1
|
Zhang Y, Ding J, Liu C, Luo S, Gao X, Wu Y, Wang J, Wang X, Wu X, Shen W, Zhu J. Genetics Responses to Hypoxia and Reoxygenation Stress in Larimichthys crocea Revealed via Transcriptome Analysis and Weighted Gene Co-Expression Network. Animals (Basel) 2021; 11:ani11113021. [PMID: 34827754 PMCID: PMC8614329 DOI: 10.3390/ani11113021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/26/2021] [Accepted: 09/29/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Hypoxia, which occurs frequently in aquaculture, can cause serious harm to all aspects of the growth, reproduction and metabolism of cultured fish. Due to the intolerance of Larimichthys crocea to hypoxia, Larimichthys crocea often floats head or even dies under hypoxic environment. However, the molecular mechanism of hypoxia tolerance in Larimichthys crocea has not been fully described. Therefore, the aim of this study was to explore the hub regulatory genes under hypoxic stress environment by transcriptome analysis of three key tissues (liver, blood and gill) in Larimichthys crocea. We identified a number of important genes that exercise different regulatory functions. Overall, this study will provide important clues to the molecular mechanisms of hypoxia tolerance in Larimichthys crocea. Abstract The large yellow croaker (Larimichthys crocea) is an important marine economic fish in China; however, its intolerance to hypoxia causes widespread mortality. To understand the molecular mechanisms underlying hypoxia tolerance in L. crocea, the transcriptome gene expression profiling of three different tissues (blood, gills, and liver) of L. crocea exposed to hypoxia and reoxygenation stress were performed. In parallel, the gene relationships were investigated based on weighted gene co-expression network analysis (WGCNA). Accordingly, the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis showed that several pathways (e.g., energy metabolism, signal transduction, oxygen transport, and osmotic regulation) may be involved in the response of L. crocea to hypoxia and reoxygenation stress. In addition, also, four key modules (darkorange, magenta, saddlebrown, and darkolivegreen) that were highly relevant to the samples were identified by WGCNA. Furthermore, some hub genes within the association module, including RPS16, EDRF1, KCNK5, SNAT2, PFKL, GSK-3β, and PIK3CD, were found. This is the first study to report the co-expression patterns of a gene network after hypoxia stress in marine fish. The results provide new clues for further research on the molecular mechanisms underlying hypoxia tolerance in L. crocea.
Collapse
Affiliation(s)
- Yibo Zhang
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo 315832, China; (Y.Z.); (J.D.); (C.L.); (S.L.); (X.G.); (Y.W.); (J.W.)
- State Key Laboratory of Large Yellow Croaker Breeding, Ningbo Academy of Oceanology and Fishery, Juxian Road, Ningbo 315103, China; (X.W.); (X.W.)
| | - Jie Ding
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo 315832, China; (Y.Z.); (J.D.); (C.L.); (S.L.); (X.G.); (Y.W.); (J.W.)
- State Key Laboratory of Large Yellow Croaker Breeding, Ningbo Academy of Oceanology and Fishery, Juxian Road, Ningbo 315103, China; (X.W.); (X.W.)
| | - Cheng Liu
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo 315832, China; (Y.Z.); (J.D.); (C.L.); (S.L.); (X.G.); (Y.W.); (J.W.)
- State Key Laboratory of Large Yellow Croaker Breeding, Ningbo Academy of Oceanology and Fishery, Juxian Road, Ningbo 315103, China; (X.W.); (X.W.)
| | - Shengyu Luo
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo 315832, China; (Y.Z.); (J.D.); (C.L.); (S.L.); (X.G.); (Y.W.); (J.W.)
| | - Xinming Gao
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo 315832, China; (Y.Z.); (J.D.); (C.L.); (S.L.); (X.G.); (Y.W.); (J.W.)
| | - Yuanjie Wu
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo 315832, China; (Y.Z.); (J.D.); (C.L.); (S.L.); (X.G.); (Y.W.); (J.W.)
| | - Jingqian Wang
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo 315832, China; (Y.Z.); (J.D.); (C.L.); (S.L.); (X.G.); (Y.W.); (J.W.)
| | - Xuelei Wang
- State Key Laboratory of Large Yellow Croaker Breeding, Ningbo Academy of Oceanology and Fishery, Juxian Road, Ningbo 315103, China; (X.W.); (X.W.)
| | - Xiongfei Wu
- State Key Laboratory of Large Yellow Croaker Breeding, Ningbo Academy of Oceanology and Fishery, Juxian Road, Ningbo 315103, China; (X.W.); (X.W.)
| | - Weiliang Shen
- State Key Laboratory of Large Yellow Croaker Breeding, Ningbo Academy of Oceanology and Fishery, Juxian Road, Ningbo 315103, China; (X.W.); (X.W.)
