1
|
Sullivan D, Vaglio BJ, Cararo-Lopes MM, Wong RDP, Graudejus O, Firestein BL. Stretch-Induced Injury Affects Cortical Neuronal Networks in a Time- and Severity-Dependent Manner. Ann Biomed Eng 2024; 52:1021-1038. [PMID: 38294641 DOI: 10.1007/s10439-023-03438-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/22/2023] [Indexed: 02/01/2024]
Abstract
Traumatic brain injury (TBI) is the leading cause of accident-related death and disability in the world and can lead to long-term neuropsychiatric symptoms, such as a decline in cognitive function and neurodegeneration. TBI includes primary and secondary injury, with head trauma and deformation of the brain caused by the physical force of the impact as primary injury, and cellular and molecular cascades that lead to cell death as secondary injury. Currently, there is no treatment for TBI-induced cell damage and neural circuit dysfunction in the brain, and thus, it is important to understand the underlying cellular mechanisms that lead to cell damage. In the current study, we use stretchable microelectrode arrays (sMEAs) to model the primary injury of TBI to study the electrophysiological effects of physically injuring cortical cells. We recorded electrophysiological activity before injury and then stretched the flexible membrane of the sMEAs to injure the cells to varying degrees. At 1, 24, and 72 h post-stretch, we recorded activity to analyze differences in spike rate, Fano factor, burstlet rate, burstlet width, synchrony of firing, local network efficiency, and Q statistic. Our results demonstrate that mechanical injury changes the firing properties of cortical neuron networks in culture in a time- and severity-dependent manner. Our results suggest that changes to electrophysiological properties after stretch are dependent on the strength of synchronization between neurons prior to injury.
Collapse
Affiliation(s)
- Dylan Sullivan
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Cell and Developmental Biology Graduate Program, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Brandon J Vaglio
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Biomedical Engineering Graduate Program, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Marina M Cararo-Lopes
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Cell and Developmental Biology Graduate Program, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Ruben D Ponce Wong
- BioMedical Sustainable Elastic Electronic Devices (BMSEED), Mesa, AZ, USA
| | - Oliver Graudejus
- BioMedical Sustainable Elastic Electronic Devices (BMSEED), Mesa, AZ, USA
- School of Molecular Science, Arizona State University, Tempe, AZ, USA
| | - Bonnie L Firestein
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854-8082, USA.
| |
Collapse
|
2
|
Thapak P, Ying Z, Palafox-Sanchez V, Zhang G, Yang X, Gomez-Pinilla F. Humanin ameliorates TBI-related cognitive impairment by attenuating mitochondrial dysfunction and inflammation. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166937. [PMID: 37926362 DOI: 10.1016/j.bbadis.2023.166937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/27/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
Traumatic brain injury (TBI) often results in a reduction of the capacity of cells to sustain energy demands, thus, compromising neuronal function and plasticity. Here we show that the mitochondrial activator humanin (HN) counteracts a TBI-related reduction in mitochondrial bioenergetics, including oxygen consumption rate. HN normalized the disruptive action of TBI on memory function, and restored levels of synaptic proteins (synapsin 1 and p-CREB). HN also counteracted TBI-related elevations of pro-inflammatory cytokines in plasma (TNF-α, INF-y, IL 17, IL 5, MCP 5, GCSF, RANNETS, sTNFRI) as well as in the hippocampus (gp-130 and p-STAT3). Gp-130 is an integral part of cytokine receptor impinging on STAT3 (Tyr-705) signaling. Furthermore, HN reduced astrocyte proliferation in TBI. The overall evidence suggests that HN plays an integral role in normalizing fundamental aspects of TBI pathology which are central to energy balance, brain function, and plasticity.
