1
|
Castellanos-Molina A, Bretheau F, Boisvert A, Bélanger D, Lacroix S. Constitutive DAMPs in CNS injury: From preclinical insights to clinical perspectives. Brain Behav Immun 2024; 122:583-595. [PMID: 39222725 DOI: 10.1016/j.bbi.2024.07.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 09/04/2024] Open
Abstract
Damage-associated molecular patterns (DAMPs) are endogenous molecules released in tissues upon cellular damage and necrosis, acting to initiate sterile inflammation. Constitutive DAMPs (cDAMPs) have the particularity to be present within the intracellular compartments of healthy cells, where they exert diverse functions such as regulation of gene expression and cellular homeostasis. However, after injury to the central nervous system (CNS), cDAMPs are rapidly released by stressed, damaged or dying neuronal, glial and endothelial cells, and can trigger inflammation without undergoing structural modifications. Several cDAMPs have been described in the injured CNS, such as interleukin (IL)-1α, IL-33, nucleotides (e.g. ATP), and high-mobility group box protein 1. Once in the extracellular milieu, these molecules are recognized by the remaining surviving cells through specific DAMP-sensing receptors, thereby inducing a cascade of molecular events leading to the production and release of proinflammatory cytokines and chemokines, as well as cell adhesion molecules. The ensuing immune response is necessary to eliminate cellular debris caused by the injury, allowing for damage containment. However, seeing as some molecules associated with the inflammatory response are toxic to surviving resident CNS cells, secondary damage occurs, aggravating injury and exacerbating neurological and behavioral deficits. Thus, a better understanding of these cDAMPs, as well as their receptors and downstream signaling pathways, could lead to identification of novel therapeutic targets for treating CNS injuries such as SCI, TBI, and stroke. In this review, we summarize the recent literature on cDAMPs, their specific functions, and the therapeutic potential of interfering with cDAMPs or their signaling pathways.
Collapse
Affiliation(s)
- Adrian Castellanos-Molina
- Axe Neurosciences du Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, QC G1V 4G2, Canada
| | - Floriane Bretheau
- Axe Neurosciences du Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, QC G1V 4G2, Canada
| | - Ana Boisvert
- Axe Neurosciences du Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, QC G1V 4G2, Canada
| | - Dominic Bélanger
- Axe Neurosciences du Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, QC G1V 4G2, Canada
| | - Steve Lacroix
- Axe Neurosciences du Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, QC G1V 4G2, Canada.
| |
Collapse
|
2
|
Chi G, Lu J, He T, Wang Y, Zhou X, Zhang Y, Qiu L. High mobility group box-1 protein promotes astrocytic CCL5 production through the MAPK/NF-κB pathway following spinal cord injury. Sci Rep 2024; 14:22344. [PMID: 39333662 PMCID: PMC11437233 DOI: 10.1038/s41598-024-72947-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
Astrocytes act as immune cells that can produce a series of chemokines to attract large numbers of leucocytes to the lesion site, where they contribute to excessive inflammation following spinal cord injury (SCI). However, the relevant regulatory mechanism involved in chemokine production by astrocytes has not been fully elucidated. In the present study, we examined the correlation between C-C motif chemokine ligand 5 (CCL5) and high mobility group box-1 protein (HMGB1) in a T8-T10 spinal cord contusion model. Our results revealed that SCI-induced CCL5 protein levels increased synchronously with the increase in HMGB1. Administration of an HMGB1-neutralizing antibody significantly reduced the protein expression of CCL5 in the context of SCI. An in vitro study revealed that HMGB1 binding with TLR2/4 receptors potently facilitates the production of CCL5 by astrocytes by activating the intracellular ERK/JNK-mediated NF-κB pathway. Furthermore, the HMGB1-induced release of CCL5 from astrocytes is involved in promoting microglia/macrophage accumulation and M1 polarization. The inhibition of HMGB1 activity reduces microglia/macrophage infiltration by decreasing the expression of CCL5 and improves motor functional recovery following SCI. Our results provide insights into the new functions of HMGB1-mediated astrocytic CCL5 production, which elicits inflammatory cell recruitment to the site of injury; this recruitment is associated with excessive inflammation activation. These data may provide a new therapeutic strategy for central nervous system (CNS) inflammation.
Collapse
Affiliation(s)
- Guanghao Chi
- Department of Orthopedics, Hanzhong Central Hospital, Hanzhong, 723000, Shanxi, China
| | - Junqin Lu
- Department of Stomatology, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Tao He
- College of Health Management, Shanghai Jian Qiao University, Shanghai, 201306, China
| | - Yijia Wang
- Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xinli Zhou
- Department of Orthopedics, Hanzhong Central Hospital, Hanzhong, 723000, Shanxi, China
| | - Yuxin Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.
- National Center for Stomatology, Shanghai, China.
- National Clinical Research Center for Oral Diseases, Shanghai, China.
- Shanghai Key Laboratory of Stomatology, Shanghai, China.
- Shanghai Research Institute of Stomatology, Shanghai, China.
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China.
- Department of Rehabilitation Medicine, Fengcheng Branch, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Longshun Qiu
- Department of Orthopedics, Hanzhong Central Hospital, Hanzhong, 723000, Shanxi, China.
| |
Collapse
|
3
|
Shool S, Rahmani S, Habibi MA, Piri SM, Lotfinia M, Jashnani D, Asaadi S. Acute spinal cord injury serum biomarkers in human and rat: a scoping systematic review. Spinal Cord Ser Cases 2024; 10:21. [PMID: 38615029 PMCID: PMC11016077 DOI: 10.1038/s41394-024-00636-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024] Open
Abstract
STUDY DESIGN Scoping systematic review. OBJECTIVES To summarize the available experimental clinical and animal studies for the identification of all CSF and serum-derived biochemical markers in human and rat SCI models. SETTING Tehran, Iran. METHODS In this scoping article, we systematically reviewed the electronic databases of PubMed, Scopus, WOS, and CENTRAL to retrieve current literature assessing the levels of different biomarkers in human and rat SCI models. RESULTS A total of 19,589 articles were retrieved and 6897 duplicated titles were removed. The remaining 12,692 studies were screened by their title/abstract and 12,636 were removed. The remaining 56 were considered for full-text assessment, and 11 papers did not meet the criteria, and finally, 45 studies were included. 26 studies were human observational studies comprising 1630 patients, and 19 articles studied SCI models in rats, including 832 rats. Upon reviewing the literature, we encountered a remarkable heterogeneity in terms of selected biomarkers, timing, and method of measurement, studied models, extent, and mechanism of injury as well as outcome assessment measures. CONCLUSIONS The specific expression and distribution patterns of biomarkers in relation to spinal cord injury (SCI) phases, and their varied concentrations over time, suggest that cerebrospinal fluid (CSF) and blood biomarkers are effective measures for assessing the severity of SCI.
Collapse
Affiliation(s)
- Sina Shool
- Department of Neurosurgery, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Sina Trauma and Surgery Research Center, Sina Hospital, Tehran University of Medical Sciences, Hassan-Abad Square, Imam Khomeini Ave, 11365-3876, Tehran, Iran
| | - Saeed Rahmani
- Department of Neurosurgery, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Habibi
- Department of Neurosurgery, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Sina Trauma and Surgery Research Center, Sina Hospital, Tehran University of Medical Sciences, Hassan-Abad Square, Imam Khomeini Ave, 11365-3876, Tehran, Iran
| | - Seyed Mohammad Piri
- Sina Trauma and Surgery Research Center, Sina Hospital, Tehran University of Medical Sciences, Hassan-Abad Square, Imam Khomeini Ave, 11365-3876, Tehran, Iran
| | - Mahmoud Lotfinia
- Resident of Neurosurgery, Department of Neurosurgery, Klinikum Saarbrücken, University of Saarland, Saarbrücken, Germany
| | - Delara Jashnani
- Department of Neurosurgery, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sina Asaadi
- Department of Surgery, Division of Acute Care Surgery, Loma Linda University, Loma Linda, CA, USA.
| |
Collapse
|
4
|
Yang S, Bao J, Shi R, Liu L, Wang Y, Hong X, Wu X. Bioinformatics-based diagnosis and evaluation of several pivotal genes and pathways associated with immune infiltration at different time points in spinal cord injury. Biotechnol Genet Eng Rev 2024; 40:65-91. [PMID: 36841940 DOI: 10.1080/02648725.2023.2178970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/06/2023] [Indexed: 02/27/2023]
Abstract
Spinal Cord Injury (SCI) is a devastating neurological event. To assess the degree of spinal cord damage and classify the injury, it is recommended to use the 2019 version of the AIS standard. The severity of trauma was evaluated using the Trauma Severity Score, and various classification systems have been proposed for injuries at different parts and segments of the spine. Understanding the regulated signaling pathways and immune processes following SCI can lead to a better understanding of SCI-induced biomarkers and their underlying mechanisms. In this study, two gene expression datasets (GSE464 and GSE45006) from the Gene Expression Omnibus database were utilized. Differential gene expression and co-expression network analysis were performed, revealing 370 shared genes in the 3-day group and 111 shared genes in the 14-day group after SCI. The study used functional enrichment analysis methods such as Gene Set Enrichment Analysis, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes. The ssGSEA method was used to assess the levels and composition of immune infiltration in both the sham (control) and SCI groups. The single-cell transcriptomics dataset GSE182803 was analyzed to identify genes associated with immune marker cells. Four key genes (Ptgs2, Fn1, Ccl2, and Icam1) were identified in the 3-day group, while only one gene (Cyp51) was identified in the 14-day group after SCI. The findings offer significant insights into the immune-related genes and signaling pathways involved in secondary SCI at different time points and hold potential for the development of intervention strategies for acute and chronic post-SCI.
Collapse
Affiliation(s)
- Shu Yang
- Department of Spine Surgery, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Junping Bao
- Department of Spine Surgery, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Rui Shi
- Department of Spine Surgery, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Lei Liu
- Department of Spine Surgery, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Yuntao Wang
- Department of Spine Surgery, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xin Hong
- Department of Spine Surgery, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xiaotao Wu
- Department of Spine Surgery, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Morrison D, Pinpin C, Lee A, Sison C, Chory A, Gregersen PK, Forrest G, Kirshblum S, Harkema SJ, Boakye M, Harrop JS, Bryce TN, Schwab JM, Kwon BK, Stein AB, Bank MA, Bloom O. Profiling Immunological Phenotypes in Individuals During the First Year After Traumatic Spinal Cord Injury: A Longitudinal Analysis. J Neurotrauma 2023; 40:2621-2637. [PMID: 37221869 PMCID: PMC10722895 DOI: 10.1089/neu.2022.0500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023] Open
Abstract
Abstract Individuals with SCI are severely affected by immune system changes, resulting in increased risk of infections and persistent systemic inflammation. While recent data support that immunological changes after SCI differ in the acute and chronic phases of living with SCI, only limited immunological phenotyping in humans is available. To characterize dynamic molecular and cellular immune phenotypes over the first year, we assess RNA (bulk-RNA sequencing), protein, and flow cytometry (FACS) profiles of blood samples from 12 individuals with SCI at 0-3 days and at 3, 6, and 12 months post injury (MPI) compared to 23 uninjured individuals (controls). We identified 967 differentially expressed (DE) genes in individuals with SCI (FDR <0.001) compared to controls. Within the first 6 MPI we detected a reduced expression of NK cell genes, consistent with reduced frequencies of CD56bright, CD56dim NK cells present at 12 MPI. Over 6MPI, we observed increased and prolonged expression of genes associated with inflammation (e.g. HMGB1, Toll-like receptor signaling) and expanded frequencies of monocytes acutely. Canonical T-cell related DE genes (e.g. FOXP3, TCF7, CD4) were upregulated during the first 6 MPI and increased frequencies of activated T cells at 3-12 MPI. Neurological injury severity was reflected in distinct whole blood gene expression profiles at any time after SCI, verifying a persistent 'neurogenic' imprint. Overall, 2876 DE genes emerge when comparing motor complete to motor incomplete SCI (ANOVA, FDR <0.05), including those related to neutrophils, inflammation, and infection. In summary, we identify a dynamic immunological phenotype in humans, including molecular and cellular changes which may provide potential targets to reduce inflammation, improve immunity, or serve as candidate biomarkers of injury severity.
