390/cells9061420] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 12/28/2022] Open
Abstract
Evaluation of the chronic effects of spinal cord injury (SCI) has long focused on sensorimotor deficits, neuropathic pain, bladder/bowel dysfunction, loss of sexual function, and emotional distress. Although not well appreciated clinically, SCI can cause cognitive impairment including deficits in learning and memory, executive function, attention, and processing speed; it also commonly leads to depression. Recent large-scale longitudinal population-based studies indicate that patients with isolated SCI (without concurrent brain injury) are at a high risk of dementia associated with substantial cognitive impairments. Yet, little basic research has addressed potential mechanisms for cognitive impairment and depression after injury. In addition to contributing to disability in their own right, these changes can adversely affect rehabilitation and recovery and reduce quality of life. Here, we review clinical and experimental work on the complex and varied responses in the brain following SCI. We also discuss potential mechanisms responsible for these less well-examined, important SCI consequences. In addition, we outline the existing and developing therapeutic options aimed at reducing SCI-induced brain neuroinflammation and post-injury cognitive and emotional impairments.
Collapse
Affiliation(s)
- Yun Li
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA; (Y.L.); (T.C.); (R.M.R.); (J.H.); (A.I.F.)
| | - Tuoxin Cao
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA; (Y.L.); (T.C.); (R.M.R.); (J.H.); (A.I.F.)
| | - Rodney M. Ritzel
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA; (Y.L.); (T.C.); (R.M.R.); (J.H.); (A.I.F.)
| | - Junyun He
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA; (Y.L.); (T.C.); (R.M.R.); (J.H.); (A.I.F.)
| | - Alan I. Faden
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA; (Y.L.); (T.C.); (R.M.R.); (J.H.); (A.I.F.)
- University of Maryland Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201, USA
| | - Junfang Wu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA; (Y.L.); (T.C.); (R.M.R.); (J.H.); (A.I.F.)
- University of Maryland Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201, USA
- Correspondence: ; Tel.: +1-410-706-5189
| |
Collapse
|
46
|
Lu Y, Yang J, Wang X, Ma Z, Li S, Liu Z, Fan X. Research progress in use of traditional Chinese medicine for treatment of spinal cord injury. Biomed Pharmacother 2020; 127:110136. [PMID: 32335299 DOI: 10.1016/j.biopha.2020.110136] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/17/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is a serious central nervous system disorder caused by trauma that has gradually become a major challenge in clinical medical research. As an important branch of worldwide medical research, traditional Chinese medicine (TCM) is rapidly moving towards a path of reform and innovation. Therefore, this paper systematically reviews research related to existing TCM treatments for SCI, with the aims of identifying deficits and shortcomings within the field, and proposing feasible alternative prospects. METHODS All data and conclusions in this paper were obtained from articles published by peers in relevant fields. PubMed, SciFinder, Google Scholar, Web of Science, and CNKI databases were searched for relevant articles. Results regarding TCM for SCI were identified and retrieved, then manually classified and selected for inclusion in this review. RESULTS The literature search identified a total of 652 articles regarding TCM for SCI. Twenty-eight treatments (16 active ingredients, nine herbs, and three compound prescriptions) were selected from these articles; the treatments have been used for the prevention and treatment of SCI. In general, these treatments involved antioxidative, anti-inflammatory, neuroprotective, and/or antiapoptotic effects of TCM compounds. CONCLUSIONS This paper showed that TCM treatments can serve as promising auxiliary therapies for functional recovery of patients with SCI. These findings will contribute to the development of diversified treatments for SCI.
Collapse
Affiliation(s)
- Yubao Lu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jingjing Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xuexi Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Zhanjun Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Sheng Li
- Lanzhou First People's Hospital, Lanzhou, Gansu 730000, China
| | - Zhaoyang Liu
- Department of Medical Imaging, Shanxi Medical University, Jinzhong, Shanxi 030600, China
| | - Xuegong Fan
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
47
|
Devanney NA, Stewart AN, Gensel JC. Microglia and macrophage metabolism in CNS injury and disease: The role of immunometabolism in neurodegeneration and neurotrauma. Exp Neurol 2020; 329:113310. [PMID: 32289316 DOI: 10.1016/j.expneurol.2020.113310] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/25/2020] [Accepted: 04/10/2020] [Indexed: 12/12/2022]
Abstract
Innate immune responses, particularly activation of macrophages and microglia, are increasingly implicated in CNS disorders. It is now appreciated that the heterogeneity of functions adopted by these cells dictates neuropathophysiology. Research efforts to characterize the range of pro-inflammatory and anti-inflammatory phenotypes and functions adopted by microglia and macrophages are fueled by the potential for inflammatory cells to both exacerbate neurodegeneration and promote repair/disease resolution. The stimulation-based, M1/M2 classification system has emerged over the last decade as a common language to discuss macrophage and microglia heterogeneity across different fields. However, discontinuities between phenotypic markers and function create potential hurdles for the utility of the M1/M2 system in the development of effective immunomodulatory therapeutics for neuroinflammation. A framework to approach macrophage and microglia heterogeneity from a function-based phenotypic approach comes from rapidly emerging evidence that metabolic processes regulate immune cell activation. This concept of immunometabolism, however, is only beginning to unfold in the study of neurodegeneration and has yet to receive much focus in the context of neurotrauma. In this review, we first discuss the current views of macrophage and microglia heterogeneity and limitations of the M1/M2 classification system for neuropathological studies. We then review and discuss the current literature supporting metabolism as a regulator of microglia function in vitro. Lastly, we evaluate the evidence that metabolism regulates microglia and macrophage phenotype in vivo in models of Alzheimer's disease (AD), stroke, traumatic brain injury (TBI) and spinal cord injury (SCI).