Collapse
Affiliation(s)
- Pavan Thapak
- Depts. of Neurosurgery and Integrative Biology and Physiology, UCLA BIRC, University of California, Los Angeles 90064, USA
| | - Zhe Ying
- Depts. of Neurosurgery and Integrative Biology and Physiology, UCLA BIRC, University of California, Los Angeles 90064, USA
| | - Victoria Palafox-Sanchez
- Depts. of Neurosurgery and Integrative Biology and Physiology, UCLA BIRC, University of California, Los Angeles 90064, USA
| | - Guanglin Zhang
- Depts. of Neurosurgery and Integrative Biology and Physiology, UCLA BIRC, University of California, Los Angeles 90064, USA
| | - Xia Yang
- Depts. of Neurosurgery and Integrative Biology and Physiology, UCLA BIRC, University of California, Los Angeles 90064, USA
| | - Fernando Gomez-Pinilla
- Depts. of Neurosurgery and Integrative Biology and Physiology, UCLA BIRC, University of California, Los Angeles 90064, USA.
| |
Collapse
|
3
|
Fang J, Yuan Q, Du Z, Zhang Q, Yang L, Wang M, Yang W, Yuan C, Yu J, Wu G, Hu J. Overexpression of GPX4 attenuates cognitive dysfunction through inhibiting hippocampus ferroptosis and neuroinflammation after traumatic brain injury. Free Radic Biol Med 2023; 204:68-81. [PMID: 37105419 DOI: 10.1016/j.freeradbiomed.2023.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/27/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023]
Abstract
Ferroptosis is a newly discovered form of regulated cell death that is triggered primarily by lipid peroxidation. A growing body of evidence has implicated ferroptosis in the pathophysiology of traumatic brain injury (TBI). However, none of these studies focused its role on TBI-induced hippocampal injury. Here, we demonstrated that the distinct ferroptotic signature was detected in the injured hippocampus at the early stage of TBI. Besides, a prominent pro-ferroptosis environment was detected in the ipsilateral hippocampus after TBI, including elevated levels of arachidonic acid (AA), ACLS4, and ALXO15, and deficiency of GPX4. Subsequently, we used AAV-mediated Gpx4 overexpression to counteract ferroptosis in the hippocampus, and found that TBI-induced cognitive deficits were significantly alleviated after Gpx4 overexpression. Biochemical results also confirmed that TBI-induced hippocampal ferroptosis and synaptic damage were partially reversed by Gpx4 overexpression. In addition, Gpx4 overexpression inhibited TBI-induced neuroinflammation and peripheral macrophage infiltration. Interestingly, the results of transwell migration assay showed that ferroptotic neurons increased CCL2 expression and promoted iBMDM cell migration. However, this effect was inhibited by CCL2 antagonist, RS102895. These data suggested that inhibition of ferroptosis may be as a potential strategy to ameliorate TBI-induced cognitive deficits through blockade of hippocampal ferroptosis and neuroinflammation.
Collapse
Affiliation(s)
- Jiang Fang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China; Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, China
| | - Qiang Yuan
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China; Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, China
| | - Zhuoying Du
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China; Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, China
| | - Quan Zhang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China; Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, China
| | - Lei Yang
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital, Fudan University, Shanghai, China
| | - Meihua Wang
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital, Fudan University, Shanghai, China
| | - Weijian Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China; Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, China
| | - Cong Yuan
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China; Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, China
| | - Jian Yu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China; Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, China
| | - Gang Wu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China; Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, China
| | - Jin Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China; Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, China.
| |
Collapse
|
4
|
Cheng Y, Gao Y, Li J, Rui T, Li Q, Chen H, Jia B, Song Y, Gu Z, Wang T, Gao C, Wang Y, Wang Z, Wang F, Tao L, Luo C. TrkB agonist N-acetyl serotonin promotes functional recovery after traumatic brain injury by suppressing ferroptosis via the PI3K/Akt/Nrf2/Ferritin H pathway. Free Radic Biol Med 2023; 194:184-198. [PMID: 36493983 DOI: 10.1016/j.freeradbiomed.2022.12.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/19/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Ferroptosis is a form of regulated cell death that is mainly triggered by iron-dependent lipid peroxidation. A growing body of evidence suggests that ferroptosis is involved in the pathophysiology of traumatic brain injury (TBI), and tropomyosin-related kinase B (TrkB) deficiency would mediate TBI pathologies. As an agonist of TrkB and an immediate precursor of melatonin, N-acetyl serotonin (NAS) exerts several beneficial effects on TBI, but there is no information regarding the role of NAS in ferroptosis after TBI. Here, we examined the effect of NAS treatment on TBI-induced functional outcomes and ferroptosis. Remarkably, the administration of NAS alleviated TBI-induced neurobehavioral deficits, lesion volume, and neurodegeneration. NAS also rescued TBI-induced mitochondrial shrinkage, the changes in ferroptosis-related molecule expression, and iron accumulation in the ipsilateral cortex. Similar results were obtained with a well-established ferroptosis inhibitor, liproxstatin-1. Furthermore, NAS activated the TrkB/PI3K/Akt/Nrf2 pathway in the mouse model of TBI, while inhibition of PI3K and Nrf2 weakened the protection of NAS against ferroptosis both in vitro and in vivo, suggesting that a possible pathway linking NAS to the action of anti-ferroptosis was TrkB/PI3K/Akt/Nrf2. Given that ferritin H (Fth) is a known transcription target of Nrf2, we then investigated the effects of NAS on neuron-specific Fth knockout (Fth-KO) mice. Strikingly, Fth deletion almost abolished the protective effects of NAS against TBI-induced ferroptosis and synaptic damage, although Fth deletion-induced susceptibility toward ferroptosis after TBI was reversed by an iron chelator, deferoxamine. Taken together, these data indicate that the TrkB agonist NAS treatment appears to improve brain function after TBI by suppressing ferroptosis, at least in part, through activation of the PI3K/Akt/Nrf2/Fth pathway, providing evidence that NAS is likely to be a promising anti-ferroptosis agent for further treatment for TBI.