Collapse
Affiliation(s)
- Debra Morrison
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Camille Pinpin
- Donald and Barbara Zucker School of Medicine at Hofstra Northwell, Hempstead, New York, USA
| | - Annette Lee
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
- Donald and Barbara Zucker School of Medicine at Hofstra Northwell, Hempstead, New York, USA
| | - Cristina Sison
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
- Donald and Barbara Zucker School of Medicine at Hofstra Northwell, Hempstead, New York, USA
| | - Ashley Chory
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Peter K. Gregersen
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
- Donald and Barbara Zucker School of Medicine at Hofstra Northwell, Hempstead, New York, USA
| | - Gail Forrest
- Tim and Caroline Reynolds Center for Spinal Stimulation, Center for Mobility and Human Engineering Research, West Orange, New Jersey, USA
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Steven Kirshblum
- Tim and Caroline Reynolds Center for Spinal Stimulation, Center for Mobility and Human Engineering Research, West Orange, New Jersey, USA
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
- Kessler Institute for Rehabilitation. West Orange, New Jersey, USA
| | - Susan J. Harkema
- Kentucky Spinal Injury Research Center, School of Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Neurosurgery, School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Maxwell Boakye
- Kentucky Spinal Injury Research Center, School of Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Neurosurgery, School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - James S. Harrop
- Department of Neurosurgery, Thomas Jefferson University Hospitals, Philadelphia, Pennsylvania, USA
| | - Thomas N. Bryce
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai Hospital, New York, New York, USA
| | - Jan M. Schwab
- The Belford Center for Spinal Cord Injury, Spinal Cord Division, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
- Department of Neurology, Spinal Cord Division, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Brian K. Kwon
- International Collaboration on Repair Discoveries (ICORD), Department of Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Adam B. Stein
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
- Donald and Barbara Zucker School of Medicine at Hofstra Northwell, Hempstead, New York, USA
| | - Matthew A. Bank
- Donald and Barbara Zucker School of Medicine at Hofstra Northwell, Hempstead, New York, USA
- North Shore University Hospital, Manhasset, New York, USA
| | - Ona Bloom
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
- Donald and Barbara Zucker School of Medicine at Hofstra Northwell, Hempstead, New York, USA
| |
Collapse
|
6
|
Wu Z, Liang L, Huang Q. Potential significance of high-mobility group protein box 1 in cerebrospinal fluid. Heliyon 2023; 9:e21926. [PMID: 38027583 PMCID: PMC10661089 DOI: 10.1016/j.heliyon.2023.e21926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/27/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
High-mobility group protein box 1 (HMGB1) is a cytokine with multiple functions (according to its subcellular location) that serves a marker of inflammation. CSF HMGB1 could be the part of pathological mechanisms that underlie the complications associated with CNS diseases. HMGB1 actively or passively released into the CSF is detected in the CSF in many diseases of the central nervous system (CNS) and thus may be useful as a biomarker. Pathological alterations in distant areas were observed due to lesions in a specific region, and the level of HMGB1 in the CSF was found to be elevated. Reducing the HMGB1 level via intraventricular injection of anti-HMGB1 neutralizing antibodies can improve the outcomes of CNS diseases. The results indicated that CSF HMGB1 could serve as a biomarker for predicting disease progression and may also act as a pathogenic factor contributing to pathological alterations in distant areas following focal lesions in the CNS. In this mini-review, the characteristics of HMGB1 and progress in research on CSF HMGB1 as a biomarker of CNS diseases were discussed. CSF HMGB1 is useful not only as a biomarker of CNS diseases but may also be involved in interactions between different brain regions and the spinal cord.
Collapse
Affiliation(s)
- Zhiwu Wu
- Department of Neurosurgery, Ganzhou People's Hospital (Ganzhou Hospital, Southern Hospital of Southern Medical University), 16th Meiguan Road, Ganzhou 341000, China
| | - Liping Liang
- Department of Science and Education, Ganzhou People's Hospital (Ganzhou Hospital, Southern Hospital of Southern Medical University), 16th Meiguan Road, Ganzhou 341000, China
| | - Qianliang Huang
- Department of Neurosurgery, Ganzhou People's Hospital (Ganzhou Hospital, Southern Hospital of Southern Medical University), 16th Meiguan Road, Ganzhou 341000, China
| |
Collapse
|
7
|
Jiang Z, Zeng Z, He H, Li M, Lan Y, Hui J, Bie P, Chen Y, Liu H, Fan H, Xia H. Lycium barbarum glycopeptide alleviates neuroinflammation in spinal cord injury via modulating docosahexaenoic acid to inhibiting MAPKs/NF-kB and pyroptosis pathways. J Transl Med 2023; 21:770. [PMID: 37907930 PMCID: PMC10617163 DOI: 10.1186/s12967-023-04648-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 10/21/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Lycium barbarum polysaccharide (LBP) is an active ingredient extracted from Lycium barbarum that inhibits neuroinflammation, and Lycium barbarum glycopeptide (LbGp) is a glycoprotein with immunological activity that was purified and isolated from LBP. Previous studies have shown that LbGp can regulate the immune microenvironment, but its specific mechanism of action remains unclear. AIMS In this study, we aimed to explore the mechanism of action of LbGp in the treatment of spinal cord injury through metabolomics and molecular experiments. METHODS SD male rats were randomly assigned to three experimental groups, and after establishing the spinal cord hemisection model, LbGp was administered orally. Spinal cord tissue was sampled on the seventh day after surgery for molecular and metabolomic experiments. In vitro, LbGp was administered to mimic the inflammatory microenvironment by activating microglia, and its mechanism of action in suppressing neuroinflammation was further elaborated using metabolomics and molecular biology techniques such as western blotting and q-PCR. RESULTS In vivo and in vitro experiments found that LbGp can improve the inflammatory microenvironment by inhibiting the NF-kB and pyroptosis pathways. Furthermore, LbGp induced the secretion of docosahexaenoic acid (DHA) by microglia, and DHA inhibited neuroinflammation through the MAPK/NF-κB and pyroptosis pathways. CONCLUSIONS In summary, we hypothesize that LbGp improves the inflammatory microenvironment by regulating the secretion of DHA by microglia and thereby inhibiting the MAPK/NF-κB and pyroptosis pathways and promoting nerve repair and motor function recovery. This study provides a new direction for the treatment of spinal cord injury and elucidates the potential mechanism of action of LbGp.
Collapse
Affiliation(s)
- Zhanfeng Jiang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China
- Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Zhong Zeng
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China
- Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - He He
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China
- Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Mei Li
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China
- Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Yuanxiang Lan
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China
- Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Jianwen Hui
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China
- Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Pengfei Bie
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China
- Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Yanjun Chen
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China
- Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Hao Liu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China
| | - Heng Fan
- Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, China.
| | - Hechun Xia
- Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, China.
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China.
| |
Collapse
|
8
|
Wu Z, Li M. High-Mobility Group Box 1 in Spinal Cord Injury and Its Potential Role in Brain Functional Remodeling After Spinal Cord Injury. Cell Mol Neurobiol 2023; 43:1005-1017. [PMID: 35715656 DOI: 10.1007/s10571-022-01240-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/04/2022] [Indexed: 11/30/2022]
Abstract
High-mobility group box 1 (HMGB1) is a nonhistone nuclear protein, the functions of which depend on its subcellular location. It is actively or passively secreted into the blood and/or cerebrospinal fluid (CSF) and can be used as a prognostic indicator of disease. HMGB1 released into the bloodstream can cause pathological reactions in distant organs, and entry into the CSF can destroy the blood-brain barrier and aggravate brain injuries. HMGB1 expression has been reported to be increased in the tissues of spinal cord injury (SCI) patients and involved in the regulation of neuroinflammation, neuronal apoptosis, and ferroptosis. SCI can lead to brain changes, resulting in neuropathic pain, depression, and cognitive dysfunction, but the specific mechanism is unknown. It remains unclear whether HMGB1 plays an important role in brain functional remodeling after SCI. Damaged cells at the site of SCI passively release HMGB1, which travels to the brain via the blood, CSF, and/or axonal transport, destroys the blood-brain barrier, and causes pathological changes in the brain. This may explain the remodeling of brain function that occurs after SCI. In this minireview, we introduce the structure and function of HMGB1 and its mechanism of action in SCI. Clarifying the functions of HMGB1 may provide insight into the links between SCI and various brain regions.
Collapse
Affiliation(s)
- Zhiwu Wu
- Department of Neurosurgery & Jiangxi Key Laboratory of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17th Yongwaizheng Street, Nanchang, 330006, China
| | - Meihua Li
- Department of Neurosurgery & Jiangxi Key Laboratory of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17th Yongwaizheng Street, Nanchang, 330006, China.
| |
Collapse
|
9
|
Mo Y, Chen K. Review: The role of HMGB1 in spinal cord injury. Front Immunol 2023; 13:1094925. [PMID: 36713448 PMCID: PMC9877301 DOI: 10.3389/fimmu.2022.1094925] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
High mobility group box 1 (HMGB1) has dual functions as a nonhistone nucleoprotein and an extracellular inflammatory cytokine. In the resting state, HMGB1 is mainly located in the nucleus and regulates key nuclear activities. After spinal cord injury, HMGB1 is rapidly expressed by neurons, microglia and ependymal cells, and it is either actively or passively released into the extracellular matrix and blood circulation; furthermore, it also participates in the pathophysiological process of spinal cord injury. HMGB1 can regulate the activation of M1 microglia, exacerbate the inflammatory response, and regulate the expression of inflammatory factors through Rage and TLR2/4, resulting in neuronal death. However, some studies have shown that HMGB1 is beneficial for the survival, regeneration and differentiation of neurons and that it promotes the recovery of motor function. This article reviews the specific timing of secretion and translocation, the release mechanism and the role of HMGB1 in spinal cord injury. Furthermore, the role and mechanism of HMGB1 in spinal cord injury and, the challenges that still need to be addressed are identified, and this work will provide a basis for future studies.
Collapse
|
10
|
Li C, Xiong W, Wan B, Kong G, Wang S, Wang Y, Fan J. Role of peripheral immune cells in spinal cord injury. Cell Mol Life Sci 2023; 80:2. [PMID: 36478290 PMCID: PMC9729325 DOI: 10.1007/s00018-022-04644-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/01/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022]
Abstract
Secondary spinal cord injury is caused by an inflammatory response cascade, and the process is irreversible. The immune system, as a mediator of inflammation, plays an important role in spinal cord injury. The spinal cord retains its immune privilege in a physiological state. Hence, elucidating the mechanisms by which peripheral immune cells are recruited to the lesion site and function after spinal cord injury is meaningful for the exploration of clinical therapeutic targets. In this review, we provide an overview of the multifaceted roles of peripheral immune cells in spinal cord injury.
Collapse
Affiliation(s)
- Cong Li
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Wu Xiong
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Bowen Wan
- Department of Orthopaedics, Subei People's Hospital of Jiangsu, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Guang Kong
- Nanjing Medical University, Nanjing, 210029, China
| | - Siming Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yingying Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing, 210009, China
| | - Jin Fan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
11
|
Deng C, Deng L, Lv J, Sun L. Therapeutic effects and long-term outcomes of HMGB1-targeted therapy in rats and mice with traumatic spinal cord injury: A systematic review and meta-analysis. Front Neurosci 2022; 16:968791. [PMID: 36161176 PMCID: PMC9489835 DOI: 10.3389/fnins.2022.968791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/18/2022] [Indexed: 12/09/2022] Open
Abstract
BackgroundTo date, the clinical need for therapeutic methods to prevent traumatic spinal cord injury (TSCI) progression and improve functional recovery has not been met. High mobility group box-1 (HMGB1) is released by necrotic neurons or secreted by glial cells after TSCI and plays an important role in pathophysiology.ObjectiveThe purpose of this study was to evaluate the effects of HMGB1-targeted therapy on locomotor function recovery, inflammation reduction, edema attenuation, and apoptosis reduction in rat and mouse models of TSCI.MethodsWe reviewed the literature on HMGB1-targeted therapy in the treatment and prognosis of TSCI. Twelve articles were identified and analyzed from four online databases (PubMed, Web of Science, Cochrane Library and Embase) based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and strict inclusion criteria.ResultsThe methodological quality of the 12 articles was poor. The results of the meta-analysis showed that compared with the SCI group, the treatment group had significantly increased locomotor function scores after SCI [n = 159, standardized mean difference (SMD) = 2.31, 95% confidence interval (CI) (1.52, 3.10), P < 0.00001], and the change in locomotor function scores was significantly increased in both the drug and anti-HMGB1 Ab groups (P < 0.000001 and P < 0.000001). A subgroup analysis showed significant differences (P > 0.05) between the drug group [(SMD) = 1.95, 95% CI (0.95, 2.94), P = 0.0001] and the anti-HMGB1 Ab group [(SMD) = 2.89, 95% CI (1.66, 4.13), P < 0.00001]. Compared with the SCI group, HMGB1 expression was significantly diminished [n = 76, SMD = −2.31, 95% CI (−3.71, −0.91), P = 0.001], TNF-α levels were significantly reduced [n = 76, SMD = −2.52, 95% CI (−3.77, −1.27), P < 0.0001], water content was significantly reduced [n = 44, SMD = −3.94, 95% CI (−6.28, −1.61), P = 0.0009], and the number of apoptotic cells was significantly diminished [n = 36, SMD = −3.31, 95% CI (−6.40, −0.22), P = 0.04] in the spinal cord of the treatment group.ConclusionHMGB1-targeted therapy improves locomotor function, reduces inflammation, attenuates edema, and reduces apoptosis in rats and mice with TSCI. Intrathecal injection of anti-HMGB1 Ab 0-3 h after SCI may be the most efficacious treatment.Systematic review registrationPROSPERO, identifier: CRD42022326114.
