1
|
Du M, Li J, Yu S, Chen X, She Y, Lu Y, Shu H. RAGE mediates hippocampal pericyte responses and neurovascular unit lesions after TBI. Exp Neurol 2024; 380:114912. [PMID: 39097075 DOI: 10.1016/j.expneurol.2024.114912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/13/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Traumatic brain injury impairs brain function through various mechanisms. Recent studies have shown that alterations in pericytes in various diseases affect neurovascular function, but the effects of TBI on hippocampal pericytes remain unclear. Here, we investigated the effects of RAGE activation on pericytes after TBI using male C57BL/6 J mice. Hippocampal samples were collected at different time points within 7 days after TBI, the expression of PDGFR-β, NG2 and the HMGB1-S100B/RAGE signaling pathway was assessed by Western blotting, and the integrity of the hippocampal BBB at different time points was measured by immunofluorescence. RAGE-associated BBB damage in hippocampal pericytes occurred early after cortical impact. By culturing primary mouse brain microvascular pericytes, we determined the different effects of HMGB1-S100B on pericyte RAGE. To investigate whether RAGE blockade could protect neurological function after TBI, we reproduced the process of CCI by administering FPS-ZM1 to RAGE-/- mice. TEM images and BBB damage-related assays showed that inhibition of RAGE resulted in a significant improvement in the number of hippocampal vascular basement membranes and tight junctions and a reduction in perivascular oedema compared with those in the untreated group. In contrast, mouse behavioural testing and doublecortin staining indicated that targeting the HMGB1-S100B/RAGE axis after CCI could protect neurological function by reducing pericyte-associated BBB damage. In conclusion, the present study provides experimental evidence for the strong correlation between the pericyte HMGB1-S100B/RAGE axis and NVU damage in the hippocampus at the early stage of TBI and further demonstrates that pericyte RAGE serves as an important target for the protection of neurological function after TBI.
Collapse
Affiliation(s)
- Minghao Du
- Department of Neurosurgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China; Mini-Invasive Neurosurgery and Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University, Xi'an 710003, China
| | - Jiani Li
- Department of Gastroenterology, Xi'an Central Hospital, Xi'an Jiaotong University, Xi'an 710003, China
| | - Sixun Yu
- Department of Neurosurgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Xin Chen
- Department of Neurosurgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Youyu She
- Mini-Invasive Neurosurgery and Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University, Xi'an 710003, China
| | - Yichen Lu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China.
| | - Haifeng Shu
- Department of Neurosurgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| |
Collapse
|
2
|
Rosyidi RM, Wardhana DPW, Priyanto B, Januarman J, Zulkarnaen DA, Prihatina LM, Rusidi HA, Rozikin R. The effect of Centella asiatica, cinnamon, and spirulina as neuroprotective based on histopathological findings in ratus Sprague Dawley with traumatic brain injury. Surg Neurol Int 2024; 15:217. [PMID: 38974565 PMCID: PMC11225541 DOI: 10.25259/sni_170_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/09/2024] [Indexed: 07/09/2024] Open
Abstract
Background Traumatic brain injury (TBI) is a global health problem with the potential to cause dangerous neurological problems. Based on histopathological findings in Sprague Dawley (SD) rats with TBI in the acute phase, the study seeks to discover the effect of Centella asiatica, cinnamon, and spirulina as neuroprotective. Methods We conducted an experimental study with 30 SD rats randomly divided into three groups. The intervention was the administration of C. asiatica, cinnamon, and spirulina to the control and the experimental groups. Histological features were assessed using hematoxylin and eosin (H&E) staining and immunohistochemical examination. The data were analyzed using statistical analysis through correlation tests. Results The test samples' average body weights had P > 0.05, indicating no significant difference in the test sample body weights. Therefore, the variations in the expression level of the dependent variable were expected to be caused by the induction of brain injury and the administration of C. asiatica, cinnamon, and spirulina. In addition, the variables were not normally distributed. Thus, the Spearman test was carried out and showed the correlation was very strong, with a value of r = 0.818 and P < 0.05. Conclusion Based on histopathological findings from the brains of SD rats with TBI, pegagan, cinnamon, and spirulina will protect the brain (neuroprotective) in the acute phase.