Collapse
Affiliation(s)
- Ying Cheng
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Yuan Gao
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Jing Li
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Tongyu Rui
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Qianqian Li
- School of Forensic Medicine, Wannan Medical College, Wuhu, 241002, China
| | - Huan Chen
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Bowen Jia
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Yiting Song
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Zhiya Gu
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Tao Wang
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Cheng Gao
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Ying Wang
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Zufeng Wang
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Fudi Wang
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Luyang Tao
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China.
| | - Chengliang Luo
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
5
|
Hanna ME, Pfister BJ. Advancements in in vitro models of traumatic brain injury. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Juan SMA, Daglas M, Adlard PA. Altered amyloid precursor protein, tau-regulatory proteins, neuronal numbers and behaviour, but no tau pathology, synaptic and inflammatory changes or memory deficits, at 1 month following repetitive mild traumatic brain injury. Eur J Neurosci 2022; 56:5342-5367. [PMID: 35768153 DOI: 10.1111/ejn.15752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 05/31/2022] [Accepted: 06/23/2022] [Indexed: 12/14/2022]
Abstract
Repetitive mild traumatic brain injury, commonly experienced following sports injuries, results in various secondary injury processes and is increasingly recognised as a risk factor for the development of neurodegenerative conditions such as chronic traumatic encephalopathy, which is characterised by tau pathology. We aimed to characterise the underlying pathological mechanisms that might contribute to the onset of neurodegeneration and behavioural changes in the less-explored subacute (1-month) period following single or repetitive controlled cortical impact injury (five impacts, 48 h apart) in 12-week-old male and female C57Bl6 mice. We conducted motor and cognitive testing, extensively characterised the status of tau and its regulatory proteins via western blot and quantified neuronal populations using stereology. We report that r-mTBI resulted in neurobehavioural deficits, gait impairments and anxiety-like behaviour at 1 month post-injury, effects not seen following a single injury. R-mTBI caused a significant increase in amyloid precursor protein, an increased trend towards tau phosphorylation and significant changes in kinase/phosphatase proteins that may promote a downstream increase in tau phosphorylation, but no changes in synaptic or neuroinflammatory markers. Lastly, we report neuronal loss in various brain regions following both single and repeat injuries. We demonstrate herein that repeated impacts are required to promote the initiation of a cascade of biochemical events that are consistent with the onset of neurodegeneration subacutely post-injury. Identifying the timeframe in which these changes occur and the pathological mechanisms involved will be crucial for the development of future therapeutics to prevent the onset or mitigate the progression of neurodegeneration following r-mTBI.