Collapse
|
12
|
Shnawa A, Lee S, Papatheodorou A, Gibbs K, Stein A, Morrison D, Bloom O. Elevated levels of IgA and IgG2 in individuals with chronic spinal cord injury. J Spinal Cord Med 2022; 45:728-738. [PMID: 33443466 PMCID: PMC9542629 DOI: 10.1080/10790268.2020.1854550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES To determine circulating levels of antibodies (IgA, IgM, IgG1-4) in individuals with SCI as compared to uninjured individuals. STUDY DESIGN Prospective, observational study. SETTING Outpatient clinic of a Department of Physical Medicine and Rehabilitation and research institute in an academic medical center. PARTICIPANTS Individuals with chronic (≥ 1 year from injury) SCI and uninjured individuals. OUTCOME MEASURES Serum antibody titers were determined by commercial multiplex ELISA. RESULTS Blood samples were collected from individuals with chronic SCI (N = 29, 83% males) and uninjured individuals (N = 25, 64% males). Among participants with SCI, the distribution of American Spinal Injury Association Impairment Scale (AIS) grades was: A (n = 15), B (n = 2), C (n = 4), D (n = 8). Neurological levels of injury were: cervical (n = 17), thoracic (n = 10), and lumbar (n = 2). IgA levels were significantly elevated in participants with SCI compared to uninjured participants (median: 1.98 vs. 1.21 mg/ml, P < 0.0001), with levels most elevated in individuals with motor complete injuries compared to uninjured participants (P < 0.0003). IgG2 antibodies were also significantly elevated in participants with SCI compared to uninjured participants (median: 5.98 vs. 4.37 mg/ml, P < 0.018). CONCLUSIONS To our knowledge, this study provides the first evidence of elevated IgA, the antibody type most prevalent at respiratory, genitourinary and gastrointestinal tracts, common sites of infections in individuals with SCI. IgG2 levels were also elevated in individuals with SCI. These data support further investigations of IgA and other antibody types in individuals with chronic SCI, which may be increasingly important in the context of emerging novel infectious diseases such as SARS-CoV-2.
Collapse
Affiliation(s)
- Aya Shnawa
- Laboratory of Spinal Cord Injury Research, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Samuel Lee
- Laboratory of Spinal Cord Injury Research, The Feinstein Institutes for Medical Research, Manhasset, New York, USA,Department of Surgery, Lenox Hill Hospital, Northwell Health, New York, New York, USA
| | - Angelos Papatheodorou
- Laboratory of Spinal Cord Injury Research, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Katie Gibbs
- Laboratory of Spinal Cord Injury Research, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Adam Stein
- Department of Physical Medicine and Rehabilitation, Zucker School of Medicine at Hofstra Northwell, Northwell Health, Great Neck, New York, USA
| | - Debra Morrison
- Laboratory of Spinal Cord Injury Research, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Ona Bloom
- Laboratory of Spinal Cord Injury Research, The Feinstein Institutes for Medical Research, Manhasset, New York, USA,Department of Physical Medicine and Rehabilitation, Zucker School of Medicine at Hofstra Northwell, Northwell Health, Great Neck, New York, USA,Correspondence to: Ona Bloom, Laboratory of Spinal Cord Injury Research, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, New York, USA; Department of Physical Medicine and Rehabilitation, Zucker School of Medicine at Hofstra Northwell, Northwell Health, 1554 Northern Boulevard, Great Neck, New York, USA.
| |
Collapse
|
13
|
Yang T, Jiang H, Luo X, Hou Y, Li A, He B, Zhang X, Hao H, Song H, Cai R, Wang X, Wang Y, Yao C, Qi L, Wang Y. Thrombin acts as inducer of proinflammatory macrophage migration inhibitory factor in astrocytes following rat spinal cord injury. J Neuroinflammation 2022; 19:120. [PMID: 35624475 PMCID: PMC9137112 DOI: 10.1186/s12974-022-02488-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The danger-associated molecular patterns (DAMPs) are critical contributors to the progressive neuropathology and thereafter affect the functional outcomes following spinal cord injury (SCI). Up to now, the regulatory mechanisms on their inducible production from the living cells remain elusive, aside from their passive release from the necrotic cells. Thrombin is immediately activated by the damaged or stressed central nervous system (CNS), which potently mediates inflammatory astrocytic responses through proteolytic cleavage of protease-activated receptors (PARs). Therefore, SCI-activated thrombin is conceived to induce the production of DAMPs from astrocytes at lesion site. METHODS Rat SCI model was established by the cord contusion at T8-T10. The expression of thrombin and macrophage migration inhibitory factor (MIF) was determined by ELISA and Western blot. The PAR1, PAR3, and PAR4 receptors of thrombin were examined by PCR and immunohistochemistry. Primary astrocytes were isolated and purified from the spinal cord, followed by stimulation with different concentrations of thrombin either for transcriptome sequencing or for analysis of thrombin-mediated expression of MIF and related signal pathways in the presence or absence of various inhibitors. The post-injury locomotor functions were assessed using the Basso, Beattie, and Bresnahan (BBB) locomotor scale. RESULTS MIF protein levels were significantly elevated in parallel with those of thrombin induced by SCI. Immunostaining demonstrated that PAR1 receptor, together with MIF, was abundantly expressed in astrocytes. By transcriptome sequencing and bioinformatical analysis of thrombin-stimulated primary astrocytes, MIF was identified to be dynamically regulated by the serine protease. Investigation of the underlying mechanism using various inhibitors revealed that thrombin-activated PAR1 was responsible for the MIF production of astrocytes through modulation of JNK/NFκB pathway. Administration of PAR1 inhibitor at lesion sites following SCI significantly reduced the protein levels of MIF and ameliorated functional deficits of rat locomotion. CONCLUSION SCI-activated thrombin is a robust inducer of MIF production from astrocytes. Exploring the roles of thrombin in promoting the production of DAMPs from astrocytes at lesion site will provide an alternative strategy for the clinical therapy of CNS inflammation.
Collapse
Affiliation(s)
- Ting Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China
| | - Haiyan Jiang
- Health Management Center, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China
| | - Xinye Luo
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China
| | - Yuxuan Hou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China
| | - Aicheng Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China
| | - Bingqiang He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China
| | - Xingyuan Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China
| | - Huifei Hao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China
| | - Honghua Song
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China
| | - Rixin Cai
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China
| | - Xudong Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, School of Public Health, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yingjie Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China
| | - Chun Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China
| | - Lei Qi
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China.
| | - Yongjun Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China.
| |
Collapse
|
14
|
Serebrovska ZO, Xi L, Tumanovska LV, Shysh AM, Goncharov SV, Khetsuriani M, Kozak TO, Pashevin DA, Dosenko VE, Virko SV, Kholin VA, Grib ON, Utko NA, Egorov E, Polischuk AO, Serebrovska TV. Response of Circulating Inflammatory Markers to Intermittent Hypoxia-Hyperoxia Training in Healthy Elderly People and Patients with Mild Cognitive Impairment. Life (Basel) 2022; 12:life12030432. [PMID: 35330183 PMCID: PMC8953753 DOI: 10.3390/life12030432] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 12/28/2022] Open
Abstract
Intermittent hypoxia-hyperoxia training (IHHT) is a non-pharmacological therapeutic modality for management of some chronic- and age-related pathologies, such as Alzheimer’s disease (AD). Our previous studies demonstrated significant improvement of cognitive function after IHHT in the patients with mild cognitive impairment (MCI). The present study further investigated the effects of IHHT on pro-inflammatory factors in healthy elderly individuals and patients with early signs of AD. Twenty-nine subjects (13 healthy subjects without signs of cognitive impairment syndrome and 16 patients diagnosed with MCI; age 52 to 76 years) were divided into four groups: Healthy+Sham (n = 7), Healthy+IHHT (n = 6), MCI+Sham (n = 6), and MCI+IHHT (n = 10). IHHT was carried out 5 days per week for 3 weeks (total 15 sessions), and each daily session included 4 cycles of 5-min hypoxia (12% FIO2) and 3-min hyperoxia (33% FIO2). Decline in cognitive function indices was observed initially in both MCI+Sham and MCI+IHHT groups. The sham training did not alter any of the parameters, whereas IHHT resulted in improvement in latency of cognitive evoked potentials, along with elevation in APP110, GDF15 expression, and MMP9 activity in both healthy subjects and those with MCI. Increased MMP2 activity, HMGB1, and P-selectin expression and decreased NETs formation and Aβ expression were also observed in the MCI+IHHT group. There was a negative correlation between MoCA score and the plasma GDF15 expression (R = −0.5799, p < 0.05) before the initiation of IHHT. The enhanced expression of GDF15 was also associated with longer latency of the event-related potentials P330 and N200 (R = 0.6263, p < 0.05 and R = 0.5715, p < 0.05, respectively). In conclusion, IHHT upregulated circulating levels of some inflammatory markers, which may represent potential triggers for cellular adaptive reprogramming, leading to therapeutic effects against cognitive dysfunction and neuropathological changes during progression of AD. Further investigation is needed to clarify if there is a causative relationship between the improved cognitive function and the elevated inflammatory markers following IHHT.
Collapse
Affiliation(s)
- Zoya O. Serebrovska
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, 01024 Kyiv, Ukraine; (L.V.T.); (A.M.S.); (S.V.G.); (M.K.); (T.O.K.); (D.A.P.); (V.E.D.); (A.O.P.); (T.V.S.)
- Correspondence: (Z.O.S.); (L.X.)
| | - Lei Xi
- Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298-0204, USA
- Correspondence: (Z.O.S.); (L.X.)
| | - Lesya V. Tumanovska
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, 01024 Kyiv, Ukraine; (L.V.T.); (A.M.S.); (S.V.G.); (M.K.); (T.O.K.); (D.A.P.); (V.E.D.); (A.O.P.); (T.V.S.)
| | - Angela M. Shysh
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, 01024 Kyiv, Ukraine; (L.V.T.); (A.M.S.); (S.V.G.); (M.K.); (T.O.K.); (D.A.P.); (V.E.D.); (A.O.P.); (T.V.S.)
| | - Sergii V. Goncharov
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, 01024 Kyiv, Ukraine; (L.V.T.); (A.M.S.); (S.V.G.); (M.K.); (T.O.K.); (D.A.P.); (V.E.D.); (A.O.P.); (T.V.S.)
| | - Michael Khetsuriani
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, 01024 Kyiv, Ukraine; (L.V.T.); (A.M.S.); (S.V.G.); (M.K.); (T.O.K.); (D.A.P.); (V.E.D.); (A.O.P.); (T.V.S.)
| | - Taisia O. Kozak
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, 01024 Kyiv, Ukraine; (L.V.T.); (A.M.S.); (S.V.G.); (M.K.); (T.O.K.); (D.A.P.); (V.E.D.); (A.O.P.); (T.V.S.)
| | - Denis A. Pashevin
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, 01024 Kyiv, Ukraine; (L.V.T.); (A.M.S.); (S.V.G.); (M.K.); (T.O.K.); (D.A.P.); (V.E.D.); (A.O.P.); (T.V.S.)
| | - Victor E. Dosenko
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, 01024 Kyiv, Ukraine; (L.V.T.); (A.M.S.); (S.V.G.); (M.K.); (T.O.K.); (D.A.P.); (V.E.D.); (A.O.P.); (T.V.S.)
| | - Sergii V. Virko
- Lashkariov Institute of Semiconductor Physics, National Academy of Sciences, 41 Nauki Ave., 03028 Kyiv, Ukraine;
| | - Viktor A. Kholin
- Department of Age Physiology and Pathology of Nervous System, Chebotarev Institute of Gerontology NAMS of Ukraine, 04114 Kyiv, Ukraine; (V.A.K.); (O.N.G.); (N.A.U.)
| | - Oksana N. Grib
- Department of Age Physiology and Pathology of Nervous System, Chebotarev Institute of Gerontology NAMS of Ukraine, 04114 Kyiv, Ukraine; (V.A.K.); (O.N.G.); (N.A.U.)
