1
|
Swamy MN, Wu H, Shankar P. Recent advances in RNAi-based strategies for therapy and prevention of HIV-1/AIDS. Adv Drug Deliv Rev 2016; 103:174-186. [PMID: 27013255 PMCID: PMC4935623 DOI: 10.1016/j.addr.2016.03.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 12/15/2022]
Abstract
RNA interference (RNAi) provides a powerful tool to silence specific gene expression and has been widely used to suppress host factors such as CCR5 and/or viral genes involved in HIV-1 replication. Newer nuclease-based gene-editing technologies, such as zinc finger nucleases (ZFN), transcription activator-like effector nucleases (TALEN) and the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system, also provide powerful tools to ablate specific genes. Because of differences in co-receptor usage and the high mutability of the HIV-1 genome, a combination of host factors and viral genes needs to be suppressed for effective prevention and treatment of HIV-1 infection. Whereas the continued presence of small interfering/short hairpin RNA (si/shRNA) mediators is needed for RNAi to be effective, the continued expression of nucleases in the gene-editing systems is undesirable. Thus, RNAi provides the only practical way for expression of multiple silencers in infected and uninfected cells, which is needed for effective prevention/treatment of infection. There have been several advances in the RNAi field in terms of si/shRNA design, targeted delivery to HIV-1 susceptible cells, and testing for efficacy in preclinical humanized mouse models. Here, we comprehensively review the latest advances in RNAi technology towards prevention and treatment of HIV-1.
Collapse
Affiliation(s)
- Manjunath N Swamy
- Center of Emphasis in Infectious Disease, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA.
| | - Haoquan Wu
- Center of Emphasis in Infectious Disease, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA
| | - Premlata Shankar
- Center of Emphasis in Infectious Disease, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA.
| |
Collapse
|
2
|
Bloom K, Mussolino C, Arbuthnot P. Transcription Activator-Like Effector (TALE) Nucleases and Repressor TALEs for Antiviral Gene Therapy. CURRENT STEM CELL REPORTS 2015. [DOI: 10.1007/s40778-014-0008-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
3
|
Liang Z, Wang X, Li H, Liu B, Zhao X, Liu C, Kong XH. Silencing of HIV-1 gag gene from epidemic strains among men who have sex with men (MSM) in Tianjin, China by a broad-spectrum short hairpin RNA. Virusdisease 2014; 25:294-301. [DOI: 10.1007/s13337-014-0209-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 03/12/2014] [Indexed: 11/30/2022] Open
|
4
|
Abstract
Since the first application of RNA interference (RNAi) in mammalian cells, the expression of short hairpin RNAs (shRNAs) for targeted gene silencing has become a benchmark technology. Using plasmid and viral vectoring systems, the transcription of shRNA precursors that are effectively processed by the RNAi pathway can lead to potent gene knockdown. The past decade has seen continual advancement and improvement to the various strategies that can be used for shRNA delivery, and the use of shRNAs for clinical applications is well underway. Driving these developments has been the many benefits afforded by shRNA technologies, including the stable integration of expression constructs for long-term expression, infection of difficult-to-target cell lines and tissues using viral vectors, and the temporal control of shRNA transcription by inducible promoters. The use of different effector molecule formats, promoters, and vector types, has meant that experiments can be tailored to target specific cell types and minimize cellular toxicities. Through the application of combinatorial RNAi (co-RNAi), multiple shRNA delivery strategies can improve gene knockdown, permit multiple transcripts to be targeted simultaneously, and curtail the emergence of viral escape mutants. This chapter reviews the history, cellular processing, and various applications of shRNAs in mammalian systems, including options for effector molecule design, vector and promoter types, and methods for multiple shRNA delivery.