Collapse
Affiliation(s)
- Sydney M A Juan
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre and The University of Melbourne, Melbourne, Australia
| | - Maria Daglas
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre and The University of Melbourne, Melbourne, Australia
| | - Paul A Adlard
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre and The University of Melbourne, Melbourne, Australia
| |
Collapse
|
7
|
Thomson S, Chan YL, Yi C, Wang B, Machaalani R, Oliver B, Gorrie CA, Chen H. The impact of high fat consumption on neurological functions following a traumatic brain injury in rats. J Neurotrauma 2022; 39:1547-1560. [PMID: 35658673 DOI: 10.1089/neu.2022.0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) and obesity are two common conditions in modern society; both can impair neuronal integrity and neurological function. However, it is unclear whether the co-existence of both conditions will worsen outcomes. Thus, in a rat model, we aimed to investigate whether the co-existence of TBI and a high-fat diet (HFD) has an additive effect, leading to more severe neurological impairments, and whether they are related to changes in brain protein markers of oxidative stress, inflammation and synaptic plasticity. Sprague-Dawley rats (female, ~250g) were divided into HFD (43% fat) and chow diet (CD, 17% fat) groups for 6 weeks. Within each dietary group, half underwent a TBI by a weight-drop device, and the other half underwent sham surgery. Short-term memory and sensory function were measured at 24 hours, 1 week, 3 weeks and 6 weeks post-TBI. Brain tissues were harvested at 24 hours and 6 weeks post-TBI and markers of oxidative stress, apoptosis, inflammation, and synaptic plasticity were measured via immunostaining and western blotting. In rats without TBI, HFD increased the presynaptic protein synaptophysin. In rats with TBI, HFD resulted in worsened sensory and memory function, an increase in activated macrophages, and a decrease in the endogenous antioxidant manganese superoxide dismutase. Our findings suggest that the additive effect of HFD and TBI worsens short term memory and sensation deficits, and may be driven by enhanced oxidative stress and inflammation.
Collapse
Affiliation(s)
- Shannon Thomson
- University of Technology Sydney, 1994, School of Life Sciences, Faculty of Science , Sydney, New South Wales, Australia;
| | - Yik Lung Chan
- University of Technology Sydney, 1994, School of Life Sciences, Faculty of Science , Sydney, New South Wales, Australia;
| | - Chenju Yi
- The Seventh Affiliated Hospital Sun Yat-sen University, 543160, 628 Zhenyuan Road, Guangming 518107 Shenzhen China, Shenzhen, China, 518107;
| | - Baoming Wang
- University of Technology Sydney, 1994, School of Life Sciences, Faculty of Science , Sydney, New South Wales, Australia;
| | - Rita Machaalani
- University of Technology Sydney, 1994, Faculty of Medicine and Health, Sydney, New South Wales, Australia;
| | - Brian Oliver
- University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, New South Wales, Australia.,The University of Sydney, RCMB, Woolcock Institute of Medical Research, Sydney, New South Wales, Australia;
| | - Catherine A Gorrie
- University of Technology Sydney, School of Life Sciences, Faculty of Science, PO Box 123, Broadway, Sydney, New South Wales, Australia, 2007;
| | - Hui Chen
- University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia;
| |
Collapse
|
8
|
Hoffe B, Holahan MR. Hyperacute Excitotoxic Mechanisms and Synaptic Dysfunction Involved in Traumatic Brain Injury. Front Mol Neurosci 2022; 15:831825. [PMID: 35283730 PMCID: PMC8907921 DOI: 10.3389/fnmol.2022.831825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/07/2022] [Indexed: 12/14/2022] Open
Abstract
The biological response of brain tissue to biomechanical strain are of fundamental importance in understanding sequela of a brain injury. The time after impact can be broken into four main phases: hyperacute, acute, subacute and chronic. It is crucial to understand the hyperacute neural outcomes from the biomechanical responses that produce traumatic brain injury (TBI) as these often result in the brain becoming sensitized and vulnerable to subsequent TBIs. While the precise physical mechanisms responsible for TBI are still a matter of debate, strain-induced shearing and stretching of neural elements are considered a primary factor in pathology; however, the injury-strain thresholds as well as the earliest onset of identifiable pathologies remain unclear. Dendritic spines are sites along the dendrite where the communication between neurons occurs. These spines are dynamic in their morphology, constantly changing between stubby, thin, filopodia and mushroom depending on the environment and signaling that takes place. Dendritic spines have been shown to react to the excitotoxic conditions that take place after an impact has occurred, with a shift to the excitatory, mushroom phenotype. Glutamate released into the synaptic cleft binds to NMDA and AMPA receptors leading to increased Ca2+ entry resulting in an excitotoxic cascade. If not properly cleared, elevated levels of glutamate within the synaptic cleft will have detrimental consequences on cellular signaling and survival of the pre- and post-synaptic elements. This review will focus on the synaptic changes during the hyperacute phase that occur after a TBI. With repetitive head trauma being linked to devastating medium – and long-term maladaptive neurobehavioral outcomes, including chronic traumatic encephalopathy (CTE), understanding the hyperacute cellular mechanisms can help understand the course of the pathology and the development of effective therapeutics.