Collapse
Affiliation(s)
- Rohadi Muhammad Rosyidi
- Department of Neurosurgery, Medical Faculty, Mataram University, General Province West Nusa Tenggara Hospitals, Mataram, Indonesia
| | - Dewa Putu Wisnu Wardhana
- Department of Neurosurgery, Udayana University Hospital, Medical Faculty of Udayana University, Bali, Indonesia
| | - Bambang Priyanto
- Department of Neurosurgery, Medical Faculty, Mataram University, General Province West Nusa Tenggara Hospitals, Mataram, Indonesia
| | - Januarman Januarman
- Department of Neurosurgery, Faculty of Medicine, Mataram University, General Province West Nusa Tenggara Hospitals, Mataram, Indonesia
| | - Decky Aditya Zulkarnaen
- Department of Anatomy, Medical Faculty, Mataram University, General Province West Nusa Tenggara Hospitals, Mataram, Indonesia
| | - Lale Maulin Prihatina
- Department of Pathology Anatomy, Medical Faculty, Mataram University, General Province West Nusa Tenggara Hospitals, Mataram, Indonesia
| | | | - Rozikin Rozikin
- Research Unit, Faculty of Medicine, Al Azhar Islamic University, Mataram, Indonesia
| |
Collapse
|
3
|
Zhang S, Chen Y, Chen Q, Chen H, Wei L, Wang S. Assessment of cerebrovascular alterations induced by inflammatory response and oxidative-nitrative stress after traumatic intracranial hypertension and a potential mitigation strategy. Sci Rep 2024; 14:14535. [PMID: 38914585 PMCID: PMC11196732 DOI: 10.1038/s41598-024-64940-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/14/2024] [Indexed: 06/26/2024] Open
Abstract
The rapid perfusion of cerebral arteries leads to a significant increase in intracranial blood volume, exposing patients with traumatic brain injury to the risk of diffuse brain swelling or malignant brain herniation during decompressive craniectomy. The microcirculation and venous system are also involved in this process, but the precise mechanisms remain unclear. A physiological model of extremely high intracranial pressure was created in rats. This development triggered the TNF-α/NF-κB/iNOS axis in microglia, and released many inflammatory factors and reactive oxygen species/reactive nitrogen species, generating an excessive amount of peroxynitrite. Subsequently, the capillary wall cells especially pericytes exhibited severe degeneration and injury, the blood-brain barrier was disrupted, and a large number of blood cells were deposited within the microcirculation, resulting in a significant delay in the recovery of the microcirculation and venous blood flow compared to arterial flow, and this still persisted after decompressive craniectomy. Infliximab is a monoclonal antibody bound to TNF-α that effectively reduces the activity of TNF-α/NF-κB/iNOS axis. Treatment with Infliximab resulted in downregulation of inflammatory and oxidative-nitrative stress related factors, attenuation of capillary wall cells injury, and relative reduction of capillary hemostasis. These improved the delay in recovery of microcirculation and venous blood flow.
Collapse
Affiliation(s)
- Shangming Zhang
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, 350025, China
- Department of Neurosurgery, 900th Hospital, Fujian Provincial Clinical Medical Research Center for Minimally Invasive Diagnosis and Treatment of Neurovascular Diseases, Fuzhou, 350025, China
| | - Yehuang Chen
- Department of Neurosurgery, 900th Hospital, Fujian Provincial Clinical Medical Research Center for Minimally Invasive Diagnosis and Treatment of Neurovascular Diseases, Fuzhou, 350025, China
| | - Qizuan Chen
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, 350025, China
- Department of Neurosurgery, 900th Hospital, Fujian Provincial Clinical Medical Research Center for Minimally Invasive Diagnosis and Treatment of Neurovascular Diseases, Fuzhou, 350025, China
| | - Hongjie Chen
- Department of Neurosurgery, 900th Hospital, Fujian Provincial Clinical Medical Research Center for Minimally Invasive Diagnosis and Treatment of Neurovascular Diseases, Fuzhou, 350025, China
| | - Liangfeng Wei
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, 350025, China.
- Department of Neurosurgery, 900th Hospital, Fujian Provincial Clinical Medical Research Center for Minimally Invasive Diagnosis and Treatment of Neurovascular Diseases, Fuzhou, 350025, China.
| | - Shousen Wang
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, 350025, China.