Collapse
Affiliation(s)
- Luke S Lambeth
- Murdoch Childrens Research Institute, Royal Childrens Hospital, Melbourne, VIC, Australia.
| | | |
Collapse
|
5
|
Green VA, Arbuthnot P, Weinberg MS. Impact of sustained RNAi-mediated suppression of cellular cofactor Tat-SF1 on HIV-1 replication in CD4+ T cells. Virol J 2012; 9:272. [PMID: 23153325 PMCID: PMC3511259 DOI: 10.1186/1743-422x-9-272] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 10/18/2012] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Conventional anti-HIV drug regimens targeting viral enzymes are plagued by the emergence of drug resistance. There is interest in targeting HIV-dependency factors (HDFs), host proteins that the virus requires for replication, as drugs targeting their function may prove protective. Reporter cell lines provide a rapid and convenient method of identifying putative HDFs, but this approach may lead to misleading results and a failure to detect subtle detrimental effects on cells that result from HDF suppression. Thus, alternative methods for HDF validation are required. Cellular Tat-SF1 has long been ascribed a cofactor role in Tat-dependent transactivation of viral transcription elongation. Here we employ sustained RNAi-mediated suppression of Tat-SF1 to validate its requirement for HIV-1 replication in a CD4+ T cell-derived line and its potential as a therapeutic target. RESULTS shRNA-mediated suppression of Tat-SF1 reduced HIV-1 replication and infectious particle production from TZM-bl reporter cells. This effect was not a result of increased apoptosis, loss of cell viability or an immune response. To validate its requirement for HIV-1 replication in a more relevant cell line, CD4+ SupT1 cell populations were generated that stably expressed shRNAs. HIV-1 replication was significantly reduced for two weeks (~65%) in cells with depleted Tat-SF1, although the inhibition of viral replication was moderate when compared to SupT1 cells expressing a shRNA targeting the integration cofactor LEDGF/p75. Tat-SF1 suppression was attenuated over time, resulting from decreased shRNA guide strand expression, suggesting that there is a selective pressure to restore Tat-SF1 levels. CONCLUSIONS This study validates Tat-SF1 as an HDF in CD4+ T cell-derived SupT1 cells. However, our findings also suggest that Tat-SF1 is not a critical cofactor required for virus replication and its suppression may affect cell growth. Therefore, this study demonstrates the importance of examining HIV-1 replication kinetics and cytotoxicity in cells with sustained HDF suppression to validate their therapeutic potential as targets.
Collapse
Affiliation(s)
- Victoria A Green
- Antiviral Gene Therapy Research Unit, Health Sciences Faculty, University of the Witwatersrand, Johannesburg, South Africa
| | | | | |
Collapse
|
6
|
Suzuki K, Ishida T, Yamagishi M, Ahlenstiel C, Swaminathan S, Marks K, Murray D, McCartney EM, Beard MR, Alexander M, Purcell DFJ, Cooper DA, Watanabe T, Kelleher AD. Transcriptional gene silencing of HIV-1 through promoter targeted RNA is highly specific. RNA Biol 2011; 8:1035-46. [PMID: 21955498 DOI: 10.4161/rna.8.6.16264] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We have previously reported induction of transcriptional gene silencing (TGS) of HIV-1 by short hairpin RNA (shRNA) expressed in MOLT-4 cells. The shRNA (termed shPromA) targets the highly conserved tandem NF-kB binding sequences of the HIV-1 promoter. Recent articles have reported that TGS mediated by promoter-targeted siRNAs was exclusively the result of sequence non-specific off-target effects. Specifically, several mismatched siRNAs to the target promoter sequences were reported to also induce significant TGS, suggesting TGS was a consequence of off-target effects. Here, following extensive investigation, we report that shPromA induces sequence specific transcriptional silencing in HIV-1 infection in MOLT4 cells, while four shRNA variants, mismatched by 2-3 nucleotides, fail to suppress viral replication. We confirm similar levels of shRNA expression from the U6 promoter and the presence of processed/cleaved siRNAs for each construct in transduced MOLT-4 cells. HIV-1 sequence specific shPromA does not suppress HIV-2, which has an alternate NF-kB binding sequence. As a result of the unique sequence targeted, shPromA does not induce down-regulation of other NF-kB driven genes, either at the mRNA or protein level. Furthermore, we confirmed shPromA does not have sequence non-specific off-target effects through unaltered expression of CD4, CXCR4, and CCR5, which are used for viral entry. Additionally, shPromA does not alter PKR, IFN levels, and three downstream mediators of IFN-a response genes. Our data clearly shows that shPromA achieved highly specific TGS of HIV-1, demonstrating that effective TGS can be induced with minimal off-target effects.