| | - Natalie A. Utko
- Department of Age Physiology and Pathology of Nervous System, Chebotarev Institute of Gerontology NAMS of Ukraine, 04114 Kyiv, Ukraine; (V.A.K.); (O.N.G.); (N.A.U.)
| | - Egor Egorov
- CELLGYM Technologies GmbH, 14193 Berlin, Germany;
| | - Anna O. Polischuk
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, 01024 Kyiv, Ukraine; (L.V.T.); (A.M.S.); (S.V.G.); (M.K.); (T.O.K.); (D.A.P.); (V.E.D.); (A.O.P.); (T.V.S.)
| | - Tetiana V. Serebrovska
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, 01024 Kyiv, Ukraine; (L.V.T.); (A.M.S.); (S.V.G.); (M.K.); (T.O.K.); (D.A.P.); (V.E.D.); (A.O.P.); (T.V.S.)
| |
Collapse
|
15
|
Shahsavani N, Alizadeh A, Kataria H, Karimi-Abdolrezaee S. Availability of neuregulin-1beta1 protects neurons in spinal cord injury and against glutamate toxicity through caspase dependent and independent mechanisms. Exp Neurol 2021; 345:113817. [PMID: 34314724 DOI: 10.1016/j.expneurol.2021.113817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 07/06/2021] [Accepted: 07/20/2021] [Indexed: 12/27/2022]
Abstract
Spinal cord injury (SCI) causes sensorimotor and autonomic impairment that partly reflects extensive, permanent loss of neurons at the epicenter and penumbra of the injury. Strategies aimed at enhancing neuronal protection are critical to attenuate neurodegeneration and improve neurological recovery after SCI. In rat SCI, we previously uncovered that the tissue levels of neuregulin-1beta 1 (Nrg-1β1) are acutely and persistently downregulated in the injured spinal cord. Nrg-1β1 is well-known for its critical roles in the development, maintenance and physiology of neurons and glia in the developing and adult spinal cord. However, despite this pivotal role, Nrg-1β1 specific effects and mechanisms of action on neuronal injury remain largely unknown in SCI. In the present study, using a clinically-relevant model of compressive/contusive SCI in rats and an in vitro model of glutamate toxicity in primary neurons, we demonstrate Nrg-1β1 provides early neuroprotection through attenuation of reactive oxygen species, lipid peroxidation, necrosis and apoptosis in acute and subacute stages of SCI. Mechanistically, availability of Nrg-1β1 following glutamate challenge protects neurons from caspase-dependent and independent cell death that is mediated by modulation of mitochondria associated apoptotic cascades and MAP kinase and AKT signaling pathways. Altogether, our work provides novel insights into the role and mechanisms of Nrg-1β1 in neuronal injury after SCI and introduces its potential as a new neuroprotective target for this debilitating neurological condition.
Collapse
Affiliation(s)
- Narjes Shahsavani
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Arsalan Alizadeh
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hardeep Kataria
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
16
|
Wu C, Yu J, Xu G, Gao H, Sun Y, Huang J, Sun L, Zhang X, Cui Z. Bioinformatic Analysis of the Proteome in Exosomes Derived From Plasma: Exosomes Involved in Cholesterol Metabolism Process of Patients With Spinal Cord Injury in the Acute Phase. Front Neuroinform 2021; 15:662967. [PMID: 34305563 PMCID: PMC8299276 DOI: 10.3389/fninf.2021.662967] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/09/2021] [Indexed: 01/09/2023] Open
Abstract
Spinal cord injury (SCI) is a common but severe disease caused by traffic accidents. Coronary atherosclerotic heart disease (CHD) caused by dyslipidemia is known as the leading cause of death in patients with SCI. However, the quantitative analysis showed that the cholesterol and lipoprotein concentrations in peripheral blood (PB) did not change significantly within 48 h after SCI. Due to the presence of the Blood spinal cord barrier (BSCB), there are only few studies concerning the plasma cholesterol metabolism in the acute phase of SCI. Exosomes have a smaller particle size, which enables them relatively less limitation of BSCB. This study uses exosomes derived from the plasma of 43 patients in the acute phase of SCI and 71 patients in the control group as samples. MS proteomics and bioinformatics analysis found 590 quantifiable proteins, in which 75 proteins were upregulated and 153 proteins were downregulated, and the top 10 differentially expressed proteins are those including downregulating proteins: HIST1H4A, HIST2H3A, HIST2H2BE, HCLS1, S100A9, HIST1H2BM, S100A8, CALM3, YWHAH, and SFN, and upregulating proteins: SERPIND1, C1QB, SPTLC3, IGHV4-28, C4A, IGHV4-38-2, IGHV4-30-2, SLC15A1, C4B, and ACTG2. Enrichment analysis showed that the largest part of proteins was related to cholesterol metabolism among the downregulated proteins. The main components of cholesterol [ApoB-48 and ApoB-100 increased, ApoA-I, ApoA-II, ApoA-IV, ApoC, ApoE, and Apo(a) decreased] were changed in exosomes derived from plasma of patients. ELISA analysis showed that some components were disordered in the acute phase of SCI. These results suggested that the exosomes might be involved in cholesterol metabolism regulation in the acute phase of SCI.
Collapse
Affiliation(s)
- Chunshuai Wu
- Department of Spine Surgery, Nantong First People's Hospital, The Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Jinjuan Yu
- Department of Administrative Office, The Third People's Hospital of Nantong, Nantong, China
| | - Guanhua Xu
- Department of Spine Surgery, Nantong First People's Hospital, The Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Hong Gao
- Department of Spine Surgery, Nantong First People's Hospital, The Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Yue Sun
- Department of Spine Surgery, Nantong First People's Hospital, The Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Jiayi Huang
- Department of Spine Surgery, Nantong First People's Hospital, The Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Li Sun
- Department of Spine Surgery, Nantong First People's Hospital, The Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Xu Zhang
- Department of Spine Surgery, Nantong First People's Hospital, The Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Zhiming Cui
- Department of Spine Surgery, Nantong First People's Hospital, The Affiliated Hospital 2 of Nantong University, Nantong, China
| |
Collapse
|
17
|
The Effect of Inflammatory Priming on the Therapeutic Potential of Mesenchymal Stromal Cells for Spinal Cord Repair. Cells 2021; 10:cells10061316. [PMID: 34070547 PMCID: PMC8227154 DOI: 10.3390/cells10061316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stromal cells (MSC) are used for cell therapy for spinal cord injury (SCI) because of their ability to support tissue repair by paracrine signaling. Preclinical and clinical research testing MSC transplants for SCI have revealed limited success, which warrants the exploration of strategies to improve their therapeutic efficacy. MSC are sensitive to the microenvironment and their secretome can be altered in vitro by exposure to different culture media. Priming MSC with inflammatory stimuli increases the expression and secretion of reparative molecules. We studied the effect of macrophage-derived inflammation priming on MSC transplants and of primed MSC (pMSC) acute transplants (3 days) on spinal cord repair using an adult rat model of moderate-severe contusive SCI. We found a decrease in long-term survival of pMSC transplants compared with unprimed MSC transplants. With a pMSC transplant, we found significantly more anti-inflammatory macrophages in the contusion at 4 weeks post transplantation (wpt). Blood vessel presence and maturation in the contusion at 1 wpt was similar in rats that received pMSC or untreated MSC. Nervous tissue sparing and functional recovery were similar across groups. Our results indicate that macrophage-derived inflammation priming does not increase the overall therapeutic potential of an MSC transplant in the adult rat contused spinal cord.
Collapse
|
18
|
Liu Z, Yao X, Sun B, Jiang W, Liao C, Dai X, Chen Y, Chen J, Ding R. Pretreatment with kaempferol attenuates microglia-mediate neuroinflammation by inhibiting MAPKs-NF-κB signaling pathway and pyroptosis after secondary spinal cord injury. Free Radic Biol Med 2021; 168:142-154. [PMID: 33823244 DOI: 10.1016/j.freeradbiomed.2021.03.037] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 03/03/2021] [Accepted: 03/26/2021] [Indexed: 12/16/2022]
Abstract
Spinal cord injury (SCI) is a devastating injury that characterized by oxidative stress and inflammatory response. Kaempferol is reported to be an anti-neuroinflammation in neurologic disorders. Nevertheless, the role and mechanism of kaempferol in SCI remains unclear. The present study aims to investigate effects of kaempferol on SCI and its possible underlying mechanisms in in vivo and in vitro models. A C5 hemi-contusion injury was induced in Sprague-Dawley rats to investigate the neuroprotective effects of kaempferol after SCI. For in vitro study, the BV2 microglia cell lines were pretreated with or without kaempferol. A combination of molecular and histological methods was used to clarify the mechanism and explore the signaling pathway both in vivo and in vitro. One-way analysis of variance (ANOVA) was conducted with Bonferroni post hoc tests to examine the differences between groups. The in vivo studies showed that kaempferol could improve the recovery of hindlimb motor function and ameliorate tissue damage in the spinal cord after SCI. Moreover, administration of kaempferol reduced microglia activation and oxidative stress level in the spinal cord. The in vitro studies showed that kaempferol suppressed the microglia activation resulting from the administration of LPS with ATP to BV-2 cells. Pretreated BV2 cells with kaempferol reduced the generation of reactive oxygen species (ROS) by inhibiting NADPH oxidase 4, and then, suppressed the phosphorylation of p38 MAPK and JNK, which subsequently inhibited nuclear translocation of NF-κB p65 to express pro-inflammatory factors. We also observed that kaempferol could inhibite the pyroptosis related proteins (NLRP3 Caspase-1 p10 ASC N-GSDMD) and reduce the release of IL-18 and IL-1β. In conclusion, kaempferol was able to reduce oxidative stress and inflammatory response through down-regulation of ROS dependent MAPKs- NF-κB and pyroptosis signaling pathway, which suggested that kaempferol might be a novel promising therapeutic agent for SCI.
Collapse
Affiliation(s)
- Zhongyuan Liu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xinqiang Yao
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Baihui Sun
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Wangsheng Jiang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Congrui Liao
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xiangheng Dai
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yu Chen
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jianting Chen
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Ruoting Ding
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
19
|
MicroRNA-129-5p alleviates spinal cord injury in mice via suppressing the apoptosis and inflammatory response through HMGB1/TLR4/NF-κB pathway. Biosci Rep 2021; 40:222205. [PMID: 32096822 PMCID: PMC7069919 DOI: 10.1042/bsr20193315] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/15/2020] [Accepted: 02/17/2020] [Indexed: 12/15/2022] Open
Abstract
Secondary injury after spinal cord injury (SCI) is one reversible pathological change mainly involving excessive inflammatory response and neuro-apoptosis. Since in recent years, microRNAs (miRNAs) have been proposed as novel regulators of inflammation in different disease conditions. However, the role of miRNAs in the inflammatory response and apoptosis of secondary injury after SCI remains to be fully elucidated. Here, we tried to explore the influence and mechanism of miRNAs on the neuron inflammatory response and apoptosis after SCI. The expression profiles of miRNA were examined using miRNA microarray, and among the candidate miRNAs, miR-129-5p was found to be the most down-regulated miRNA in spinal tissues. Overexpression of miR-129-5p using agomir-miR-129-5p promoted injury mice functional recovery, suppressed the apoptosis and alleviated inflammatory response in spinal tissues. Using LPS-induced BV-2 cell model, we found miR-129-5p was also proved in protecting inflammatory response and cell apoptosis in vitro. High-mobility group protein B1 (HMGB1), a well-known inflammatory mediator, was found to be directly targeted by miR-129-5p and it was associated with the inhibitory effect of miR-129-5p on the activation of toll-like receptor (TLR)-4 (TLR4)/ nuclear factor-κB (NF-κB) pathway in vitro and in vivo. Further experiments revealed that the anti-apoptosis and anti-inflammatory effects of miR-129-5p were reversed by HMGB1 overexpression in BV-2 cells. Collectively, these data revealed that miR-129-5p alleviated SCI in mice via suppressing the apoptosis and inflammatory response through HMGB1//TLR4/NF-κB pathway. Our data suggest that up-regulation of miR-129-5p may be a novel therapeutic target for SCI.