Collapse
|
9
|
Wu YH, Rosset S, Lee TR, Dragunow M, Park T, Shim V. In Vitro Models of Traumatic Brain Injury: A Systematic Review. J Neurotrauma 2021; 38:2336-2372. [PMID: 33563092 DOI: 10.1089/neu.2020.7402] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Traumatic brain injury (TBI) is a major public health challenge that is also the third leading cause of death worldwide. It is also the leading cause of long-term disability in children and young adults worldwide. Despite a large body of research using predominantly in vivo and in vitro rodent models of brain injury, there is no medication that can reduce brain damage or promote brain repair mainly due to our lack of understanding in the mechanisms and pathophysiology of the TBI. The aim of this review is to examine in vitro TBI studies conducted from 2008-2018 to better understand the TBI in vitro model available in the literature. Specifically, our focus was to perform a detailed analysis of the in vitro experimental protocols used and their subsequent biological findings. Our review showed that the uniaxial stretch is the most frequently used way of load application, accounting for more than two-thirds of the studies reviewed. The rate and magnitude of the loading were varied significantly from study to study but can generally be categorized into mild, moderate, and severe injuries. The in vitro studies reviewed here examined key processes in TBI pathophysiology such as membrane disruptions leading to ionic dysregulation, inflammation, and the subsequent damages to the microtubules and axons, as well as cell death. Overall, the studies examined in this review contributed to the betterment of our understanding of TBI as a disease process. Yet, our review also revealed the areas where more work needs to be done such as: 1) diversification of load application methods that will include complex loading that mimics in vivo head impacts; 2) more widespread use of human brain cells, especially patient-matched human cells in the experimental set-up; and 3) need for building a more high-throughput system to be able to discover effective therapeutic targets for TBI.
Collapse
Affiliation(s)
- Yi-Han Wu
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Center for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Samuel Rosset
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Tae-Rin Lee
- Advanced Institute of Convergence Technology, Seoul National University, Seoul, Korea
| | - Mike Dragunow
- Center for Brain Research, The University of Auckland, Auckland, New Zealand
- Department of Pharmacology, The University of Auckland, Auckland, New Zealand
| | - Thomas Park
- Center for Brain Research, The University of Auckland, Auckland, New Zealand
- Department of Pharmacology, The University of Auckland, Auckland, New Zealand
| | - Vickie Shim
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
10
|
CCP1, a Tubulin Deglutamylase, Increases Survival of Rodent Spinal Cord Neurons following Glutamate-Induced Excitotoxicity. eNeuro 2021; 8:ENEURO.0431-20.2021. [PMID: 33688040 PMCID: PMC8021396 DOI: 10.1523/eneuro.0431-20.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/25/2021] [Accepted: 02/12/2021] [Indexed: 01/21/2023] Open
Abstract
Microtubules (MTs) are cytoskeletal elements that provide structural support and act as roadways for intracellular transport in cells. MTs are also needed for neurons to extend and maintain long axons and dendrites that establish connectivity to transmit information through the nervous system. Therefore, in neurons, the ability to independently regulate cytoskeletal stability and MT-based transport in different cellular compartments is essential. Posttranslational modification of MTs is one mechanism by which neurons regulate the cytoskeleton. The carboxypeptidase CCP1 negatively regulates posttranslational polyglutamylation of MTs. In mammals, loss of CCP1, and the resulting hyperglutamylation of MTs, causes neurodegeneration. It has also long been known that CCP1 expression is activated by neuronal injury; however, whether CCP1 plays a neuroprotective role after injury is unknown. Using shRNA-mediated knock-down of CCP1 in embryonic rat spinal cord cultures, we demonstrate that CCP1 protects spinal cord neurons from excitotoxic death. Unexpectedly, excitotoxic injury reduced CCP1 expression in our system. We previously demonstrated that the CCP1 homolog in Caenorhabditis elegans is important for maintenance of neuronal cilia. Although cilia enhance neuronal survival in some contexts, it is not yet clear whether CCP1 maintains cilia in mammalian spinal cord neurons. We found that knock-down of CCP1 did not result in loss or shortening of cilia in cultured spinal cord neurons, suggesting that its effect on survival of excitotoxicity is independent of cilia. Our results support the idea that enzyme regulators of MT polyglutamylation might be therapeutically targeted to prevent excitotoxic death after spinal cord injuries.