Collapse
Affiliation(s)
- Kazuo Suzuki
- Immunovirology Laboratory, St Vincent's Centre for Applied Medical Research; Darlinghurst, NSW Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Liu YP, Berkhout B. miRNA cassettes in viral vectors: problems and solutions. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:732-45. [PMID: 21679781 DOI: 10.1016/j.bbagrm.2011.05.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/25/2011] [Accepted: 05/27/2011] [Indexed: 02/05/2023]
Abstract
The discovery of RNA interference (RNAi), an evolutionary conserved gene silencing mechanism that is triggered by double stranded RNA, has led to tremendous efforts to use this technology for basic research and new RNA therapeutics. RNAi can be induced via transfection of synthetic small interfering RNAs (siRNAs), which results in a transient knockdown of the targeted mRNA. For stable gene silencing, short hairpin RNA (shRNA) or microRNA (miRNA) constructs have been developed. In mammals and humans, the natural RNAi pathway is triggered via endogenously expressed miRNAs. The use of modified miRNA expression cassettes to elucidate fundamental biological questions or to develop therapeutic strategies has received much attention. Viral vectors are particularly useful for the delivery of miRNA genes to specific target cells. To date, many viral vectors have been developed, each with distinct characteristics that make one vector more suitable for a certain purpose than others. This review covers the recent progress in miRNA-based gene-silencing approaches that use viral vectors, with a focus on their unique properties, respective limitations and possible solutions. Furthermore, we discuss a related topic that involves the insertion of miRNA-target sequences in viral vector systems to restrict their cellular range of gene expression. This article is part of a Special Issue entitled: MicroRNAs in viral gene regulation.
Collapse
Affiliation(s)
- Ying Poi Liu
- Department of Medical Microbiology, University of Amsterdam, Amsterdam, the Netherlands
| | | |
Collapse
|
8
|
Arbuthnot P. MicroRNA-like antivirals. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:746-55. [PMID: 21616187 DOI: 10.1016/j.bbagrm.2011.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 04/28/2011] [Accepted: 05/09/2011] [Indexed: 12/26/2022]
Abstract
Employing engineered DNA templates to express antiviral microRNA (miRNA) sequences has considerable therapeutic potential. The durable silencing that may be achieved with these RNAi activators is valuable to counter chronic viral infections, such as those caused by HIV-1, hepatitis B, hepatitis C and dengue viruses. Early use of expressed antiviral miRNAs entailed generation of cassettes containing Pol III promoters (e.g. U6 and H1) that transcribe virus-targeting short hairpin RNA mimics of precursor miRNAs. Virus escape from single gene silencing elements prompted later development of combinatorial antiviral miRNA expression cassettes that form multitargeting siRNAs from transcribed long hairpin RNA and polycistronic primary miRNA sequences. Weaker Pol III and Pol II promoters have also been employed to control production of antiviral miRNA mimics, improve dose regulation and address concerns about toxicity caused by saturation of the endogenous miRNA pathway. Efficient delivery of expressed antiviral sequences remains challenging and utilizing viral vectors, which include recombinant adenoviruses, adeno-associated viruses and lentiviruses, has been favored. Investigations using recombinant lentiviruses to transduce CD34+ hematological precursor cells with expressed HIV-1 gene silencers are at advanced stages and show promise in preclinical and clinical trials. Although the use of expressed antiviral miRNA sequences to treat viral infections is encouraging, eventual therapeutic application will be dependent on rigorously proving their safety, efficient delivery to target tissues and uncomplicated large scale preparation of vector formulations. This article is part of a special issue entitled: MicroRNAs in viral gene regulation.