- Department of Neurosurgery, 900th Hospital, Fujian Provincial Clinical Medical Research Center for Minimally Invasive Diagnosis and Treatment of Neurovascular Diseases, Fuzhou, 350025, China.
| |
Collapse
|
4
|
Zhao Y, Zhou YG, Chen JF. Targeting the adenosine A 2A receptor for neuroprotection and cognitive improvement in traumatic brain injury and Parkinson's disease. Chin J Traumatol 2024; 27:125-133. [PMID: 37679245 PMCID: PMC11138351 DOI: 10.1016/j.cjtee.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/25/2023] [Accepted: 08/16/2023] [Indexed: 09/09/2023] Open
Abstract
Adenosine exerts its dual functions of homeostasis and neuromodulation in the brain by acting at mainly 2 G-protein coupled receptors, called A1 and A2A receptors. The adenosine A2A receptor (A2AR) antagonists have been clinically pursued for the last 2 decades, leading to final approval of the istradefylline, an A2AR antagonist, for the treatment of OFF-Parkinson's disease (PD) patients. The approval paves the way to develop novel therapeutic methods for A2AR antagonists to address 2 major unmet medical needs in PD and traumatic brain injury (TBI), namely neuroprotection or improving cognition. In this review, we first consider the evidence for aberrantly increased adenosine signaling in PD and TBI and the sufficiency of the increased A2AR signaling to trigger neurotoxicity and cognitive impairment. We further discuss the increasing preclinical data on the reversal of cognitive deficits in PD and TBI by A2AR antagonists through control of degenerative proteins and synaptotoxicity, and on protection against TBI and PD pathologies by A2AR antagonists through control of neuroinflammation. Moreover, we provide the supporting evidence from multiple human prospective epidemiological studies which revealed an inverse relation between the consumption of caffeine and the risk of developing PD and cognitive decline in aging population and Alzheimer's disease patients. Collectively, the convergence of clinical, epidemiological and experimental evidence supports the validity of A2AR as a new therapeutic target and facilitates the design of A2AR antagonists in clinical trials for disease-modifying and cognitive benefit in PD and TBI patients.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yuan-Guo Zhou
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jiang-Fan Chen
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, 325035, Zhejiang Province, China.
| |
Collapse
|
5
|
Ronaldson PT, Davis TP. Blood-brain barrier transporters: a translational consideration for CNS delivery of neurotherapeutics. Expert Opin Drug Deliv 2024; 21:71-89. [PMID: 38217410 PMCID: PMC10842757 DOI: 10.1080/17425247.2024.2306138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/12/2024] [Indexed: 01/15/2024]
Abstract
INTRODUCTION Successful neuropharmacology requires optimization of CNS drug delivery and, by extension, free drug concentrations at brain molecular targets. Detailed assessment of blood-brain barrier (BBB) physiological characteristics is necessary to achieve this goal. The 'next frontier' in CNS drug delivery is targeting BBB uptake transporters, an approach that requires evaluation of brain endothelial cell transport processes so that effective drug accumulation and improved therapeutic efficacy can occur. AREAS COVERED BBB permeability of drugs is governed by tight junction protein complexes (i.e., physical barrier) and transporters/enzymes (i.e., biochemical barrier). For most therapeutics, a component of blood-to-brain transport involves passive transcellular diffusion. Small molecule drugs that do not possess acceptable physicochemical characteristics for passive permeability may utilize putative membrane transporters for CNS uptake. While both uptake and efflux transport mechanisms are expressed at the brain microvascular endothelium, uptake transporters can be targeted for optimization of brain drug delivery and improved treatment of neurological disease states. EXPERT OPINION Uptake transporters represent a unique opportunity to optimize brain drug delivery by leveraging the endogenous biology of the BBB. A rigorous understanding of these transporters is required to improve translation from the bench to clinical trials and stimulate the development of new treatment paradigms for neurological diseases.