Collapse
|
11
|
Omelchenko A, Singh NK, Firestein BL. Current advances in in vitro models of central nervous system trauma. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020; 14:34-41. [PMID: 32671312 PMCID: PMC7363028 DOI: 10.1016/j.cobme.2020.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
CNS trauma is a prominent cause of mortality and morbidity, and although much effort has focused on developing treatments for CNS trauma-related pathologies, little progress has been made. Pre-clinical models of TBI and SCI suffer from significant drawbacks, which result in substantial failures during clinical translation of promising pre-clinical therapies. Here, we review recent advances made in the development of in vitro models of CNS trauma, the promises and drawbacks of current in vitro CNS injury models, and the attributes necessary for future models to accurately mimic the trauma microenvironment and facilitate CNS trauma drug discovery. The goal is to provide insight for the development of future CNS injury models and to aid researchers in selecting effective models for pre-clinical research of trauma therapeutics.
Collapse
Affiliation(s)
- Anton Omelchenko
- Department of Cell Biology and Neuroscience; Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854-8082
- Neuroscience Graduate Program, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854-8082
| | - Nisha K. Singh
- Department of Cell Biology and Neuroscience; Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854-8082
- Molecular Biosciences Graduate Program, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854-8082
| | - Bonnie L. Firestein
- Department of Cell Biology and Neuroscience; Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854-8082
| |
Collapse
|
12
|
Omelchenko A, Menon H, Donofrio SG, Kumar G, Chapman HM, Roshal J, Martinez-Montes ER, Wang TL, Spaller MR, Firestein BL. Interaction Between CRIPT and PSD-95 Is Required for Proper Dendritic Arborization in Hippocampal Neurons. Mol Neurobiol 2020; 57:2479-2493. [PMID: 32157575 PMCID: PMC7176523 DOI: 10.1007/s12035-020-01895-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/24/2020] [Indexed: 01/10/2023]
Abstract
CRIPT, the cysteine-rich PDZ-binding protein, binds to the third PDZ domain of PSD-95 (postsynaptic density protein 95) family proteins and directly binds microtubules, linking PSD-95 family proteins to the neuronal cytoskeleton. Here, we show that overexpression of a full-length CRIPT leads to a modest decrease, and knockdown of CRIPT leads to an increase in dendritic branching in cultured rat hippocampal neurons. Overexpression of truncated CRIPT lacking the PDZ domain-binding motif, which does not bind to PSD-95, significantly decreases dendritic arborization. Conversely, overexpression of a full-length CRIPT significantly increases the number of immature and mature dendritic spines, and this effect is not observed when CRIPT∆PDZ is overexpressed. Competitive inhibition of CRIPT binding to the third PDZ domain of PSD-95 with PDZ3-binding peptides resulted in differential effects on dendritic arborization based on the origin of respective peptide sequence. These results highlight multifunctional roles of CRIPT during development and underscore the significance of the interaction between CRIPT and the third PDZ domain of PSD-95.
Collapse
Affiliation(s)
- Anton Omelchenko
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854-8082, USA
- Neuroscience Graduate Program, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854-8082, USA
| | - Harita Menon
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854-8082, USA
| | - Sarah G Donofrio
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854-8082, USA
| | - Gaurav Kumar
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854-8082, USA
| | - Heidi M Chapman
- Geisel School of Medicine, Department of Medical Education and Norris Cotton Cancer Center, Dartmouth College, Lebanon, NH, 03756, USA
| | - Joshua Roshal
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854-8082, USA
| | - Eduardo R Martinez-Montes
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854-8082, USA
| | - Tiffany L Wang
- Geisel School of Medicine, Department of Medical Education and Norris Cotton Cancer Center, Dartmouth College, Lebanon, NH, 03756, USA
| | - Mark R Spaller
- Geisel School of Medicine, Department of Medical Education and Norris Cotton Cancer Center, Dartmouth College, Lebanon, NH, 03756, USA
| | - Bonnie L Firestein
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854-8082, USA.