Collapse
|
9
|
Berkhout B, Sanders RW. Molecular strategies to design an escape-proof antiviral therapy. Antiviral Res 2011; 92:7-14. [PMID: 21513746 DOI: 10.1016/j.antiviral.2011.04.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/21/2011] [Accepted: 04/04/2011] [Indexed: 02/06/2023]
Abstract
Two antiviral approaches against the human immunodeficiency virus type 1 (HIV-1) were presented at the Antivirals Congress in Amsterdam. The common theme among these two separate therapeutic research lines is the wish to develop a durable therapy that prevents viral escape. We will present a brief overview of these two research lines and focus on our efforts to design an escape-proof anti-HIV therapy. The first topic concerns the class of HIV-1 fusion inhibitors, including the prototype T20 peptide and the improved versions T1249 and T2635, which were all developed by Trimeris-Roche. The selection of T20-resistant HIV-1 strains is a fairly easy evolutionary process that requires a single amino acid substitution in the peptide binding site of the viral envelope glycoprotein (Env) target. The selection of T1249-resistant HIV-1 strains was shown to require a more dramatic amino acid substitution in the viral Env protein, in particular the introduction of charged amino acid residues that cause resistance by charge-repulsion of the antiviral peptide. The third generation peptide T2635 remains active against all these HIV-1 escape variants because the charged residues within this peptide are "masked" by an introduced intra-helical salt bridge. This charge masking concept could facilitate the future design of escape-proof antiviral peptides. The second topic concerns the mechanism of RNA interference (RNAi) that we are currently employing to develop an antiviral gene therapy. One can make human T cells resistant to HIV-1 infection by a stable RNAi-inducing gene transfer, but the virus escapes under therapeutic pressure of a single inhibitor. Several options for a combinatorial RNAi attack to prevent viral escape will be discussed. The simultaneous use of multiple RNAi inhibitors turns out to be the most effective and durable strategy.
Collapse
Affiliation(s)
- Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, The Netherlands.
| | | |
Collapse
|
10
|
Toward a durable treatment of HIV-1 infection using RNA interference. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 102:141-63. [PMID: 21846571 DOI: 10.1016/b978-0-12-415795-8.00001-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
RNA interference (RNAi) is a cellular mechanism that mediates sequence-specific gene silencing at the posttranscriptional level. RNAi can be used as an antiviral approach against human pathogens. An attractive target for RNAi therapeutics is the human immunodeficiency virus type 1 (HIV-1), and the first clinical trial using a lentiviral gene therapy was initiated in early 2008. In this chapter, we focus on some basic principles of such an RNAi-based gene therapy against HIV-1. This includes the subjects of target site selection within the viral RNA genome, the phenomenon of viral escape, and therapeutic strategies to prevent viral escape. The latter antiescape strategies include diverse combinatorial RNAi approaches that are all directed against the HIV-1 RNA genome. As an alternative strategy, we also discuss the possibilities and restrictions of targeting cellular cofactors that are essential for virus replication, but less important for cell physiology.
Collapse
|
11
|
Abstract
For effective RNA interference (RNAi)-based therapies against viral infection, particularly highly mutational viruses like HCV and HIV, combinational strategies that target multiple regions within a viral genome are required to prevent resistance. The use of lentiviral vectors for combinatorial RNAi (coRNAi) offers possibilities to deliver multiple short hairpin RNA (shRNA) sequences simultaneously to individual cells while maintaining high expression levels required to suppress viral replication. By applying coRNAi, one can impart either a protective strategy, i.e., treatment prior to infection, or a long-term treatment postinfection without the eventuality of mutational outgrowth due to incomplete selection pressure. In this chapter, we provide a detailed description of the methods available to create coRNAi vectors and discuss some of the current problems and technical limitations.