Collapse
Affiliation(s)
| | - Thomas P. Davis
- Department of Pharmacology, University of Arizona College of Medicine
| |
Collapse
|
6
|
Song M, Cao R, Chen X, Wang C, Xing X, Li W, Li Y, Liao Y, Zhong W, Li Q, Liu Z. Amplified Targeted Drug Delivery Independent of Target Number through Alternative Administration of Two Matched Nanoparticles. ACS NANO 2023; 17:23359-23373. [PMID: 38039329 DOI: 10.1021/acsnano.3c04059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Targeting nanoparticles (NPs) based on the specific binding of ligands with molecular targets provides a promising tool for tissue-selective drug delivery. However, the number of molecular targets on the cell surface is limited, hindering the number of NPs that can bind and, thus, limiting the therapeutic outcome. Although several strategies have been developed to enhance drug delivery, such as enhancing drug loading and circulation time or increasing the enhanced permeability and retention effect of nanocarriers, none have resolved this issue. Herein, we designed a simple method for amplified and targeted drug delivery using two matched NPs. One NP was aptamer-functionalized to specifically bind to target cells, while the other was aptamer-complementary DNA-functionalized to specifically bind to aptamer-NPs. Alternate administration of the two matched NPs enables their continuous accumulation in the disease site despite their limited molecular targets. As a proof of concept, the method was tested in a breast cancer model and significantly enhanced chemotherapy of tumor cells in vitro and in vivo. The potential applications of this method in a brain injury model were also demonstrated. Overall, the study describes a method for amplified targeted drug delivery independent of the target number.
Collapse
Affiliation(s)
- Mengwen Song
- School of Pharmaceutical Sciences, University of South China, Hengyang 421001, China
- Department of Neurology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 42100, Hunan, China
- Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Ruiyuan Cao
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Xingjuan Chen
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- Institute of Medical Research, Northwestern Polythechnical University, Xi'an 710072, China
| | - Cui Wang
- Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Xiaowen Xing
- Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Wei Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yuexiang Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yajin Liao
- School of Pharmaceutical Sciences, University of South China, Hengyang 421001, China
- Department of Neurology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 42100, Hunan, China
- Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Wu Zhong
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Qihong Li
- Department of Stomatology, the Fifth Medical Center, Chinese PLA General Hospital, 8 East Street, Fengtai District, Beijing 100071, China
| | - Zhiqiang Liu
- School of Pharmaceutical Sciences, University of South China, Hengyang 421001, China
- Department of Neurology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 42100, Hunan, China
- Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing 100850, China
| |
Collapse
|
7
|
Yip PK, Liu ZH, Hasan S, Pepys MB, Uff CEG. Serum amyloid P component accumulates and persists in neurones following traumatic brain injury. Open Biol 2023; 13:230253. [PMID: 38052249 DOI: 10.1098/rsob.230253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/19/2023] [Indexed: 12/07/2023] Open
Abstract
The mechanisms underlying neurodegenerative sequelae of traumatic brain injury (TBI) are poorly understood. The normal plasma protein, serum amyloid P component (SAP), which is normally rigorously excluded from the brain, is directly neurocytotoxic for cerebral neurones and also binds to Aβ amyloid fibrils and neurofibrillary tangles, promoting formation and persistence of Aβ fibrils. Increased brain exposure to SAP is common to many risk factors for dementia, including TBI, and dementia at death in the elderly is significantly associated with neocortical SAP content. Here, in 18 of 30 severe TBI cases, we report immunohistochemical staining for SAP in contused brain tissue with blood-brain barrier disruption. The SAP was localized to neurofilaments in a subset of neurones and their processes, particularly damaged axons and cell bodies, and was present regardless of the time after injury. No SAP was detected on astrocytes, microglia, cerebral capillaries or serotoninergic neurones and was absent from undamaged brain. C-reactive protein, the control plasma protein most closely similar to SAP, was only detected within capillary lumina. The appearance of neurocytotoxic SAP in the brain after TBI, and its persistent, selective deposition in cerebral neurones, are consistent with a potential contribution to subsequent neurodegeneration.