| |
Collapse
|
13
|
Svirsky S, Henchir J, Li Y, Ma X, Carlson S, Dixon CE. Neurogranin Protein Expression Is Reduced after Controlled Cortical Impact in Rats. J Neurotrauma 2020; 37:939-949. [PMID: 31691647 PMCID: PMC7175627 DOI: 10.1089/neu.2019.6759] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Traumatic brain injury (TBI) is known to cause short- and long-term synaptic changes in the brain, possibly underlying downstream cognitive impairments. Neuronal levels of neurogranin, a calcium-sensitive calmodulin-binding protein essential for synaptic plasticity and postsynaptic signaling, are correlated with cognitive function. This study aims to understand the effect of TBI on neurogranin by characterizing changes in protein expression at various time points after injury. Adult, male rats were subjected to either controlled cortical impact (CCI) or control surgery. Expression of neurogranin and post-synaptic density 95 (PSD-95) were evaluated by Western blot in the cortex and hippocampus at 24 h and 1, 2, and 4 weeks post-injury. We hypothesized that CCI reduces neurogranin levels in the cortex and hippocampus, and demonstrate different expression patterns from PSD-95. Neurogranin levels were reduced in the ipsilateral cortex and hippocampus up to 2 weeks after injury but recovered to sham levels by 4 weeks. The contralateral cortex and hippocampus were relatively resistant to changes in neurogranin expression post-injury. Qualitative immunohistochemical assessment corroborated the immunoblot findings. Particularly, the pericontusional cortex and ipsilateral Cornu Ammonis (CA)3 region showed marked reduction in immunoreactivity. PSD-95 demonstrated similar expression patterns to neurogranin in the cortex; however, in the hippocampus, protein expression was increased compared with sham at the 2 and 4 week time points. Our results indicate that CCI lowers neurogranin expression with temporal and regional specificity and that this occurs independently of dendritic loss. Further understanding of the role of neurogranin in synaptic biology after TBI will elucidate pathological mechanisms contributing to cognitive dysfunction.
Collapse
Affiliation(s)
- Sarah Svirsky
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Jeremy Henchir
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Youming Li
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Xiecheng Ma
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Shaun Carlson
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - C. Edward Dixon
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
- V.A. Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| |
Collapse
|
14
|
Knopp RC, Lee SH, Hollas M, Nepomuceno E, Gonzalez D, Tam K, Aamir D, Wang Y, Pierce E, BenAissa M, Thatcher GRJ. Interaction of oxidative stress and neurotrauma in ALDH2 -/- mice causes significant and persistent behavioral and pro-inflammatory effects in a tractable model of mild traumatic brain injury. Redox Biol 2020; 32:101486. [PMID: 32155582 PMCID: PMC7063127 DOI: 10.1016/j.redox.2020.101486] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/17/2020] [Accepted: 02/29/2020] [Indexed: 11/18/2022] Open
Abstract
Oxidative stress induced by lipid peroxidation products (LPP) accompanies aging and has been hypothesized to exacerbate the secondary cascade in traumatic brain injury (TBI). Increased oxidative stress is a contributor to loss of neural reserve that defines the ability to maintain healthy cognitive function despite the accumulation of neuropathology. ALDH2−/− mice are unable to clear aldehyde LPP by mitochondrial aldehyde dehydrogenase-2 (Aldh2) detoxification and provide a model to study mild TBI (mTBI), therapeutic interventions, and underlying mechanisms. The ALDH2−/− mouse model presents with elevated LPP-mediated protein modification, lowered levels of PSD-95, PGC1-α, and SOD-1, and mild cognitive deficits from 4 months of age. LPP scavengers are neuroprotective in vitro and in ALDH2−/− mice restore cognitive performance. A single-hit, closed skull mTBI failed to elicit significant effects in WT mice; however, ALDH2−/− mice showed a significant inflammatory cytokine surge in the ipsilateral hemisphere 24 h post-mTBI, and increased GFAP cleavage, a biomarker for TBI. Known neuroprotective agents, were able to reverse the effects of mTBI. This new preclinical model of mTBI, incorporating significant perturbations in behavior, inflammation, and clinically relevant biomarkers, allows mechanistic study of the interaction of LPP and neurotrauma in loss of neural reserve. ALDH2−/− mice have elevated brain LPP adducts and mild cognitive impairment. The effects of a “2nd hit” via LPS are exacerbated by LPP in vitro and in vivo. ALDH2−/− mice + mTBI show amplified/prolonged cognitive deficits and neuroinflammation. This new preclinical model for mTBI supports a role for LPP in reduced neural reserve.