Collapse
Affiliation(s)
- Nicholas A Devanney
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America
| | - Andrew N Stewart
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America; Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America
| | - John C Gensel
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America; Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America.
| |
Collapse
|
48
|
Liu Z, Yao X, Jiang W, Li W, Zhu S, Liao C, Zou L, Ding R, Chen J. Advanced oxidation protein products induce microglia-mediated neuroinflammation via MAPKs-NF-κB signaling pathway and pyroptosis after secondary spinal cord injury. J Neuroinflammation 2020; 17:90. [PMID: 32192500 PMCID: PMC7082940 DOI: 10.1186/s12974-020-01751-2] [Citation(s) in RCA: 210] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/20/2020] [Indexed: 12/20/2022] Open
Abstract
Background Inflammatory response mediated by oxidative stress is considered as an important pathogenesis of spinal cord injury (SCI). Advanced oxidation protein products (AOPPs) are novel markers of oxidative stress and their role in inflammatory response after SCI remained unclear. This study aimed to investigate the role of AOPPs in SCI pathogenesis and explore the possible underlying mechanisms. Methods A C5 hemi-contusion injury was induced in Sprague-Dawley rats to confirm the involvement of AOPPs after SCI. For in vivo study, apocynin, the NADPH oxidase inhibitor was used to study the neuroprotective effects after SCI. For in vitro study, the BV2 microglia cell lines were pretreated with or without the inhibitor or transfected with or without small interference RNA (siRNA) and then stimulated with AOPPs. A combination of molecular and histological methods was used to clarify the mechanism and explore the signaling pathway both in vivo and in vitro. One-way analysis of variance (ANOVA) was conducted with Bonferroni post hoc tests to examine the differences between groups. Results The levels of AOPPs in plasma and cerebrospinal fluid as well as the contents in the spinal cord showed significant increase after SCI. Meanwhile, apocynin ameliorated tissue damage in the spinal cord after SCI, improving the functional recovery. Immunofluorescence staining and western blot analysis showed activation of microglia after SCI, which was in turn inhibited by apocynin. Pretreated BV2 cells with AOPPs triggered excessive generation of reactive oxygen species (ROS) by activating NADPH oxidase. Increased ROS induced p38 MAPK and JNK phosphorylation, subsequently triggering nuclear translocation of NF-κB p65 to express pro-inflammatory cytokines. Also, treatment of BV2 cells with AOPPs induced NLRP3 inflammasome activation and cleavage of Gasdermin-d (GSDMD), causing pyroptosis. This was confirmed by cleavage of caspase-1, production of downstream mature interleukin (IL)-1β and IL-18 as well as rupture of rapid cell membrane. Conclusions Collectively, these data indicated AOPPs as biomarkers of oxidative stress, modulating inflammatory response in SCI by multiple signaling pathways, which also included the induction of NADPH oxidase dependent ROS, and NLRP3-mediated pyroptosis, and activation of MAPKs and NF-κB.
Collapse
Affiliation(s)
- Zhongyuan Liu
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xinqiang Yao
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Wangsheng Jiang
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Wei Li
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Siyuan Zhu
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Congrui Liao
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Lin Zou
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Ruoting Ding
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Jianting Chen
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
49
|
An Z, Yan J, Zhang Y, Pei R. Applications of nanomaterials for scavenging reactive oxygen species in the treatment of central nervous system diseases. J Mater Chem B 2020; 8:8748-8767. [DOI: 10.1039/d0tb01380c] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nanomaterials with excellent ROS-scavenging ability and biodistribution are considered as promising candidates in alleviating oxidative stress and restoring redox balance in CNS diseases, further facilitating the function recovery of the CNS.
Collapse
Affiliation(s)
- Zhen An
- CAS Key Laboratory for Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Jincong Yan
- CAS Key Laboratory for Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Ye Zhang
- CAS Key Laboratory for Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Renjun Pei
- CAS Key Laboratory for Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| |
Collapse
|
50
|
Wang JL, Luo X, Liu L. Targeting CARD6 attenuates spinal cord injury (SCI) in mice through inhibiting apoptosis, inflammation and oxidative stress associated ROS production. Aging (Albany NY) 2019; 11:12213-12235. [PMID: 31841440 PMCID: PMC6949089 DOI: 10.18632/aging.102561] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/20/2019] [Indexed: 12/16/2022]
Abstract
Spinal cord injury (SCI) causes long-term and severe disability, influencing the quality of life and triggering serious socioeconomic consequences. Lack of effective pharmacotherapies for SCI is largely attributable to an incomplete understanding of its pathogenesis. Caspase recruitment domain family member 6 (CARD6) was initially suggested to be a protein playing significant role in NF-κB activation. However, the effects of CARD6 on SCI progression remain unknown. In this study, the wild type (CARD6+/+), CARD6 knockout (CARD6-/-) and CARD6 transgenic (TG) mice were subjected to a SCI model in vivo, and in vitro experiments were conducted by treating microglia cells with lipopolysaccharide (LPS). Here, we identified CARD6 as a suppressor of SCI in mice. CARD6 knockout significantly accelerated functional deficits, neuron death and glia activation, whereas CARD6 overexpression resulted in the opposite effects. Both in vivo and in vitro SCI models suggested that CARD6 knockout markedly promoted apoptosis by increasing Cyto-c release to cytosol from mitochondria and activating Caspase-3 signaling. In addition, CARD6 knockout mice exhibited stronger inflammatory response after SCI, as evidenced by the significantly elevated expression of pro-inflammatory cytokines TNF-α, IL-1β and IL-6, which was largely through enhancing the activation of NF-κB signaling.
Collapse
Affiliation(s)
- Jiang Lin Wang
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Xiao Luo
- Department of Pain Management, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| |
Collapse
|