Collapse
Affiliation(s)
- Ping K Yip
- Centre for Neuroscience, Surgery & Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Zhou-Hao Liu
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan 33302, Taiwan
| | - Shumaila Hasan
- Department of Neurosurgery, Royal London Hospital, Whitechapel, London E1 1FR, UK
| | - Mark B Pepys
- Wolfson Drug Discovery Unit, University College London, London NW3 2PG, UK
| | - Christopher E G Uff
- Centre for Neuroscience, Surgery & Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
- Department of Neurosurgery, Royal London Hospital, Whitechapel, London E1 1FR, UK
| |
Collapse
|
8
|
Yau A, Jogdand A, Chen Y. Blood-brain-barrier modeling with tissue chips for research applications in space and on Earth. FRONTIERS IN SPACE TECHNOLOGIES 2023; 4:1176943. [PMID: 38915909 PMCID: PMC11195916 DOI: 10.3389/frspt.2023.1176943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Tissue chip technology has revolutionized biomedical applications and the medical science field for the past few decades. Currently, tissue chips are one of the most powerful research tools aiding in in vitro work to accurately predict the outcome of studies when compared to monolayer two-dimensional (2D) cell cultures. While 2D cell cultures held prominence for a long time, their lack of biomimicry has resulted in a transition to 3D cell cultures, including tissue chips technology, to overcome the discrepancies often seen in in vitro studies. Due to their wide range of applications, different organ systems have been studied over the years, one of which is the blood brain barrier (BBB) which is discussed in this review. The BBB is an incredible protective unit of the body, keeping out pathogens from entering the brain through vasculature. However, there are some microbes and certain diseases that disrupt the function of this barrier which can lead to detrimental outcomes. Over the past few years, various designs of the BBB have been proposed and modeled to study drug delivery and disease modeling on Earth. More recently, researchers have started to utilize tissue chips in space to study the effects of microgravity on human health. BBB tissue chips in space can be a tool to understand function mechanisms and therapeutics. This review addresses the limitations of monolayer cell culture which could be overcome with utilizing tissue chips technology. Current BBB models on Earth and how they are fabricated as well as what influences the BBB cell culture in tissue chips are discussed. Then, this article reviews how application of these technologies together with incorporating biosensors in space would be beneficial to help in predicting a more accurate physiological response in specific tissue or organ chips. Finally, the current platforms used in space and some solutions to overcome some shortcomings for future BBB tissue chip research are also discussed.
Collapse
Affiliation(s)
| | | | - Yupeng Chen
- Nanomedicine Lab, Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
9
|
Butler T. Letter to the Editor: Intense Exercise and Associated Blood-Brain Barrier Leakiness and Systemic Inflammation at the Time of Brain Injury May Be Relevant to Understanding Why Only Sports-Related Concussions Are Associated With Chronic Traumatic Encephalopathy. J Neurotrauma 2023; 40:1255-1256. [PMID: 36534765 PMCID: PMC10259602 DOI: 10.1089/neu.2022.0505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Tracy Butler
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
10
|
Ding L, Liu T, Ma J. Neuroprotective mechanisms of Asiatic acid. Heliyon 2023; 9:e15853. [PMID: 37180926 PMCID: PMC10172897 DOI: 10.1016/j.heliyon.2023.e15853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/06/2023] [Accepted: 04/24/2023] [Indexed: 05/16/2023] Open
Abstract
Asiatic acid (AA) is the most crucial component of Asiaticoside in many edible and medicinal plants. It has diverse biological activities such as anti-inflammatory, antioxidant, anti-infective, and anti-tumor. Additionally, AA has been intensively studied in the last decades. It has shown great potential in the treatment of various neurological diseases such as spinal cord injury (SCI), cerebral ischemia, epilepsy, traumatic brain injury (TBI), neural tumors, Alzheimer's disease (AD), and Parkinson's disease (PD). Moreover, AA provides pertinent data for neuroprotective signaling pathways, and its substantial neuroprotective ability makes it a novel candidate for developing drugs that target the central nervous system.
Collapse
Affiliation(s)
- Liuyun Ding
- Department of Emergency Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, China
| | - Tiantian Liu
- Shanghai Seventh's People's Hospital, An Affiliate of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Jin Ma
- Department of Emergency Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, China
- Corresponding author. Department of Emergency Medicine, Affiliated Kunshan Hospital of Jiangsu University, No. 91 Qianjin West Road, Kunshan, 215300, China.