Collapse
|
20
|
Hassanzadeh S, Jalessi M, Jameie SB, Khanmohammadi M, Bagher Z, Namjoo Z, Davachi SM. More attention on glial cells to have better recovery after spinal cord injury. Biochem Biophys Rep 2021; 25:100905. [PMID: 33553683 PMCID: PMC7844125 DOI: 10.1016/j.bbrep.2020.100905] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 01/01/2023] Open
Abstract
Functional improvement after spinal cord injury remains an unsolved difficulty. Glial scars, a major component of SCI lesions, are very effective in improving the rate of this recovery. Such scars are a result of complex interaction mechanisms involving three major cells, namely, astrocytes, oligodendrocytes, and microglia. In recent years, scientists have identified two subtypes of reactive astrocytes, namely, A1 astrocytes that induce the rapid death of neurons and oligodendrocytes, and A2 astrocytes that promote neuronal survival. Moreover, recent studies have suggested that the macrophage polarization state is more of a continuum between M1 and M2 macrophages. M1 macrophages that encourage the inflammation process kill their surrounding cells and inhibit cellular proliferation. In contrast, M2 macrophages promote cell proliferation, tissue growth, and regeneration. Furthermore, the ability of oligodendrocyte precursor cells to differentiate into adult oligodendrocytes or even neurons has been reviewed. Here, we first scrutinize recent findings on glial cell subtypes and their beneficial or detrimental effects after spinal cord injury. Second, we discuss how we may be able to help the functional recovery process after injury.
Collapse
Affiliation(s)
- Sajad Hassanzadeh
- Skull Base Research Center, Hazrat Rasoul Hospital, The Five Senses Health Institute, Iran University of Medical Sciences, Tehran, Iran
- Neuroscience Research Center (NRC), Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Jalessi
- Skull Base Research Center, Hazrat Rasoul Hospital, The Five Senses Health Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Behnamedin Jameie
- Neuroscience Research Center (NRC), Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Basic Sciences, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Khanmohammadi
- Skull Base Research Center, Hazrat Rasoul Hospital, The Five Senses Health Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Zohre Bagher
- ENT and Head & Neck Research Center and Department, The Five Senses Health Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Namjoo
- Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Seyed Mohammad Davachi
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| |
Collapse
|
21
|
High mobility group box 1 promotes the differentiation of spinal ependymal cells into astrocytes rather than neurons. Neuroreport 2021; 32:399-406. [PMID: 33661806 DOI: 10.1097/wnr.0000000000001609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Spinal ependymal cells are involved in proliferation, differentiation and migration after spinal cord injury (SCI) and represent an endogenous source of repair cells for treating SCI. However, 95% of activated ependymal cells eventually differentiate into astrocytes after SCI and ultimately contribute more than half of the new astrocytes that form glial scars in vivo. The factors that regulate the fate of ependymal cells after SCI remain unclear. High mobility group box 1 (HMGB1) is regarded as an important proinflammatory factor in nerve injury, and recent studies have shown that HMGB1 can regulate the fate of stem cells after injury. In this study, we investigated whether HMGB1 released from reactive astrocytes after SCI regulates the proliferation and differentiation of ependymal cells in vitro. Ependymal cells extracted and cultured from the spinal cord of mice were separately treated with astrocyte culture medium (ACM), IL-1β, ACM (IL-1β) and the HMGB1 protein, and the proliferation and differentiation of ependymal cells were detected. Additionally, an HMGB1-neutralizing antibody (anti-HMGB1) was added to further verify the regulatory effect of HMGB1 on ependymal cells. The results showed that HMGB1 released from reactive astrocytes promoted ependymal cell differentiation into astrocytes and inhibited ependymal cell differentiation into neurons in vitro; however, the effect disappeared after the addition of anti-HMGB1. HMGB1 had no significant effect on ependymal cell proliferation. Our findings demonstrate that HMGB1 can regulate the differentiation of ependymal cells after SCI. These results provide a new strategy for the treatment of SCI.
Collapse
|
22
|
Xia H, Wang D, Guo X, Wu K, Huang F, Feng Y. Catalpol Protects Against Spinal Cord Injury in Mice Through Regulating MicroRNA-142-Mediated HMGB1/TLR4/NF-κB Signaling Pathway. Front Pharmacol 2021; 11:630222. [PMID: 33628189 PMCID: PMC7898164 DOI: 10.3389/fphar.2020.630222] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Spinal cord injury (SCI) is a devastating condition that leads to paralysis, disability and even death in severe cases. Inflammation, apoptosis and oxidative stress in neurons are key pathogenic processes in SCI. Catalpol (CTP), an iridoid glycoside extracted from Rehmannia glutinosa, has many pharmacological activities, such as anti-inflammatory, anti-oxidative and anti-apoptotic properties. Purpose: Here, we investigated whether CTP could exert neuroprotective effects against SCI, and explored the underlying mechanism involved. Methods: SCI was induced by a weight-drop device and treated with CTP (10 mg and 60 mg/kg). Then the locomotor function of SCI mice was evaluated by the BBB scores, spinal cord edema was measured by the wet/dry weight method, oxidative stress markers and inflammatory factors were detected by commercial kits and neuronal death was measured by TUNEL staining. Moreover, the microRNA expression profile in spinal cords from mice following SCI was analyzed using miRNA microarray. In addition, reactive oxygen species (ROS) generation, inflammatory response and cell apoptosis were detected in murine microglia BV2 cells under oxygen-glucose deprivation (OGD) and CTPtreatment. Results: Our data showed that CTP treatment could improve the functional recovery, as well as suppress the apoptosis, alleviate inflammatory and oxidative response in SCI mice. In addition, CTP was found to be up-regulated miR-142 and the protective effects of CTP on apoptosis, inflammatory and oxidative response may relate to its regulation of HMGB1/TLR4/NF-κB pathway through miR-142. Conclusion: Our findings suggest that CTP may protect the spinal cord from SCI by suppression of apoptosis, oxidative stress and inflammatory response via miR-142/HMGB1/TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Hougang Xia
- Department of Rehabilitation Medicine, Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Luoyang, China
| | - Dandan Wang
- Department of Nursing, Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Luoyang, China
| | - Xiaohui Guo
- Department of Spinal Surgery, Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Luoyang, China
| | - Kaidi Wu
- Department of Rehabilitation Medicine, Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Luoyang, China
| | - Fuwei Huang
- Department of Rehabilitation Medicine, Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Luoyang, China
| | - Yanjiang Feng
- Department of Rehabilitation Medicine, Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Luoyang, China
| |
Collapse
|
23
|
贺 亚, 孙 麟, 冯 皓, 李 季, 张 楠, 王 志. [Effect and mechanism of glycyrrhizin on glial scar formation after spinal cord injury in rats]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2020; 34:1298-1304. [PMID: 33063497 PMCID: PMC8171873 DOI: 10.7507/1002-1892.202002116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 06/13/2020] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To explore the effect and potential mechanism of glycyrrhizin (GL) by inhibiting high mobility group box 1 (HMGB1) on glial scar formation after spinal cord injury (SCI) in rats. METHODS Seventy-two female Sprague Dawley rats were randomly divided into sham group ( n=12), SCI model group (SCI group, n=36), GL intervention group (SCI+GL group, n=12), and nuclear factor κB (NF-κB) inhibitor [pynolidine dithiocarbamate (PDTC)] intervention group (SCI+PDTC group, n=12). The SCI models of SCI group, SCI+GL group, and SCI+PDTC group were made by modified Allen's method, the sham group was only exposed the spinal cord without any injury. First of all, Basso-Beattie-Bresnahan (BBB) score of hind limbs and slope test were performed in SCI group at 1, 2, and 3 weeks after operation; Western blot was used to detect the expressions of glial fibrillary acidic protein (GFAP) and HMGB1 proteins. Compared with the sham group, the most significant time point in the SCI group was selected for subsequent experiment, in which the most significant glial scar was formed. Then, behavioral tests (BBB score of hind limbs and slope test), histological observation of spinal cord tissue structure, Western blot detection of HMGB1, GFAP, and NF-κB proteins, and immunohistochemical staining observation of GFAP and chondroitin sulfate proteoglycan (CSPG) were used to explore the effect of GL on the formation of glial scar after SCI and its potential mechanism. RESULTS The BBB score and slope angle of the SCI group increased gradually with time, which were significantly lower than those of the sham group at each time point ( P<0.05). Western blot detection showed that the relative expressions of HMGB1 and GFAP proteins in the SCI group at 1, 2, and 3 weeks after operation were significantly higher than those in sham group ( P<0.05). The change was most obvious at 3 weeks after SCI, therefore the spinal cord tissue was selected for subsequent experiments at this time point. At 3 weeks after operation, compared with the SCI group, BBB score and slope angle of SCI+GL group significantly increased ( P<0.05); the relative expressions of HMGB1, GFAP, and NF-κB proteins detected by Western blot and the expressions of GFAP and CSPG proteins detected by immunohistochemical staining significantly decreased ( P<0.05); the disorder of spinal cord tissue by HE staining improved, inflammatory cell infiltration reduced, and glial scar formation decreased. At 3 weeks after operation, the expressions of NF-κB, GFAP, and CSPG proteins of the SCI+PDTC group significantly reduced when compared with the SCI group ( P<0.05); and the expression of NF-κB protein significantly decreased and the expressions of GFAP and CSPG proteins significantly increased when compared with the SCI+GL group ( P<0.05). CONCLUSION After SCI in rats, the application of GL to inhibit the expression of HMGB1 can reduce the expression of GFAP and CSPG in the injured spinal cord, then reduce the formation of glial scars and promote the recovery of motor function of the hind limbs, and GL may play a role in inhibiting glial scar through HMGB1/NF-κB pathway.
Collapse
Affiliation(s)
- 亚军 贺
- 山西医科大学附属白求恩医院骨科(太原 030032)Department of Orthopaedics, Shanxi Bethune Hospital Affiliated to Shanxi Medical University, Taiyuan Shanxi, 030032, P.R.China
| | - 麟 孙
- 山西医科大学附属白求恩医院骨科(太原 030032)Department of Orthopaedics, Shanxi Bethune Hospital Affiliated to Shanxi Medical University, Taiyuan Shanxi, 030032, P.R.China
| | - 皓宇 冯
- 山西医科大学附属白求恩医院骨科(太原 030032)Department of Orthopaedics, Shanxi Bethune Hospital Affiliated to Shanxi Medical University, Taiyuan Shanxi, 030032, P.R.China
| | - 季声 李
- 山西医科大学附属白求恩医院骨科(太原 030032)Department of Orthopaedics, Shanxi Bethune Hospital Affiliated to Shanxi Medical University, Taiyuan Shanxi, 030032, P.R.China
| | - 楠 张
- 山西医科大学附属白求恩医院骨科(太原 030032)Department of Orthopaedics, Shanxi Bethune Hospital Affiliated to Shanxi Medical University, Taiyuan Shanxi, 030032, P.R.China
- 山西医科大学公共卫生学院(太原 030000)School of Public Health, Shanxi Medical University, Taiyuan Shanxi, 030000, P.R.China
| | - 志强 王
- 山西医科大学附属白求恩医院骨科(太原 030032)Department of Orthopaedics, Shanxi Bethune Hospital Affiliated to Shanxi Medical University, Taiyuan Shanxi, 030032, P.R.China
| |
Collapse
|
24
|
Fan H, Tang HB, Chen Z, Wang HQ, Zhang L, Jiang Y, Li T, Yang CF, Wang XY, Li X, Wu SX, Zhang GL. Inhibiting HMGB1-RAGE axis prevents pro-inflammatory macrophages/microglia polarization and affords neuroprotection after spinal cord injury. J Neuroinflammation 2020; 17:295. [PMID: 33036632 PMCID: PMC7547440 DOI: 10.1186/s12974-020-01973-4] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/30/2020] [Indexed: 12/18/2022] Open
Abstract
Background Spinal cord injury (SCI) favors a persistent pro-inflammatory macrophages/microglia-mediated response with only a transient appearance of anti-inflammatory phenotype of immune cells. However, the mechanisms controlling this special sterile inflammation after SCI are still not fully elucidated. It is known that damage-associated molecular patterns (DAMPs) released from necrotic cells after injury can trigger severe inflammation. High mobility group box 1(HMGB1), a ubiquitously expressed DNA binding protein, is an identified DAMP, and our previous study demonstrated that reactive astrocytes could undergo necroptosis and release HMGB1 after SCI in mice. The present study aimed to explore the effects and the possible mechanism of HMGB1on macrophages/microglia polarization, as well as the neuroprotective effects by HMGB1 inhibition after SCI. Methods In this study, the expression and the concentration of HMGB1 was determined by qRT-PCR, ELISA, and immunohistochemistry. Glycyrrhizin was applied to inhibit HMGB1, while FPS-ZM1 to suppress receptor for advanced glycation end products (RAGE). The polarization of macrophages/microglia in vitro and in vivo was detected by qRT-PCR, immunostaining, and western blot. The lesion area was detected by GFAP staining, while neuronal survival was examined by Nissl staining. Luxol fast blue (LFB) staining, DAB staining, and western blot were adopted to evaluate the myelin loss. Basso-Beattie-Bresnahan (BBB) scoring and rump-height Index (RHI) assay was applied to evaluate locomotor functional recovery. Results Our data showed that HMGB1 can be elevated and released from necroptotic astrocytes and HMGB1 could induce pro-inflammatory microglia through the RAGE-nuclear factor-kappa B (NF-κB) pathway. We further demonstrated that inhibiting HMGB1 or RAGE effectively decreased the numbers of detrimental pro-inflammatory macrophages/microglia while increased anti-inflammatory cells after SCI. Furthermore, our data showed that inhibiting HMGB1 or RAGE significantly decreased neuronal loss and demyelination, and improved functional recovery after SCI. Conclusions The data implicated that HMGB1-RAGE axis contributed to the dominant pro-inflammatory macrophages/microglia-mediated pro-inflammatory response, and inhibiting this pathway afforded neuroprotection for SCI. Thus, therapies designed to modulate immune microenvironment based on this cascade might be a prospective treatment for SCI.