- Correspondence: (W.S.); (J.Z.); Tel.: +86-153-8137-7660 (W.S.); +86-139-5784-1679 (J.Z.)
| | - Junquan Zhu
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo 315832, China; (Y.Z.); (J.D.); (C.L.); (S.L.); (X.G.); (Y.W.); (J.W.)
- Correspondence: (W.S.); (J.Z.); Tel.: +86-153-8137-7660 (W.S.); +86-139-5784-1679 (J.Z.)
| |
Collapse
|
2
|
Seibel H, Baßmann B, Rebl A. Blood Will Tell: What Hematological Analyses Can Reveal About Fish Welfare. Front Vet Sci 2021; 8:616955. [PMID: 33860003 PMCID: PMC8042153 DOI: 10.3389/fvets.2021.616955] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/10/2021] [Indexed: 01/11/2023] Open
Abstract
Blood analyses provide substantial information about the physiological aspects of animal welfare assessment, including the activation status of the neuroendocrine and immune system, acute and long-term impacts due to adverse husbandry conditions, potential diseases, and genetic predispositions. However, fish blood is still not routinely analyzed in research or aquaculture for the assessment of health and/or welfare. Over the years, the investigative techniques have evolved from antibody-based or PCR-based single-parameter analyses to now include transcriptomic, metabolomic, and proteomic approaches and from hematological observations to fluorescence-activated blood cell sorting in high-throughput modes. The range of testing techniques established for blood is now broader than for any other biogenic test material. Evaluation of the particular characteristics of fish blood, such as its cell composition, the nucleation of distinct blood cells, or the multiple isoforms of certain immune factors, requires adapted protocols and careful attention to the experimental designs and interpretation of the data. Analyses of fish blood can provide an integrated picture of the endocrine, immunological, reproductive, and genetic functions under defined environmental conditions and treatments. Therefore, the scarcity of high-throughput approaches using fish blood as a test material for fish physiology studies is surprising. This review summarizes the wide range of techniques that allow monitoring of informative fish blood parameters that are modulated by different stressors, conditions, and/or treatments. We provide a compact overview of several simple plasma tests and of multiparametric analyses of fish blood, and we discuss their potential use in the assessment of fish welfare and pathologies.
Collapse
Affiliation(s)
- Henrike Seibel
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, Kiel, Germany
- Gesellschaft für Marine Aquakultur mbH (GMA), Büsum, Germany
| | - Björn Baßmann
- Department of Aquaculture and Sea-Ranching, Faculty of Agricultural and Environmental Science, University of Rostock, Rostock, Germany
| | - Alexander Rebl
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
3
|
Martin SAM, Dehler CE, Król E. Transcriptomic responses in the fish intestine. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 64:103-117. [PMID: 26995769 DOI: 10.1016/j.dci.2016.03.014] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/05/2016] [Accepted: 03/13/2016] [Indexed: 06/05/2023]
Abstract
The intestine, being a multifunctional organ central to both nutrient uptake, pathogen recognition and regulating the intestinal microbiome, has been subjected to intense research. This review will focus on the recent studies carried out using high-throughput gene expression approaches, such as microarray and RNA sequencing (RNA-seq). These techniques have advanced greatly in recent years, mainly as a result of the massive changes in sequencing methodologies. At the time of writing, there is a transition between relatively well characterised microarray platforms and the developing RNA-seq, with the prediction that within a few years as costs decrease and computation power increase, RNA-seq related approaches will supersede the microarrays. Comparisons between the approaches are made and specific examples of how the techniques have been used to examine intestinal responses to pathogens, dietary manipulations and osmoregulatory challenges are given.
Collapse
Affiliation(s)
- Samuel A M Martin
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| | - Carola E Dehler
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Elżbieta Król
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| |
Collapse
|
4
|
Burns FR, Cogburn AL, Ankley GT, Villeneuve DL, Waits E, Chang YJ, Llaca V, Deschamps SD, Jackson RE, Hoke RA. Sequencing and de novo draft assemblies of a fathead minnow (Pimephales promelas) reference genome. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:212-7. [PMID: 26513338 DOI: 10.1002/etc.3186] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/11/2015] [Accepted: 07/27/2015] [Indexed: 05/20/2023]
Abstract
The present study was undertaken to provide the foundation for development of genome-scale resources for the fathead minnow (Pimephales promelas), an important model organism widely used in both aquatic toxicology research and regulatory testing. The authors report on the first sequencing and 2 draft assemblies for the reference genome of this species. Approximately 120× sequence coverage was achieved via Illumina sequencing of a combination of paired-end, mate-pair, and fosmid libraries. Evaluation and comparison of these assemblies demonstrate that they are of sufficient quality to be useful for genome-enabled studies, with 418 of 458 (91%) conserved eukaryotic genes mapping to at least 1 of the assemblies. In addition to its immediate utility, the present work provides a strong foundation on which to build further refinements of a reference genome for the fathead minnow.