Collapse
|
12
|
Lambeth LS, Van Hateren NJ, Wilson SA, Nair V. A direct comparison of strategies for combinatorial RNA interference. BMC Mol Biol 2010; 11:77. [PMID: 20937117 PMCID: PMC2958852 DOI: 10.1186/1471-2199-11-77] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 10/11/2010] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Combinatorial RNA interference (co-RNAi) is a valuable tool for highly effective gene suppression of single and multiple-genes targets, and can be used to prevent the escape of mutation-prone transcripts. There are currently three main approaches used to achieve co-RNAi in animal cells; multiple promoter/shRNA cassettes, long hairpin RNAs (lhRNA) and miRNA-embedded shRNAs, however, the relative effectiveness of each is not known. The current study directly compares the ability of each co-RNAi method to deliver pre-validated siRNA molecules to the same gene targets. RESULTS Double-shRNA expression vectors were generated for each co-RNAi platform and their ability to suppress both single and double-gene reporter targets were compared. The most reliable and effective gene silencing was achieved from the multiple promoter/shRNA approach, as this method induced additive suppression of single-gene targets and equally effective knockdown of double-gene targets. Although both lhRNA and microRNA-embedded strategies provided efficient gene knockdown, suppression levels were inconsistent and activity varied greatly for different siRNAs tested. Furthermore, it appeared that not only the position of siRNAs within these multi-shRNA constructs impacted upon silencing activity, but also local properties of each individual molecule. In addition, it was also found that the insertion of up to five promoter/shRNA cassettes into a single construct did not negatively affect the efficacy of each individual shRNA. CONCLUSIONS By directly comparing the ability of shRNAs delivered from different co-RNA platforms to initiate knockdown of the same gene targets, we found that multiple U6/shRNA cassettes offered the most reliable and predictable suppression of both single and multiple-gene targets. These results highlight some important strengths and pitfalls of the currently used methods for multiple shRNA delivery, and provide valuable insights for the design and application of reliable co-RNAi.
Collapse
Affiliation(s)
- Luke S Lambeth
- Institute for Animal Health, Compton, Berkshire, UK
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, Australia
| | - Nick J Van Hateren
- Department of Molecular Biology & Biotechnology, University of Sheffield, Western Bank, Sheffield, UK
| | - Stuart A Wilson
- Department of Molecular Biology & Biotechnology, University of Sheffield, Western Bank, Sheffield, UK
| | | |
Collapse
|
13
|
Saayman S, Arbuthnot P, Weinberg MS. Deriving four functional anti-HIV siRNAs from a single Pol III-generated transcript comprising two adjacent long hairpin RNA precursors. Nucleic Acids Res 2010; 38:6652-63. [PMID: 20525791 PMCID: PMC2965221 DOI: 10.1093/nar/gkq460] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Revised: 05/07/2010] [Accepted: 05/11/2010] [Indexed: 11/19/2022] Open
Abstract
Several different approaches exist to generate expressed RNA interference (RNAi) precursors for multiple target inhibition, a strategy referred to as combinatorial (co)RNAi. One such approach makes use of RNA Pol III-expressed long hairpin RNAs (lhRNAs), which are processed by Dicer to generate multiple unique short interfering siRNA effectors. However, because of inefficient intracellular Dicer processing, lhRNA duplexes have been limited to generating two independent effective siRNA species. In this study, we describe a novel strategy whereby four separate anti-HIV siRNAs were generated from a single RNA Pol III-expressed transcript. Two optimized lhRNAs, each comprising two active anti-HIV siRNAs, were placed in tandem to form a double long hairpin (dlhRNA) expression cassette, which encodes four unique and effective siRNA sequences. Processing of the 3' position lhRNA was more variable but effective multiple processing was possible by manipulating the order of the siRNA-encoding sequences. Importantly, unlike shRNAs, Pol III-expressed dlhRNAs did not compete with endogenous and exogenous microRNAs to disrupt the RNAi pathway. The versatility of expressed lhRNAs is greatly expanded and we provide a mechanism for generating transcripts with modular lhRNAs motifs that contribute to improved coRNAi.
Collapse
Affiliation(s)
| | | | - Marc S. Weinberg
- Antiviral Gene Therapy Research Unit, Department of Molecular Medicine and Haematology, University of Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
14
|
Lares MR, Rossi JJ, Ouellet DL. RNAi and small interfering RNAs in human disease therapeutic applications. Trends Biotechnol 2010; 28:570-9. [PMID: 20833440 DOI: 10.1016/j.tibtech.2010.07.009] [Citation(s) in RCA: 211] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Revised: 07/09/2010] [Accepted: 07/22/2010] [Indexed: 12/11/2022]
Abstract
Small interfering RNAs (siRNAs) have been shown to effectively downregulate gene expression in human cells, giving them potential to eradicate disease. Prospects for clinical applications are discussed in this review, along with an overview of recent history and our current understanding of siRNAs used for therapeutic application in human diseases, such as cancer and viral infections. Over recent years, progress has been made in lipids, ligands, nanoparticles, polymers and viral vectors as delivery agents and for gene-based expression of siRNA to enhance the efficacy and specificity of these methods while at the same time reducing toxicity. It has become apparent that given the recent advances in chemistry and delivery, RNAi will soon prove to be an important and widely used therapeutic modality.