Collapse
Affiliation(s)
- Hong Fan
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China.,Institute of Neurosciences, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Hai-Bin Tang
- Department of Laboratory Medicine, Xi'an Central Hospital, Xi'an Jiaotong University, 161 Xi Wu Road, Xi'an, 710003, Shaanxi, China
| | - Zhe Chen
- Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Hu-Qing Wang
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Lei Zhang
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Yu Jiang
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Tao Li
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Cai-Feng Yang
- Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Xiao-Ya Wang
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Xia Li
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Sheng-Xi Wu
- Institute of Neurosciences, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Gui-Lian Zhang
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
25
|
Cardiovascular Autonomic Dysfunction in Spinal Cord Injury: Epidemiology, Diagnosis, and Management. Semin Neurol 2020; 40:550-559. [PMID: 32906175 DOI: 10.1055/s-0040-1713885] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Spinal cord injury (SCI) disrupts autonomic circuits and impairs synchronistic functioning of the autonomic nervous system, leading to inadequate cardiovascular regulation. Individuals with SCI, particularly at or above the sixth thoracic vertebral level (T6), often have impaired regulation of sympathetic vasoconstriction of the peripheral vasculature and the splanchnic circulation, and diminished control of heart rate and cardiac output. In addition, impaired descending sympathetic control results in changes in circulating levels of plasma catecholamines, which can have a profound effect on cardiovascular function. Although individuals with lesions below T6 often have normal resting blood pressures, there is evidence of increases in resting heart rate and inadequate cardiovascular response to autonomic provocations such as the head-up tilt and cold face tests. This manuscript reviews the prevalence of cardiovascular disorders given the level, duration and severity of SCI, the clinical presentation, diagnostic workup, short- and long-term consequences, and empirical evidence supporting management strategies to treat cardiovascular dysfunction following a SCI.
Collapse
|
26
|
Tan AQ, Barth S, Trumbower RD. Acute intermittent hypoxia as a potential adjuvant to improve walking following spinal cord injury: evidence, challenges, and future directions. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2020; 8:188-198. [PMID: 33738145 DOI: 10.1007/s40141-020-00270-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Purpose of Review The reacquisition and preservation of walking ability are highly valued goals in spinal cord injury (SCI) rehabilitation. Recurrent episodes of breathing low oxygen (i.e., acute intermittent hypoxia, AIH) is a potential therapy to promote walking recovery after incomplete SCI via endogenous mechanisms of neuroplasticity. Here, we report on the progress of AIH, alone or paired with other treatments, on walking recovery in persons with incomplete SCI. We evaluate the evidence of AIH as a therapy ready for clinical and home use and the real and perceived challenges that may interfere with this possibility. Recent Findings Repetitive AIH is a safe and an efficacious treatment to enhance strength, walking speed and endurance, as well as, dynamic balance in persons with chronic, incomplete SCI. Summary The potential for AIH as a treatment for SCI remains high, but further research is necessary to understand treatment targets and effectiveness in a large cohort of persons with SCI.
Collapse
Affiliation(s)
- Andrew Quesada Tan
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA. USA
- Spaulding Rehabilitation Hospital, Boston MA
| | - Stella Barth
- Spaulding Rehabilitation Hospital, Boston MA
- Harvard University, Cambridge MA
| | - Randy D Trumbower
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA. USA
- Spaulding Rehabilitation Hospital, Boston MA
| |
Collapse
|
27
|
Zhai Y, Zhu Y, Liu J, Xie K, Yu J, Yu L, Deng H. Dexmedetomidine Post-Conditioning Alleviates Cerebral Ischemia-Reperfusion Injury in Rats by Inhibiting High Mobility Group Protein B1 Group (HMGB1)/Toll-Like Receptor 4 (TLR4)/Nuclear Factor kappa B (NF-κB) Signaling Pathway. Med Sci Monit 2020; 26:e918617. [PMID: 31912804 PMCID: PMC6977611 DOI: 10.12659/msm.918617] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Cerebral ischemia-reperfusion injury is a pivotal cause of deaths due to cerebrovascular accident. Increased research efforts are needed to reveal the mechanism underlying its aggravation or alleviation. In this study, the effects of dexmedetomidine post-conditioning on the HMGB1/TLR4/NF-kappaB signaling pathway in cerebral ischemia-reperfusion rats was explored. MATERIAL AND METHODS Ninety rats were randomly divided into 5 groups - a sham group (Sham), a model group (I/R), a dexmedetomidine post-conditioning group (Dex), a recombinant high mobility group protein B1 group (rHMGB1), and a recombinant HMGB1+dexmedetomidine post-conditioning group (rHMGB1+Dex) - with 18 rats in each group. Longa grading, wet-dry weighing, TTC staining, HE staining, and immunohistochemical staining were used to assess brain damage. ELISA, RT-PCR, and Western blot analyses were performed to assess expression of IL-1ß, TNF-alpha, IL-6, IL-8, HMGB1, TLR4, and NF-kappaB. RESULTS Compared with the I/R group, the neurological function score, brain water content, infarction area, and the number of COX-2- and IBA-1-positive cells in the Dex group were significantly lower, accompanied by downregulated expression of the HMGB1/TLR4/NF-kappaB pathway, alleviated inflammation, and oxidative stress injury in brain tissue. These trends were mostly reversed in the rHMGB1 group and rHMGB1+Dex group, but not in the Dex group. Furthermore, when compared to the Dex group, there were significant increases of H₂O₂, MDA, NO, IL-1ß, TNF-alpha, IL-6, IL-8, HMGB1, TLR4, and p-P65 in the rHMGB1 group and rHMGB1+Dex group, in which a significant decrease of T-AOC, SOD, and p-IkappaBalpha was also detected. CONCLUSIONS Dexmedetomidine post-conditioning can alleviate cerebral ischemia-reperfusion injury in rats by inhibiting the HMGB1/TLR4/NF-kappaB signaling pathway.
Collapse
Affiliation(s)
- Yongyi Zhai
- Department of Rehabilitation, Linzi District People's Hospital, Zibo, Shandong, China (mainland)
| | - Yulin Zhu
- Department of Anesthesiology, Yantaishan Hospital, Yantai, Shandong, China (mainland)
| | - Jingying Liu
- Department of Obstetrics, Yantaishan Hospital, Yantai, Shandong, China (mainland)
| | - Kun Xie
- Department of Anesthesiology, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Jingui Yu
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Lingzhi Yu
- Department of Pain, Jinan Central Hospital affiliated to Shandong University, Jinan, Shandong, China (mainland)
| | - Hongyan Deng
- Department of Anesthesiology, Haiyang People's Hospital, Haiyang, Shandong, China (mainland)
| |
Collapse
|
28
|
Systemic inflammation in traumatic spinal cord injury. Exp Neurol 2019; 325:113143. [PMID: 31843491 DOI: 10.1016/j.expneurol.2019.113143] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 01/08/2023]
|
29
|
Neurochemical biomarkers in spinal cord injury. Spinal Cord 2019; 57:819-831. [PMID: 31273298 DOI: 10.1038/s41393-019-0319-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/02/2019] [Accepted: 06/11/2019] [Indexed: 02/08/2023]
Abstract
STUDY DESIGN This is a narrative review of the literature on neurochemical biomarkers in spinal cord injury (SCI). OBJECTIVES The objective was to summarize the literature on neurochemical biomarkers in SCI and describe their use in facilitating clinical trials for SCI. Clinical trials in spinal cord injury (SCI) have been notoriously difficult to conduct, as exemplified by the paucity of definitive prospective randomized trials that have been completed, to date. This is related to the relatively low incidence and the complexity and heterogeneity of the human SCI condition. Given the increasing number of promising approaches that are emerging from the laboratory which are vying for clinical evaluation, novel strategies to help facilitate clinical trials are needed. METHODS A literature review was conducted, with a focus on neurochemical biomarkers that have been described in human neurotrauma. RESULTS We describe advances in our understanding of neurochemical biomarkers as they pertain to human SCI. The application of biomarkers from serum and cerebrospinal fluid (CSF) has been led by efforts in the human traumatic brain injury (TBI) literature. A number of promising biomarkers have been described in human SCI whereby they may assist in stratifying injury severity and predicting outcome. CONCLUSIONS Several time-specific biomarkers have been described for acute SCI and for chronic SCI. These appear promising for stratifying injury severity and potentially predicting outcome. The subsequent application within a clinical trial will help to demonstrate their utility in facilitating the study of novel approaches for SCI.
Collapse
|
30
|
Inflammation, Cerebral Vasospasm, and Brain Injury in Subarachnoid Hemorrhage-A Shifting Paradigm and a New Beginning. Crit Care Med 2019; 46:1883-1885. [PMID: 30312238 DOI: 10.1097/ccm.0000000000003373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
31
|
Brakel K, Hook MA. SCI and depression: Does inflammation commandeer the brain? Exp Neurol 2019; 320:112977. [PMID: 31203113 DOI: 10.1016/j.expneurol.2019.112977] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/29/2019] [Accepted: 06/12/2019] [Indexed: 12/11/2022]
Abstract
The incidence of depression is almost twice as high in the spinally injured population compared to the general population. While this incidence has long been attributed to the psychological, economic, and social burdens that accompany spinal cord injury (SCI), data from animal studies indicate that the biology of SCI may play an important role in the development of depression. Inflammation has been shown to impact stress response in rodents and humans, and inflammatory cytokines have been associated with depression for decades. The inflammation inherent to SCI may disrupt necessary mechanisms of mental homeostasis, such as serotonin production, dopamine production, and the hypothalamic pituitary adrenal axis. Additionally, gut dysbiosis that occurs after SCI can exacerbate inflammation and may cause further mood and behavior changes. These mediators combined may significantly contribute to the rise in depression seen after SCI. Currently, there are no therapies specific to depression after SCI. Elucidation of the molecular pathways that contribute to SCI-specific depression is crucial for the understanding of this disease and its potential treatments.
Collapse
Affiliation(s)
- Kiralyn Brakel
- School of Medicine, Department of Neuroscience and Experimental Therapeutics, Texas A&M University, Medical Research and Education Building, Ste. 1005, 8447 Riverside Pkwy, Bryan, TX 77807, United States; Texas A&M Institute of Neuroscience, Texas A&M University, Interdisciplinary Life Sciences Building, Rm 3148, 3474 College Station, TAMU, TX, United States.
| | - Michelle A Hook
- School of Medicine, Department of Neuroscience and Experimental Therapeutics, Texas A&M University, Medical Research and Education Building, Ste. 1005, 8447 Riverside Pkwy, Bryan, TX 77807, United States; Texas A&M Institute of Neuroscience, Texas A&M University, Interdisciplinary Life Sciences Building, Rm 3148, 3474 College Station, TAMU, TX, United States
| |
Collapse
|
32
|
Milich LM, Ryan CB, Lee JK. The origin, fate, and contribution of macrophages to spinal cord injury pathology. Acta Neuropathol 2019; 137:785-797. [PMID: 30929040 PMCID: PMC6510275 DOI: 10.1007/s00401-019-01992-3] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 12/16/2022]
Abstract
Virtually all phases of spinal cord injury pathogenesis, including inflammation, cell proliferation and differentiation, as well as tissue remodeling, are mediated in part by infiltrating monocyte-derived macrophages. It is now clear that these infiltrating macrophages have distinct functions from resident microglia and are capable of mediating both harmful and beneficial effects after injury. These divergent effects have been largely attributed to environmental cues, such as specific cytokines, that influence the macrophage polarization state. In this review, we also consider the possibility that different macrophage origins, including the spleen, bone marrow, and local self-renewal, may also affect macrophage fate, and ultimately their function that contribute to the complex pathobiology of spinal cord injury.