Collapse
Affiliation(s)
- Frank R Burns
- Haskell Global Centers for Health and Environmental Sciences, E.I. du Pont de Nemours, Newark, Delaware, USA
| | - Amarin L Cogburn
- Haskell Global Centers for Health and Environmental Sciences, E.I. du Pont de Nemours, Newark, Delaware, USA
| | - Gerald T Ankley
- Mid-Continent Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
| | - Daniel L Villeneuve
- Mid-Continent Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
| | - Eric Waits
- US Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Yun-Juan Chang
- High-Performance Biological Computing, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Victor Llaca
- Agricultural Biotechnology, E.I. du Pont de Nemours, Wilmington, Delaware, USA
| | | | - Raymond E Jackson
- Central Research and Development Biotechnology, E.I. du Pont de Nemours, Wilmington, Delaware, USA
| | - Robert Alan Hoke
- Haskell Global Centers for Health and Environmental Sciences, E.I. du Pont de Nemours, Newark, Delaware, USA
| |
Collapse
|
5
|
Callol A, Reyes-López FE, Roig FJ, Goetz G, Goetz FW, Amaro C, MacKenzie SA. An Enriched European Eel Transcriptome Sheds Light upon Host-Pathogen Interactions with Vibrio vulnificus. PLoS One 2015. [PMID: 26207370 PMCID: PMC4514713 DOI: 10.1371/journal.pone.0133328] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Infectious diseases are one of the principal bottlenecks for the European eel recovery. The aim of this study was to develop a new molecular tool to be used in host-pathogen interaction experiments in the eel. To this end, we first stimulated adult eels with different pathogen-associated molecular patterns (PAMPs), extracted RNA from the immune-related tissues and sequenced the transcriptome. We obtained more than 2x106 reads that were assembled and annotated into 45,067 new descriptions with a notable representation of novel transcripts related with pathogen recognition, signal transduction and the immune response. Then, we designed a DNA-microarray that was used to analyze the early immune response against Vibrio vulnificus, a septicemic pathogen that uses the gills as the portal of entry into the blood, as well as the role of the main toxin of this species (RtxA13) on this early interaction. The gill transcriptomic profiles obtained after bath infecting eels with the wild type strain or with a mutant deficient in rtxA13 were analyzed and compared. Results demonstrate that eels react rapidly and locally against the pathogen and that this immune-response is rtxA13-dependent as transcripts related with cell destruction were highly up-regulated only in the gills from eels infected with the wild-type strain. Furthermore, significant differences in the immune response against the wild type and the mutant strain also suggest that host survival after V. vulnificus infection could depend on an efficient local phagocytic activity. Finally, we also found evidence of the presence of an interbranchial lymphoid tissue in European eel gills although further experiments will be necessary to identify such tissue.
Collapse
Affiliation(s)
- Agnès Callol
- Departament de Microbiologia i Ecologia, Universitat de Valencia, Burjassot, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Felipe E. Reyes-López
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department de Biologia cel·lular, Fisiologia Animal i Immunologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Francisco J. Roig
- Departament de Microbiologia i Ecologia, Universitat de Valencia, Burjassot, Spain
| | - Giles Goetz
- Northwest Fisheries Science Center, Seattle, United States of America
| | | | - Carmen Amaro
- Departament de Microbiologia i Ecologia, Universitat de Valencia, Burjassot, Spain
| | - Simon A. MacKenzie
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
- * E-mail:
| |
Collapse
|
6
|
Yu E, Xie J, Wang G, Yu D, Gong W, Li Z, Wang H, Xia Y, Wei N. Gene Expression Profiling of Grass Carp (Ctenopharyngodon idellus) and Crisp Grass Carp. Int J Genomics 2014; 2014:639687. [PMID: 25525591 PMCID: PMC4266764 DOI: 10.1155/2014/639687] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 11/10/2014] [Indexed: 11/18/2022] Open
Abstract
Grass carp (Ctenopharyngodon idellus) is one of the most important freshwater fish that is native to China, and crisp grass carp is a kind of high value-added fishes which have higher muscle firmness. To investigate biological functions and possible signal transduction pathways that address muscle firmness increase of crisp grass carp, microarray analysis of 14,900 transcripts was performed. Compared with grass carp, 127 genes were upregulated and 114 genes were downregulated in crisp grass carp. Gene ontology (GO) analysis revealed 30 GOs of differentially expressed genes in crisp grass carp. And strong correlation with muscle firmness increase of crisp grass carp was found for these genes from differentiation of muscle fibers and deposition of ECM, and also glycolysis/gluconeogenesis pathway and calcium metabolism may contribute to muscle firmness increase. In addition, a number of genes with unknown functions may be related to muscle firmness, and these genes are still further explored. Overall, these results had been demonstrated to play important roles in clarifying the molecular mechanism of muscle firmness increase in crisp grass carp.