Collapse
Affiliation(s)
- Monica R Lares
- Department of Molecular and Cellular Biology, Beckman Institute at City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | | | | |
Collapse
|
15
|
Saayman SM, Arbuthnot P, Weinberg MS. Effective Pol III-expressed long hairpin RNAs targeted to multiple unique sites of HIV-1. Methods Mol Biol 2010; 629:159-74. [PMID: 20387149 DOI: 10.1007/978-1-60761-657-3_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The RNA interference (RNAi) pathway has in recent years been exploited for the development of novel antiviral therapies. The emergence of viral escape mutants, however, is a major impediment to the use of RNAi effectors to treat highly mutable viruses such as HIV-1. A combinatorial approach is therefore required for long-term inhibition of gene expression. RNA Pol III-driven long hairpin RNA (lhRNA) duplexes can be cleaved several times by Dicer, yielding multiple functional siRNAs from a single construct. Here we describe a method for the generation of ectopically expressed U6-lhRNAs encoding three separate siRNA sequences targeting unique sites in HIV-1. This methodological overview explains some crucial aspects of lhRNA design and cloning as well as facile experiments to determine their efficacy in cell culture.
Collapse
Affiliation(s)
- Sheena M Saayman
- Antiviral Gene Therapy Research Unit, Department of Molecular Medicine and Haematology, University of the Witwatersrand Medical School, Wits, Johannesburg, South Africa
| | | | | |
Collapse
|
16
|
Liu YP, von Eije KJ, Schopman NCT, Westerink JT, ter Brake O, Haasnoot J, Berkhout B. Combinatorial RNAi against HIV-1 using extended short hairpin RNAs. Mol Ther 2009; 17:1712-23. [PMID: 19672247 PMCID: PMC2835024 DOI: 10.1038/mt.2009.176] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 07/06/2009] [Indexed: 12/11/2022] Open
Abstract
RNA interference (RNAi) is a widely used gene suppression tool that holds great promise as a novel antiviral approach. However, for error-prone viruses including human immunodeficiency virus type 1(HIV-1), a combinatorial approach against multiple conserved sequences is required to prevent the emergence of RNAi-resistant escape viruses. Previously, we constructed extended short hairpin RNAs (e-shRNAs) that encode two potent small interfering RNAs (siRNAs) (e2-shRNAs). We showed that a minimal hairpin stem length of 43 base pairs (bp) is needed to obtain two functional siRNAs. In this study, we elaborated on the e2-shRNA design to make e-shRNAs encoding three or four antiviral siRNAs. We demonstrate that siRNA production and the antiviral effect is optimal for e3-shRNA of 66 bp. Further extension of the hairpin stem results in a loss of RNAi activity. The same was observed for long hairpin RNAs (lhRNAs) that target consecutive HIV-1 sequences. Importantly, we show that HIV-1 replication is durably inhibited in T cells stably transduced with a lentiviral vector containing the e3-shRNA expression cassette. These results show that e-shRNAs can be used as a combinatorial RNAi approach to target error-prone viruses.
Collapse
Affiliation(s)
- Ying Poi Liu
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Basic research in the field of molecular biology led to the discovery of the mechanism of RNA interference (RNAi) in Caenorhabditis elegans in 1998. RNAi is now widely appreciated as an important gene control mechanism in mammals, and several RNAi-based gene-silencing applications have already been used in clinical trials. In this review I will discuss RNAi approaches to inhibit the pathogenic human immunodeficiency virus type 1 (HIV-1), which establishes a chronic infection that would most likely require a durable gene therapy approach. Viruses, such as HIV-1, are particularly difficult targets for RNAi attack because they mutate frequently, which allows viral escape by mutation of the RNAi target sequence. Combinatorial RNAi strategies are required to prevent viral escape.