| |
Collapse
|
11
|
Kasarello K, Cudnoch-Jedrzejewska A, Czarzasta K. Communication of gut microbiota and brain via immune and neuroendocrine signaling. Front Microbiol 2023; 14:1118529. [PMID: 36760508 PMCID: PMC9907780 DOI: 10.3389/fmicb.2023.1118529] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/12/2023] [Indexed: 01/27/2023] Open
Abstract
The gastrointestinal tract of the human is inhabited by about 5 × 1013 bacteria (of about 1,000 species) as well as archaea, fungi, and viruses. Gut microbiota is known to influence the host organism, but the host may also affect the functioning of the microbiota. This bidirectional cooperation occurs in three main inter-organ signaling: immune, neural, and endocrine. Immune communication relies mostly on the cytokines released by the immune cells into circulation. Also, pathogen-associated or damage-associated molecular patterns (PAMPs or DAMPs) may enter circulation and affect the functioning of the internal organs and gut microbiota. Neural communication relies mostly on the direct anatomical connections made by the vagus nerve, or indirect connections via the enteric nervous system. The third pathway, endocrine communication, is the broadest one and includes the hypothalamic-pituitary-adrenal axis. This review focuses on presenting the latest data on the role of the gut microbiota in inter-organ communication with particular emphasis on the role of neurotransmitters (catecholamines, serotonin, gamma-aminobutyric acid), intestinal peptides (cholecystokinin, peptide YY, and glucagon-like peptide 1), and bacterial metabolites (short-chain fatty acids).
Collapse
|
12
|
Wong R, Zhang Y, Zhao H, Ma D. Circular RNAs in organ injury: recent development. J Transl Med 2022; 20:533. [PMID: 36401311 PMCID: PMC9673305 DOI: 10.1186/s12967-022-03725-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/24/2022] [Indexed: 11/19/2022] Open
Abstract
Circular ribonucleic acids (circRNAs) are a class of long non-coding RNA that were once regarded as non-functional transcription byproducts. However, recent studies suggested that circRNAs may exhibit important regulatory roles in many critical biological pathways and disease pathologies. These studies have identified significantly differential expression profiles of circRNAs upon changes in physiological and pathological conditions of eukaryotic cells. Importantly, a substantial number of studies have suggested that circRNAs may play critical roles in organ injuries. This review aims to provide a summary of recent studies on circRNAs in organ injuries with respect to (1) changes in circRNAs expression patterns, (2) main mechanism axi(e)s, (3) therapeutic implications and (4) future study prospective. With the increasing attention to this research area and the advancement in high-throughput nucleic acid sequencing techniques, our knowledge of circRNAs may bring fruitful outcomes from basic and clinical research.
Collapse
|
13
|
Jiang Y, Liu Z, Liao Y, Sun S, Dai Y, Tang Y. Ischemic stroke: From pathological mechanisms to neuroprotective strategies. Front Neurol 2022; 13:1013083. [PMID: 36438975 PMCID: PMC9681807 DOI: 10.3389/fneur.2022.1013083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/20/2022] [Indexed: 08/13/2023] Open
Abstract
Ischemic stroke (IS) has complex pathological mechanisms, and is extremely difficult to treat. At present, the treatment of IS is mainly based on intravenous thrombolysis and mechanical thrombectomy, but they are limited by a strict time window. In addition, after intravenous thrombolysis or mechanical thrombectomy, damaged neurons often fail to make ideal improvements due to microcirculation disorders. Therefore, finding suitable pathways and targets from the pathological mechanism is crucial for the development of neuroprotective agents against IS. With the hope of making contributions to the development of IS treatments, this review will introduce (1) how related targets are found in pathological mechanisms such as inflammation, excitotoxicity, oxidative stress, and complement system activation; and (2) the current status and challenges in drug development.
Collapse
Affiliation(s)
- Yang Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhenquan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Liao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shuyong Sun
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yajie Dai
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yibo Tang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
14
|
Improper Proteostasis: Can It Serve as Biomarkers for Neurodegenerative Diseases? Mol Neurobiol 2022; 59:3382-3401. [PMID: 35305242 DOI: 10.1007/s12035-022-02775-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/19/2022] [Indexed: 10/18/2022]
Abstract
Cells synthesize new proteins after multiple molecular decisions. Damage of existing proteins, accumulation of abnormal proteins, and basic requirement of new proteins trigger protein quality control (PQC)-based alternative strategies to cope against proteostasis imbalance. Accumulation of misfolded proteins is linked with various neurodegenerative disorders. However, how deregulated components of this quality control system and their lack of general mechanism-based long-term changes can serve as biomarkers for neurodegeneration remains largely unexplored. Here, our article summarizes the chief findings, which may facilitate the search of novel and relevant proteostasis mechanism-based biomarkers associated with neuronal disorders. Understanding the abnormalities of PQC coupled molecules as possible biomarkers can help to determine neuronal fate and their contribution to the aetiology of several nervous system disorders.