Collapse
Affiliation(s)
- Rachel C Knopp
- Department of Pharmaceutical Science, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Sue H Lee
- Department of Pharmaceutical Science, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Michael Hollas
- Department of Pharmaceutical Science, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, USA; UICentre (Drug Discovery @ UIC), University of Illinois at Chicago, 833 S. Wood St, Chicago, IL, 60612, USA
| | - Emily Nepomuceno
- Department of Pharmaceutical Science, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - David Gonzalez
- Department of Pharmaceutical Science, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Kevin Tam
- Department of Pharmaceutical Science, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Daniyal Aamir
- Department of Pharmaceutical Science, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Yueting Wang
- Department of Pharmaceutical Science, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Emily Pierce
- Department of Pharmaceutical Science, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Manel BenAissa
- Department of Pharmaceutical Science, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, USA; UICentre (Drug Discovery @ UIC), University of Illinois at Chicago, 833 S. Wood St, Chicago, IL, 60612, USA
| | - Gregory R J Thatcher
- Department of Pharmaceutical Science, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, USA; UICentre (Drug Discovery @ UIC), University of Illinois at Chicago, 833 S. Wood St, Chicago, IL, 60612, USA.
| |
Collapse
|
15
|
Li B, Ge Y, Xu Y, Lu Y, Yang Y, Han L, Jiang Y, Shi Y, Le G. Spatial Learning and Memory Impairment in Growing Mice Induced by Major Oxidized Tyrosine Product Dityrosine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9039-9049. [PMID: 31353898 DOI: 10.1021/acs.jafc.9b04253] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study focused on the effects of oxidized tyrosine products (OTPs) and major component dityrosine (DT) on the brain and behavior of growing mice. Male and female mice were treated with daily intragastric administration of either tyrosine (Tyr; 420 μg/kg body weight), DT (420 μg/kg body weight), or OTPs (1909 μg/kg body weight) for 35 days. We found that pure DT and OTPs caused redox state imbalance, elevated levels of inflammatory factors, hippocampal oxidative damage, and neurotransmitter disorders while activating the mitochondrial apoptosis pathway in the hippocampus and downregulating the genes associated with learning and memory. These events eventually led to growing mice learning and memory impairment, lagging responses, and anxiety-like behaviors. Furthermore, the male mice exhibited slightly more oxidative damage than the females. These findings imply that contemporary diets and food-processing strategies of the modern world should be modified to reduce oxidized protein intake.
Collapse
Affiliation(s)
- Bowen Li
- The State Key Laboratory of Food Science and Technology , Jiangnan University , Li Hu Avenue 1800 , Wuxi 214122 , P. R. China
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology , Jiangnan University , Wuxi 214122 , P. R. China
| | - Yueting Ge
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology , Jiangnan University , Wuxi 214122 , P. R. China
| | - Yuncong Xu
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology , Jiangnan University , Wuxi 214122 , P. R. China
| | - Yipin Lu
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology , Jiangnan University , Wuxi 214122 , P. R. China
| | - Yuhui Yang
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology , Jiangnan University , Wuxi 214122 , P. R. China
- College of Grain and Food Science , Henan University of Technology , Zhengzhou 450001 , P. R. China
| | - Le Han
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology , Jiangnan University , Wuxi 214122 , P. R. China
| | - Yuge Jiang
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology , Jiangnan University , Wuxi 214122 , P. R. China
| | - Yonghui Shi
- The State Key Laboratory of Food Science and Technology , Jiangnan University , Li Hu Avenue 1800 , Wuxi 214122 , P. R. China
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology , Jiangnan University , Wuxi 214122 , P. R. China
| | - Guowei Le
- The State Key Laboratory of Food Science and Technology , Jiangnan University , Li Hu Avenue 1800 , Wuxi 214122 , P. R. China
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology , Jiangnan University , Wuxi 214122 , P. R. China
| |
Collapse
|