Collapse
Affiliation(s)
- Ben Berkhout
- Laboratory of Experimental Virology, Academic Medical Center, University of Amsterdam, the Netherlands.
| |
Collapse
|
18
|
Von Eije KJ, Berkhout B. RNA-interference-based Gene Therapy Approaches to HIV Type-1 Treatment: Tackling the Hurdles from Bench to Bedside. ACTA ACUST UNITED AC 2009; 19:221-33. [DOI: 10.1177/095632020901900602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
RNA interference (RNAi) is a cellular mechanism that can be induced by small interfering RNAs (siRNAs) to mediate sequence-specific gene silencing by cleavage of the targeted messenger RNA. RNAi can be used as an antiviral approach to silence HIV type-1 (HIV-1) through stable expression of precursors, such as short hairpin RNAs (shRNAs), which are processed into siRNAs that can elicit degradation of HIV-1 RNAs. At the beginning of 2008, the first clinical trial using a lentivirus with an RNA-based gene therapy against HIV-1 was initiated. The antiviral molecules in this gene therapy consist of three RNA effectors, one of which triggers the RNAi pathway. This review article focuses on the basic principles of an RNAi-based gene therapy against HIV-1, including delivery methods, target selection, viral escape possibilities, systems for multiplexing siRNAs to achieve a durable therapy and the in vitro and in vivo test systems to evaluate the efficacy and safety of such a therapy.
Collapse
Affiliation(s)
- Karin J Von Eije
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
19
|
Abstract
BACKGROUND RNA interference (RNAi) can be employed as a potent antiviral mechanism. OBJECTIVE To discuss RNAi approaches to target pathogenic human viruses causing acute or chronic infections, in particular RNAi gene therapy against HIV-1. METHODS A review of relevant literature. RESULTS/CONCLUSIONS The future of antiviral RNAi therapeutics is very promising. RNAi was discovered only a decade ago, and although we are still in the early days, the first clinical trials are already ongoing.
Collapse
Affiliation(s)
- Ben Berkhout
- Academic Medical Center of the University of Amsterdam, Center for Infection and Immunity Amsterdam (CINIMA), Department of Medical Microbiology, Laboratory of Experimental Virology, Amsterdam, The Netherlands.
| | | |
Collapse
|
20
|
Abstract
For almost three decades, researchers have studied the possibility to use nucleic acids as antiviral therapeutics. In theory, compounds such as antisense oligonucleotides, ribozymes, DNAzymes, and aptamers can be designed to trigger the sequence-specific inhibition of particular mRNA transcripts, including viral genomes. However, difficulties with their efficiency, off-target effects, toxicity, delivery, and stability halted the development of nucleic acid-based therapeutics that can be used in the clinic. So far, only a single antisense drug, Vitravene for the treatment of CMV-induced retinitis in AIDS patients, has made it to the clinic. Since the discovery of RNA interference (RNAi), there is a renewed interest in the development of nucleic acid-based therapeutics. Antiviral RNAi approaches are highly effective in vitro and in animal models and are currently being tested in clinical trials. Here we give an overview of antiviral nucleic acid-based therapeutics. We focus on antisense and RNAi-based compounds that have been shown to be effective in animal model systems.
Collapse
Affiliation(s)
- Hans-Georg Kräusslich
- Hygiene Institute Department of Virology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, Heidelberg, 69120 Germany
| | - Ralf Bartenschlager
- Hygiene Institute Department of Virology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, Heidelberg, 69120 Germany
| |
Collapse
|
21
|
Saayman S, Barichievy S, Capovilla A, Morris KV, Arbuthnot P, Weinberg MS. The efficacy of generating three independent anti-HIV-1 siRNAs from a single U6 RNA Pol III-expressed long hairpin RNA. PLoS One 2008; 3:e2602. [PMID: 18596982 PMCID: PMC2434202 DOI: 10.1371/journal.pone.0002602] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2007] [Accepted: 06/06/2008] [Indexed: 11/24/2022] Open
Abstract
RNA Interference (RNAi) effectors have been used to inhibit rogue RNAs in mammalian cells. However, rapidly evolving sequences such as the human immunodeficiency virus type 1 (HIV-1) require multiple targeting approaches to prevent the emergence of escape variants. Expressed long hairpin RNAs (lhRNAs) have recently been used as a strategy to produce multiple short interfering RNAs (siRNAs) targeted to highly variant sequences. We aimed to characterize the ability of expressed lhRNAs to generate independent siRNAs that silence three non-contiguous HIV-1 sites by designing lhRNAs comprising different combinations of siRNA-encoding sequences. All lhRNAs were capable of silencing individual target sequences. However, silencing efficiency together with concentrations of individual lhRNA-derived siRNAs diminished from the stem base (first position) towards the loop side of the hairpin. Silencing efficacy against HIV-1 was primarily mediated by siRNA sequences located at the base of the stem. Improvements could be made to first and second position siRNAs by adjusting spacing arrangements at their junction, but silencing of third position siRNAs remained largely ineffective. Although lhRNAs offer advantages for combinatorial RNAi, we show that good silencing efficacy across the span of the lhRNA duplex is difficult to achieve with sequences that encode more than two adjacent independent siRNAs.