Collapse
Affiliation(s)
- Lindsay M Milich
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL, 33136, USA
| | - Christine B Ryan
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL, 33136, USA
| | - Jae K Lee
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
33
|
Gibbs K, Beaufort A, Stein A, Leung TM, Sison C, Bloom O. Assessment of pain symptoms and quality of life using the International Spinal Cord Injury Data Sets in persons with chronic spinal cord injury. Spinal Cord Ser Cases 2019; 5:32. [PMID: 31240125 PMCID: PMC6474307 DOI: 10.1038/s41394-019-0178-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/15/2019] [Accepted: 03/17/2019] [Indexed: 02/06/2023] Open
Abstract
Introduction Traumatic spinal cord injury (SCI) triggers complex changes that can negatively impact health and quality of life. The International SCI Data Sets were developed to enable more comparable data collection on the complex sequelae of SCI across studies. This should facilitate progress in mechanistic understanding and improving treatments of SCI. Study design Prospective observational pilot study. Objectives To collect data on pain symptoms and quality of life (QoL) in adults living with chronic SCI. Setting Academic medical center, New York, USA. Methods The International SCI Basic Pain and Qol Data Sets were used to collect data from participants with chronic SCI (N = 31) at 2 study visits held 6 months apart. The QoL Data Set was also used to collect data from able-bodied persons of similar age and gender distribution (N = 28). Results Most participants with SCI had multiple types and locations of pain problems at both study visits, despite reported being treated for pain. At both visits, the worst pain problem type was nociceptive, followed by neuropathic, which was typically rated of higher intensity. QoL scores were significantly lower across all domains of the data set in persons with SCI than able-bodied persons. Persons with pain tended to have lower QoL scores, although this trend was not significant. Conclusions This study demonstrates the presence, complexity and stability of pain symptoms refractory to treatment and lower quality of life ratings in persons with chronic SCI. Sponsorship Grants from the Craig H. Neilsen Foundation, New York Empire Clinical Research Program, New York State Spinal Cord Injury Research Board.
Collapse
Affiliation(s)
- Katie Gibbs
- The Feinstein Institute for Medical Research, New York, USA
- Department of Physical Medicine and Rehabilitation, Northwell Health, New York, USA
| | | | - Adam Stein
- The Feinstein Institute for Medical Research, New York, USA
- Department of Physical Medicine and Rehabilitation, Northwell Health, New York, USA
| | | | - Cristina Sison
- Biostatistics Unit, Northwell Health, New York, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra-Northwell, New York, USA
| | - Ona Bloom
- The Feinstein Institute for Medical Research, New York, USA
- Department of Physical Medicine and Rehabilitation, Northwell Health, New York, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra-Northwell, New York, USA
| |
Collapse
|
34
|
Dexmedetomidine Preconditioning Ameliorates Inflammation and Blood-Spinal Cord Barrier Damage After Spinal Cord Ischemia-Reperfusion Injury by Down-Regulation High Mobility Group Box 1-Toll-Like Receptor 4-Nuclear Factor κB Signaling Pathway. Spine (Phila Pa 1976) 2019; 44:E74-E81. [PMID: 29975331 DOI: 10.1097/brs.0000000000002772] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN To evaluate the effect of Dexmedetomidine (Dex) on the inflammatory response and the integrity of blood-spinal cord barrier (BSCB) after spinal cord ischemia-reperfusion injury (SCIRI). OBJECTIVE To investigate the role of Dex in spinal cord I/R, particularly in the high mobility group box 1-toll-like receptor 4-nuclear factor κB (HMGB1-TLR4-NF-κB) pathway and the integrity of BSCB. SUMMARY OF BACKGROUND DATA High mobility group box 1 (HMGB1) has been identified as a key mediator for the inflammatory response after spinal cord injury. Toll-like receptor 4-nuclear factor κB (TLR4-NF-κB) signaling pathway is the downstream of HMGB1. Dex preconditioning could protect the spinal cord from I/R injury by inhibiting HMGB1 and stabilizing the integrity of BSCB. But its underlying mechanism is not fully understood. METHODS Forty-eight male Japanese white rabbits were randomly assigned to three groups (16 rabbits/group): sham, I/R, and Dex + I/R. The hind-limb motor function was assessed at 12 hours intervals for 48 hours after reperfusion using the modified Tarlov scale score. The expression of HMGB1, TLR4, NF-κB, and tumor necrosis factor α (TNF-α) was evaluated by real-time polymerase chain reaction (RT-PCR) and Western blot. The permeability of BSCB was examined via Evans blue (EB) extravasation. RESULTS Compared with sham group, spinal cord I/R increased the expression of HMGB1, TLR4, NF-κB, and TNF-α as well as the permeability of BSCB (P < 0.05). Spinal cord I/R induced the decline of the score of hind-limb motor function (P < 0.01). Preconditioning with Dex attenuated the up-regulation of the express of HMGB1, TLR4, NF-κB, TNF-α, and stabilized the permeability of BSCB (P < 0.05). Dex preconditioning also improved the hiatopathological outcome and the motor function (P < 0.01). CONCLUSION Dex preconditioning may inhibit the inflammatory response and stabilize the integrity of BSCB at least partially by inhibiting the HMGB1-TLR4-NF-κB signaling pathway to protect spinal cord from ischemia/reperfusion injury. LEVEL OF EVIDENCE 2.
Collapse
|
35
|
Yousefifard M, Sarveazad A, Babahajian A, Baikpour M, Shokraneh F, Vaccaro AR, Harrop JS, Fehlings MG, Hosseini M, Rahimi‐Movaghar V. Potential diagnostic and prognostic value of serum and cerebrospinal fluid biomarkers in traumatic spinal cord injury: A systematic review. J Neurochem 2019; 149:317-330. [DOI: 10.1111/jnc.14637] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/03/2018] [Accepted: 11/20/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Mahmoud Yousefifard
- Physiology Research Center Faculty of Medicine Iran University of Medical Sciences Tehran Iran
| | - Arash Sarveazad
- Colorectal Research Center Iran University of Medical Sciences Tehran Iran
| | - Asrin Babahajian
- Liver and Digestive Research Center Kurdistan University of Medical Sciences Sanandaj Iran
| | - Masoud Baikpour
- Department of Medicine Tehran University of Medical Sciences Tehran Iran
| | - Farhad Shokraneh
- Cochrane Schizophrenia Group Institute of Mental Health University of Nottingham Nottingham UK
| | - Alexander R. Vaccaro
- Department of Orthopedics and Neurosurgery Rothman Institute Thomas Jefferson University Philadelphia Pennsylvania USA
| | - James S. Harrop
- Department of Neurosurgery Thomas Jefferson University Philadelphia Pennsylvania USA
| | - Michael G. Fehlings
- Division of Genetics and Development Krembil Research Institute University Health Network Toronto Ontario Canada
- Division of Neurosurgery, Toronto Western Hospital University Health Network Toronto Ontario Canada
- Department of Surgery and Spine Program University of Toronto Toronto Ontario Canada
| | - Mostafa Hosseini
- Department of Epidemiology and Biostatistics School of Public Health Tehran University of Medical Sciences Tehran Iran
| | - Vafa Rahimi‐Movaghar
- Sina Trauma and Surgery Research Center Tehran University of Medical Sciences Tehran Iran
- Brain and Spinal Injuries Research Center (BASIR) Neuroscience Institute Imam Khomeini Hospital Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
36
|
Sun K, Xia H. Serum levels of NLRP3 and HMGB-1 are associated with the prognosis of patients with severe blunt abdominal trauma. Clinics (Sao Paulo) 2019; 74:e729. [PMID: 31411276 PMCID: PMC6683302 DOI: 10.6061/clinics/2019/e729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 12/21/2018] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES To investigate the relationship between the serum levels of NLRP3 and HMGB-1 and the prognosis of patients with severe blunt abdominal trauma. METHODS In total, 299 patients were included in the current study from July 2014 to December 2015. All patients were divided into the mild/moderate blunt abdominal trauma group and the severe blunt abdominal trauma group according to their injury severity scores. Serum levels of NLRP3 and HMGB-1 were measured upon admission (0 h) and at 12 h, 24 h, 48 h, 72 h and 7 days after admission. RESULTS Compared with the healthy controls, both the mild/moderate and severe blunt abdominal trauma groups had higher serum levels of NLRP3 and HMGB-1 at admission. At all points, the serum levels of NLRP3 and HMGB-1 were significantly higher in the severe group than in the mild/moderate group. The serum levels of both NLRP3 and HMGB-1 were significantly higher in the deceased patients than in the living patients. The Kaplan-Meier curve showed that compared with patients with higher levels of NLRP3 or HMGB-1, those with lower levels had longer survival times. The serum levels of both NLRP3 and HMGB-1 were independent risk factors for 6-month mortality in severe blunt abdominal trauma patients. CONCLUSION The serum levels of NLRP3 and HMGB-1 were significantly elevated in severe blunt abdominal trauma patients, and the serum levels of both NLRP3 and HMGB-1 were correlated with 6-month mortality in severe blunt abdominal trauma patients.
Collapse
Affiliation(s)
- Kuanxue Sun
- Department of General Surgery, GongLi Hospital of Shanghai Pu Dong New District, Shanghai, 200135, China
- Department of Ultrasound, GongLi Hospital of Shanghai Pu Dong New District, Shanghai, 200135, China
| | - Hongwei Xia
- Department of Ultrasound, GongLi Hospital of Shanghai Pu Dong New District, Shanghai, 200135, China
- *Corresponding author. E-mail:
| |
Collapse
|
37
|
Tran AP, Warren PM, Silver J. The Biology of Regeneration Failure and Success After Spinal Cord Injury. Physiol Rev 2018. [PMID: 29513146 DOI: 10.1152/physrev.00017.2017] [Citation(s) in RCA: 513] [Impact Index Per Article: 85.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Since no approved therapies to restore mobility and sensation following spinal cord injury (SCI) currently exist, a better understanding of the cellular and molecular mechanisms following SCI that compromise regeneration or neuroplasticity is needed to develop new strategies to promote axonal regrowth and restore function. Physical trauma to the spinal cord results in vascular disruption that, in turn, causes blood-spinal cord barrier rupture leading to hemorrhage and ischemia, followed by rampant local cell death. As subsequent edema and inflammation occur, neuronal and glial necrosis and apoptosis spread well beyond the initial site of impact, ultimately resolving into a cavity surrounded by glial/fibrotic scarring. The glial scar, which stabilizes the spread of secondary injury, also acts as a chronic, physical, and chemo-entrapping barrier that prevents axonal regeneration. Understanding the formative events in glial scarring helps guide strategies towards the development of potential therapies to enhance axon regeneration and functional recovery at both acute and chronic stages following SCI. This review will also discuss the perineuronal net and how chondroitin sulfate proteoglycans (CSPGs) deposited in both the glial scar and net impede axonal outgrowth at the level of the growth cone. We will end the review with a summary of current CSPG-targeting strategies that help to foster axonal regeneration, neuroplasticity/sprouting, and functional recovery following SCI.
Collapse
Affiliation(s)
- Amanda Phuong Tran
- Department of Neurosciences, Case Western Reserve University , Cleveland, Ohio ; and School of Biomedical Sciences, University of Leeds , Leeds , United Kingdom
| | - Philippa Mary Warren
- Department of Neurosciences, Case Western Reserve University , Cleveland, Ohio ; and School of Biomedical Sciences, University of Leeds , Leeds , United Kingdom
| | - Jerry Silver
- Department of Neurosciences, Case Western Reserve University , Cleveland, Ohio ; and School of Biomedical Sciences, University of Leeds , Leeds , United Kingdom
| |
Collapse
|
38
|
Sun L, Li M, Ma X, Zhang L, Song J, Lv C, He Y. Inhibiting High Mobility Group Box-1 Reduces Early Spinal Cord Edema and Attenuates Astrocyte Activation and Aquaporin-4 Expression after Spinal Cord Injury in Rats. J Neurotrauma 2018; 36:421-435. [PMID: 29929431 DOI: 10.1089/neu.2018.5642] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
High mobility group box-1 (HMGB1) could function as an early trigger for pro-inflammatory activation after spinal cord injury (SCI). Spinal cord edema contributes to inflammatory response mechanisms and a poor clinical prognosis after SCI, for which efficient therapies targeting the specific molecules involved remain limited. This study was designed to evaluate the roles of HMGB1 on the regulation of early spinal cord edema, astrocyte activation, and aquaporin-4 (AQP4) expression in a rat SCI model. Adult female Sprague-Dawley rats underwent laminectomy at T10, and the SCI model was induced by a heavy falling object. After SCI, rats received ethyl pyruvate (EP) or glycyrrhizin (GL) via an intraperitoneal injection to inhibit HMGB1. The effects of HMGB1 inhibition on the early spinal cord edema, astrocyte activation (glial fibrillary acidic protein [GFAP] expression), and AQP4 expression after SCI (12 h-3 days) were analyzed. The results showed that EP or GL effectively inhibited HMGB1 expression in the spinal cord and HMGB1 levels in the serum of SCI rats. HMGB1 inhibition improved motor function, reduced spinal cord water content, and attenuated spinal cord edema in SCI rats. HMGB1 inhibition decreased SCI-associated GFAP and AQP4 overexpression in the spinal cord. Further, HMGB1 inhibition also repressed the activation of the toll-like receptor 4/myeloid differentiation primary response gene 88/nuclear factor-kappa B signaling pathway. These results implicate that HMGB1 inhibition improved locomotor function and reduced early spinal cord edema, which was associated with a downregulation of astrocyte activation (GFAP expression) and AQP4 expression in SCI rats.