Collapse
|
15
|
Ferrara M, Bertozzi G, Zanza C, Longhitano Y, Piccolella F, Lauritano CE, Volonnino G, Manetti AC, Maiese A, La Russa R. Traumatic Brain Injury and Gut Brain Axis: The Disruption of an Alliance. Rev Recent Clin Trials 2022; 17:268-279. [PMID: 35733301 DOI: 10.2174/1574887117666220622143423] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/13/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023]
Abstract
BACKGROUND Traumatic brain injury (TBI) can be considered a "silent epidemic", causing morbidity, disability, and mortality in all age cohorts. Therefore, a greater understanding of the underlying pathophysiological intricate mechanisms and interactions with other organs and systems is necessary to intervene not only in the treatment but also in the prevention of complications. In this complex of reciprocal interactions, the complex brain-gut axis has captured a growing interest. SCOPE The purpose of this manuscript is to examine and systematize existing evidence regarding the pathophysiological processes that occur following TBI and the influences exerted on these by the brain-gut axis. LITERATURE REVIEW A systematic review of the literature was conducted according to the PRISMA methodology. On the 8th of October 2021, two independent databases were searched: PubMed and Scopus. Following the inclusion and exclusion criteria selected, 24 (12 from PubMed and 12 from Scopus) eligible manuscripts were included in the present review. Moreover, references from the selected articles were also updated following the criteria mentioned above, yielding 91 included manuscripts. DISCUSSION Published evidence suggests that the brain and gut are mutually influenced through four main pathways: microbiota, inflammatory, nervous, and endocrine. CONCLUSION These pathways are bidirectional and interact with each other. However, the studies conducted so far mainly involve animals. An autopsy methodological approach to corpses affected by traumatic brain injury or intestinal pathology could represent the keystone for future studies to clarify the complex pathophysiological processes underlying the interaction between these two main systems.
Collapse
Affiliation(s)
- Michela Ferrara
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, Rome, 00161, Italy
| | - Giuseppe Bertozzi
- Section of Legal Medicine, Department of Clinical and Experimental Medicine, University of Foggia, Italy
| | - Christian Zanza
- Foundation of "Ospedale Alba-Bra Onlus and Department of Anesthesia and Critical Care and Emergency Medicine- "Michele and Pietro Ferrero Hospital" Verduno, Cuneo, Italy
| | - Yaroslava Longhitano
- Department of Anesthesia and Critical Care - AON SS Antonio and Biagio and Cesare Arrigo Hospital- Alessandria, Italy
| | - Fabio Piccolella
- Department of Anesthesia and Critical Care - AON SS Antonio and Biagio and Cesare Arrigo Hospital- Alessandria, Italy
| | - Cristiano Ernesto Lauritano
- Department of Anesthesia and Critical Care - AON SS Antonio and Biagio and Cesare Arrigo Hospital- Alessandria, Italy
| | - Gianpietro Volonnino
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, Rome, 00161, Italy
| | - Alice Chiara Manetti
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, Pisa, 56126, Italy
| | - Aniello Maiese
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, Pisa, 56126, Italy
| | - Raffaele La Russa
- Section of Legal Medicine, Department of Clinical and Experimental Medicine, University of Foggia, Italy
| |
Collapse
|
16
|
Amoo M, Henry J, O'Halloran PJ, Brennan P, Husien MB, Campbell M, Caird J, Javadpour M, Curley GF. S100B, GFAP, UCH-L1 and NSE as predictors of abnormalities on CT imaging following mild traumatic brain injury: a systematic review and meta-analysis of diagnostic test accuracy. Neurosurg Rev 2021; 45:1171-1193. [PMID: 34709508 DOI: 10.1007/s10143-021-01678-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 09/03/2021] [Accepted: 10/20/2021] [Indexed: 12/25/2022]
Abstract
Biomarkers such as calcium channel binding protein S100 subunit beta (S100B), glial fibrillary acidic protein (GFAP), ubiquitin c-terminal hydrolase L1 (UCH-L1) and neuron-specific enolase (NSE) have been proposed to aid in screening patients presenting with mild traumatic brain injury (mTBI). As such, we aimed to characterise their accuracy at various thresholds. MEDLINE, SCOPUS and EMBASE were searched, and articles reporting the diagnostic performance of included biomarkers were eligible for inclusion. Risk of bias was assessed using the QUADAS-II criteria. A meta-analysis was performed to assess the predictive value of biomarkers for imaging abnormalities on CT. A total of 2939 citations were identified, and 38 studies were included. Thirty-two studies reported data for S100B. At its conventional threshold of 0.1 μg/L, S100B had a pooled sensitivity of 91% (95%CI 87-94) and a specificity of 30% (95%CI 26-34). The optimal threshold for S100B was 0.72 μg/L, with a sensitivity of 61% (95% CI 50-72) and a specificity of 69% (95% CI 64-74). Nine studies reported data for GFAP. The optimal threshold for GFAP was 626 pg/mL, at which the sensitivity was 71% (95%CI 41-91) and specificity was 71% (95%CI 43-90). Sensitivity of GFAP was maximised at a threshold of 22 pg/mL, which had a sensitivity of 93% (95%CI 73-99) and a specificity of 36% (95%CI 12-68%). Three studies reported data for NSE and two studies for UCH-L1, which precluded meta-analysis. There is evidence to support the use of S100B as a screening tool in mild TBI, and potential advantages to the use of GFAP, which requires further investigation.