Collapse
Affiliation(s)
- Sheena Saayman
- Antiviral Gene Therapy Research Unit, Department of Molecular Medicine and Haematology, University of Witwatersrand, Johannesburg, South Africa
| | - Samantha Barichievy
- Antiviral Gene Therapy Research Unit, Department of Molecular Medicine and Haematology, University of Witwatersrand, Johannesburg, South Africa
| | - Alexio Capovilla
- HIV Pathogenesis Lab, Department of Molecular Medicine and Haematology, University of Witwatersrand, Johannesburg, South Africa
| | - Kevin V. Morris
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Patrick Arbuthnot
- Antiviral Gene Therapy Research Unit, Department of Molecular Medicine and Haematology, University of Witwatersrand, Johannesburg, South Africa
| | - Marc S. Weinberg
- Antiviral Gene Therapy Research Unit, Department of Molecular Medicine and Haematology, University of Witwatersrand, Johannesburg, South Africa
- * E-mail:
| |
Collapse
|
22
|
Abstract
The discovery of RNA interference (RNAi) has resulted in a new class of biological agents that can specifically downmodulate HIV-1 gene expression. Delivery of these RNAi-based agents and the emergence of viral resistance present pressing issues in the use of RNAi in a genetic-based therapy for HIV-1. Here, we discuss a potential avenue around viral resistance and a targeted delivery scheme for treating HIV-1-infected individuals involving transcriptional gene silencing. Specifically, the use of small antisense RNAs targeted to the viral promoter regions and delivery by lentiviral-based mobilization-competent vectors expressing these promoter targeted RNAs may prove therapeutically relevant in a genetic therapy-based approach to treating HIV-1 infection.
Collapse
Affiliation(s)
- Anne-Marie W Turner
- Department of Molecular & Experimental Medicine and Kellogg School of Science & Technology, The Scripps Research Institute, 10550 N. Torrey Pines Road, MEM-115, La Jolla, CA 92037, USA
| | - Kevin V Morris
- Department of Molecular & Experimental Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, MEM-115, La Jolla, CA 92037, USA
| |
Collapse
|
23
|
Abstract
Since the discovery that the triggers for RNA interference (RNAi), small interfering RNAs, could mediate silencing in mammalian cells without triggering a toxic response, RNAi has become the standard tool for sequence-specific knockdown of gene expression in molecular biology. This is due in part to the development of methods for promoter-based expression of RNAi triggers that can mediate stable silencing in mammalian cells. Numerous systems with slightly different characteristics exist, but despite incredible progress in a field that moves very rapidly, challenges still remain. The biggest challenge is to successfully and safely apply RNAi in vivo. Aside from potential issues of delivery, which is one of the most important considerations, successful application of short hairpin RNAs (shRNAs) in vivo requires expression systems that yield potent and specific knockdown of the target in the absence of toxicity. With a couple of exceptions, the current systems available for shRNA expression have not generally resulted in unexpected toxicities, while still providing strong knockdown of the intended targets; however, we do not know enough about how sequence-specific off-target effects will affect various cell and tissue types, or to what extent ectopic expression of RNAi triggers will perturb the endogenous RNAi mechanisms.
Collapse
Affiliation(s)
- John J Rossi
- Division of Molecular Biology, Beckman Research Institute of the City of Hope, Graduate School of Biological Sciences, Duarte, CA 91010, USA.
| |
Collapse
|