Collapse
Affiliation(s)
- Lin Sun
- 1 Department of Orthopedics, Shanxi Academy of Medical Sciences, Shanxi Da Yi Hospital, Shanxi Da Yi Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Man Li
- 2 Department of Neurology, Second Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| | - Xun Ma
- 1 Department of Orthopedics, Shanxi Academy of Medical Sciences, Shanxi Da Yi Hospital, Shanxi Da Yi Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Li Zhang
- 1 Department of Orthopedics, Shanxi Academy of Medical Sciences, Shanxi Da Yi Hospital, Shanxi Da Yi Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Junlai Song
- 1 Department of Orthopedics, Shanxi Academy of Medical Sciences, Shanxi Da Yi Hospital, Shanxi Da Yi Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Cong Lv
- 1 Department of Orthopedics, Shanxi Academy of Medical Sciences, Shanxi Da Yi Hospital, Shanxi Da Yi Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Yajun He
- 1 Department of Orthopedics, Shanxi Academy of Medical Sciences, Shanxi Da Yi Hospital, Shanxi Da Yi Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| |
Collapse
|
39
|
Kigerl KA, Lai W, Wallace LM, Yang H, Popovich PG. High mobility group box-1 (HMGB1) is increased in injured mouse spinal cord and can elicit neurotoxic inflammation. Brain Behav Immun 2018; 72:22-33. [PMID: 29175543 PMCID: PMC6681463 DOI: 10.1016/j.bbi.2017.11.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/09/2017] [Accepted: 11/22/2017] [Indexed: 01/26/2023] Open
Abstract
Inflammation is a ubiquitous but poorly understood consequence of spinal cord injury (SCI). The mechanisms controlling this response are unclear but culminate in the sequential activation of resident and recruited immune cells. Collectively, these cells can exert divergent effects on cell survival and tissue repair. HMGB1 is a ubiquitously expressed DNA binding protein and also a potent inflammatory stimulus. Necrotic cells release HGMB1, but HMGB1 also is actively secreted by inflammatory macrophages. A goal of this study was to quantify spatio-temporal patterns of cellular HMGB1 expression in a controlled mouse model of experimental SCI then determine the effects of HMGB1 on post-SCI neuroinflammation and recovery of function. We documented SCI-induced changes in nuclear and cytoplasmic distribution of HMGB1 in various cell types after SCI. The data reveal a time-dependent increase in HMGB1 mRNA and protein with protein reaching maximal levels 24-72 h post-injury then declining toward baseline 14-28 days post-SCI. Although most cells expressed nuclear HMGB1, reduced nuclear labeling with increased cytoplasmic expression was found in a subset of CNS macrophages suggesting that those cells begin to secrete HMGB1 at the injury site. In vitro data indicate that extracelluar HMGB1 helps promote the development of macrophages with a neurotoxic phenotype. The ability of HMGB1 to elicit neurotoxic macrophage functions was confirmed in vivo; 72 h after injecting 500 ng of recombinant HMGB1 into intact spinal cord ventral horn, inflammatory CNS macrophages co-localized with focal areas of neuronal killing. However, attempts to confer neuroprotection after SCI by blocking HMGB1 with a neutralizing antibody were unsuccessful. Collectively, these data implicate HMGB1 as a novel regulator of post-SCI inflammation and suggest that inhibition of HMGB1 could be a novel therapeutic target after SCI. Future studies will need to identify better methods to deliver optimal concentrations of HMGB1 antagonists to the injured spinal cord.
Collapse
Affiliation(s)
- Kristina A. Kigerl
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Wenmin Lai
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Lindsay M. Wallace
- Center for Gene Therapy, The Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Huan Yang
- Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Phillip G. Popovich
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA,corresponding author: Phillip G. Popovich, Center for Brain and Spinal Cord Repair, 786 Biomedical Research Tower, 460 W. 12th Ave, Columbus, OH 43210, (614) 688-8576,
| |
Collapse
|
40
|
Herman P, Stein A, Gibbs K, Korsunsky I, Gregersen P, Bloom O. Persons with Chronic Spinal Cord Injury Have Decreased Natural Killer Cell and Increased Toll-Like Receptor/Inflammatory Gene Expression. J Neurotrauma 2018; 35:1819-1829. [PMID: 29310515 PMCID: PMC6033303 DOI: 10.1089/neu.2017.5519] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Infections are the leading cause of death for individuals with traumatic spinal cord injury (SCI). Along with increased infection rates, inflammation is often also observed in persons with chronic SCI. Together, immunological changes post-SCI are also poised to impede neurological recovery and mediate common medical consequences of SCI, including atherogenesis and neuropathic pain. The molecular mechanisms contributing to increased infection susceptibility and inflammation in persons living with SCI are poorly understood. Here, we used tools of functional genomics to perform a pilot study to compare whole-blood gene expression in individuals with chronic SCI (≥1 year from initial injury; N = 31) and uninjured individuals (N = 26). We identified 1815 differentially expressed genes in all SCI participants and 2226 differentially expressed genes in persons with SCI rostral to thoracic level 5, compared to uninjured participants. This included marked downregulation of natural killer cell genes and upregulation of the proinflammatory Toll-like receptor signaling pathway. These data provide novel mechanistic insights into the causes underlying the symptoms of immune dysfunction in individuals living with SCI.
Collapse
Affiliation(s)
- Paige Herman
- 1 The Feinstein Institute for Medical Research , Northwell Health
| | - Adam Stein
- 2 Department of Physical Medicine and Rehabilitation, Zucker School of Medicine at Hofstra Northwell
| | - Katie Gibbs
- 1 The Feinstein Institute for Medical Research , Northwell Health.,2 Department of Physical Medicine and Rehabilitation, Zucker School of Medicine at Hofstra Northwell
| | - Ilya Korsunsky
- 3 Robert S. Boas Center for Genomics & Human Genetics , The Feinstein Institute for Medical Research
| | - Peter Gregersen
- 3 Robert S. Boas Center for Genomics & Human Genetics , The Feinstein Institute for Medical Research.,4 Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra Northwell , Northwell Health, Hempstead, NewYork
| | - Ona Bloom
- 1 The Feinstein Institute for Medical Research , Northwell Health.,2 Department of Physical Medicine and Rehabilitation, Zucker School of Medicine at Hofstra Northwell .,4 Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra Northwell , Northwell Health, Hempstead, NewYork
| |
Collapse
|
41
|
VanPatten S, Al-Abed Y. High Mobility Group Box-1 (HMGb1): Current Wisdom and Advancement as a Potential Drug Target. J Med Chem 2018; 61:5093-5107. [PMID: 29268019 DOI: 10.1021/acs.jmedchem.7b01136] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
High mobility group box-1 (HMGb1) protein, a nuclear non-histone protein that is released or secreted from the cell in response to damage or stress, is a sentinel for the immune system that plays a critical role in cell survival/death pathways. This review highlights key features of the endogenous danger-associated molecular pattern (DAMP) protein, HMGb1 in the innate inflammatory response along with various cofactors and receptors that regulate its downstream effects. The evidence demonstrating increased levels of HMGb1 in human inflammatory diseases and conditions is presented, along with a summary of current small molecule or peptide-like antagonists proven to specifically target HMGb1. Additionally, we delineate the measures needed toward validating this protein as a clinically relevant biomarker or bioindicator and as a relevant drug target.
Collapse
Affiliation(s)
- Sonya VanPatten
- Center for Molecular Innovation , The Feinstein Institute for Medical Research , 350 Community Drive , Manhasset , New York 11030 , United States
| | - Yousef Al-Abed
- Center for Molecular Innovation , The Feinstein Institute for Medical Research , 350 Community Drive , Manhasset , New York 11030 , United States
| |
Collapse
|
42
|
Sun L, Li M, Ma X, Feng H, Song J, Lv C, He Y. Inhibition of HMGB1 reduces rat spinal cord astrocytic swelling and AQP4 expression after oxygen-glucose deprivation and reoxygenation via TLR4 and NF-κB signaling in an IL-6-dependent manner. J Neuroinflammation 2017; 14:231. [PMID: 29178911 PMCID: PMC5702193 DOI: 10.1186/s12974-017-1008-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/20/2017] [Indexed: 12/11/2022] Open
Abstract
Background Spinal cord astrocyte swelling is an important component to spinal cord edema and is associated with poor functional recovery as well as therapeutic resistance after spinal cord injury (SCI). High mobility group box-1 (HMGB1) is a mediator of inflammatory responses in the central nervous system and plays a critical role after SCI. Given this, we sought to identify both the role and underlying mechanisms of HMGB1 in cellular swelling and aquaporin 4 (AQP4) expression in cultured rat spinal cord astrocytes after oxygen-glucose deprivation/reoxygenation (OGD/R). Methods The post-natal day 1–2 Sprague-Dawley rat spinal cord astrocytes were cultured in vitro, and the OGD/R model was induced. We first investigated the effects of OGD/R on spinal cord astrocytic swelling and HMGB1 and AQP4 expression, as well as HMGB1 release. We then studied the effects of HMGB1 inhibition on cellular swelling, HMGB1 and AQP4 expression, and HMGB1 release. The roles of both toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) signaling pathway and interleukin-6 (IL-6) in reducing cellular swelling resulting from HMGB1 inhibition in spinal cord astrocytes after OGD/R were studied. Intergroup data were compared using one-way analysis of variance (ANOVA) followed by Dunnett’s test. Results The OGD/R increased spinal cord astrocytic swelling and HMGB1 and AQP4 expression, as well as HMGB1 release. Inhibition of HMGB1 using either HMGB1 shRNA or ethyl pyruvate resulted in reduced cellular volume, mitochondrial and endoplasmic reticulum swelling, and lysosome number and decreased upregulation of both HMGB1 and AQP4 in spinal cord astrocytes, as well as HMGB1 release. The HMGB1 effects on spinal cord astrocytic swelling and AQP4 upregulation after OGD/R were mediated—at least in part—via activation of TLR4, myeloid differentiation primary response gene 88 (MyD88), and NF-κB. These activation effects can be repressed by TLR4 inhibition using CLI-095 or C34, or by NF-κB inhibition using BAY 11-7082. Furthermore, either OGD/R or HMGB1 inhibition resulted in changes in IL-6 release. IL-6 was also shown to mediate AQP4 expression in spinal cord astrocytes. Conclusions HMGB1 upregulates AQP4 expression and promotes cell swelling in cultured spinal cord astrocytes after OGD/R, which is mediated through HMGB1/TLR4/MyD88/NF-κB signaling and in an IL-6-dependent manner.
Collapse
Affiliation(s)
- Lin Sun
- Department of Orthopedics, Shanxi Academy of Medical Sciences, Shanxi Da Yi Hospital, Shanxi Da Yi Hospital affiliated to Shanxi Medical University, Taiyuan, 030032, China.
| | - Man Li
- Department of Neurology, Second Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, China
| | - Xun Ma
- Department of Orthopedics, Shanxi Academy of Medical Sciences, Shanxi Da Yi Hospital, Shanxi Da Yi Hospital affiliated to Shanxi Medical University, Taiyuan, 030032, China
| | - Haoyu Feng
- Department of Orthopedics, Shanxi Academy of Medical Sciences, Shanxi Da Yi Hospital, Shanxi Da Yi Hospital affiliated to Shanxi Medical University, Taiyuan, 030032, China
| | - Junlai Song
- Department of Orthopedics, Shanxi Academy of Medical Sciences, Shanxi Da Yi Hospital, Shanxi Da Yi Hospital affiliated to Shanxi Medical University, Taiyuan, 030032, China
| | - Cong Lv
- Department of Orthopedics, Shanxi Academy of Medical Sciences, Shanxi Da Yi Hospital, Shanxi Da Yi Hospital affiliated to Shanxi Medical University, Taiyuan, 030032, China
| | - Yajun He
- Department of Orthopedics, Shanxi Academy of Medical Sciences, Shanxi Da Yi Hospital, Shanxi Da Yi Hospital affiliated to Shanxi Medical University, Taiyuan, 030032, China
| |
Collapse
|