Collapse
Affiliation(s)
- Michael Amoo
- Department of Neurosurgery, Royal College of Surgeons in Ireland, Dublin, Ireland. .,National Neurosurgical Centre, Beaumont Hospital, Dublin 9, Ireland. .,Beacon Academy, Beacon Hospital, Sandyford, Dublin 18, Ireland.
| | - Jack Henry
- National Neurosurgical Centre, Beaumont Hospital, Dublin 9, Ireland.,School of Medicine, University College Dublin, Dublin, Ireland
| | - Philip J O'Halloran
- Department of Neurosurgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Paul Brennan
- Department of Neurosurgery, Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Radiology, Beaumont Hospital, Dublin 9, Ireland
| | - Mohammed Ben Husien
- Department of Neurosurgery, Royal College of Surgeons in Ireland, Dublin, Ireland.,National Neurosurgical Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Matthew Campbell
- Department of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - John Caird
- Department of Neurosurgery, Royal College of Surgeons in Ireland, Dublin, Ireland.,National Neurosurgical Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Mohsen Javadpour
- Department of Neurosurgery, Royal College of Surgeons in Ireland, Dublin, Ireland.,National Neurosurgical Centre, Beaumont Hospital, Dublin 9, Ireland.,Department of Academic Neurology, Trinity College Dublin, Dublin 2, Ireland
| | - Gerard F Curley
- Department of Neurosurgery, Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Anaesthesia and Critical Care, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
17
|
Gwak MG, Chang SY. Gut-Brain Connection: Microbiome, Gut Barrier, and Environmental Sensors. Immune Netw 2021; 21:e20. [PMID: 34277110 PMCID: PMC8263213 DOI: 10.4110/in.2021.21.e20] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/09/2021] [Accepted: 06/12/2021] [Indexed: 02/08/2023] Open
Abstract
The gut is an important organ with digestive and immune regulatory function which consistently harbors microbiome ecosystem. The gut microbiome cooperates with the host to regulate the development and function of the immune, metabolic, and nervous systems. It can influence disease processes in the gut as well as extra-intestinal organs, including the brain. The gut closely connects with the central nervous system through dynamic bidirectional communication along the gut-brain axis. The connection between gut environment and brain may affect host mood and behaviors. Disruptions in microbial communities have been implicated in several neurological disorders. A link between the gut microbiota and the brain has long been described, but recent studies have started to reveal the underlying mechanism of the impact of the gut microbiota and gut barrier integrity on the brain and behavior. Here, we summarized the gut barrier environment and the 4 main gut-brain axis pathways. We focused on the important function of gut barrier on neurological diseases such as stress responses and ischemic stroke. Finally, we described the impact of representative environmental sensors generated by gut bacteria on acute neurological disease via the gut-brain axis.
Collapse
Affiliation(s)
- Min-Gyu Gwak
- Laboratory of Microbiology, College of Pharmacy, and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Korea
| | - Sun-Young Chang
- Laboratory of Microbiology, College of Pharmacy, and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Korea
| |
Collapse
|