Collapse
Affiliation(s)
- Ermeng Yu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Jun Xie
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Guangjun Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Deguang Yu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Wangbao Gong
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Zhifei Li
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Haiying Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Yun Xia
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Nan Wei
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| |
Collapse
|
7
|
Ulloa PE, Medrano JF, Feijoo CG. Zebrafish as animal model for aquaculture nutrition research. Front Genet 2014; 5:313. [PMID: 25309575 PMCID: PMC4160086 DOI: 10.3389/fgene.2014.00313] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 08/20/2014] [Indexed: 11/14/2022] Open
Abstract
The aquaculture industry continues to promote the diversification of ingredients used in aquafeed in order to achieve a more sustainable aquaculture production system. The evaluation of large numbers of diets in aquaculture species is costly and requires time-consuming trials in some species. In contrast, zebrafish (Danio rerio) can solve these drawbacks as an experimental model, and represents an ideal organism to carry out preliminary evaluation of diets. In addition, zebrafish has a sequenced genome allowing the efficient utilization of new technologies, such as RNA-sequencing and genotyping platforms to study the molecular mechanisms that underlie the organism’s response to nutrients. Also, biotechnological tools like transgenic lines with fluorescently labeled neutrophils that allow the evaluation of the immune response in vivo, are readily available in this species. Thus, zebrafish provides an attractive platform for testing many ingredients to select those with the highest potential of success in aquaculture. In this perspective article aspects related to diet evaluation in which zebrafish can make important contributions to nutritional genomics and nutritional immunity are discussed.
Collapse
Affiliation(s)
- Pilar E Ulloa
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andres Bello Santiago, Chile
| | - Juan F Medrano
- Department of Animal Science, University of California, Davis, Davis, CA USA
| | - Carmen G Feijoo
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andres Bello Santiago, Chile
| |
Collapse
|
8
|
Windisch HS, Frickenhaus S, John U, Knust R, Pörtner HO, Lucassen M. Stress response or beneficial temperature acclimation: transcriptomic signatures in Antarctic fish (Pachycara brachycephalum). Mol Ecol 2014; 23:3469-82. [DOI: 10.1111/mec.12822] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 05/13/2014] [Accepted: 05/26/2014] [Indexed: 01/07/2023]
Affiliation(s)
- H. S. Windisch
- Alfred Wegener Institute; Helmholtz Center for Polar and Marine Research; Am Handelshafen 12 27570 Bremerhaven Germany
| | - S. Frickenhaus
- Alfred Wegener Institute; Helmholtz Center for Polar and Marine Research; Am Handelshafen 12 27570 Bremerhaven Germany
- Hochschule Bremerhaven; Biotechnology; An der Karlstadt 8 27568 Bremerhaven Germany
| | - U. John
- Alfred Wegener Institute; Helmholtz Center for Polar and Marine Research; Am Handelshafen 12 27570 Bremerhaven Germany
| | - R. Knust
- Alfred Wegener Institute; Helmholtz Center for Polar and Marine Research; Am Handelshafen 12 27570 Bremerhaven Germany
| | - H.-O. Pörtner
- Alfred Wegener Institute; Helmholtz Center for Polar and Marine Research; Am Handelshafen 12 27570 Bremerhaven Germany
| | - M. Lucassen
- Alfred Wegener Institute; Helmholtz Center for Polar and Marine Research; Am Handelshafen 12 27570 Bremerhaven Germany
| |
Collapse
|
9
|
Williams TD, Mirbahai L, Chipman JK. The toxicological application of transcriptomics and epigenomics in zebrafish and other teleosts. Brief Funct Genomics 2014; 13:157-71. [DOI: 10.1093/bfgp/elt053] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
10
|
Qian X, Ba Y, Zhuang Q, Zhong G. RNA-Seq technology and its application in fish transcriptomics. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2013; 18:98-110. [PMID: 24380445 DOI: 10.1089/omi.2013.0110] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
High-throughput sequencing technologies, also known as next-generation sequencing (NGS) technologies, have revolutionized the way that genomic research is advancing. In addition to the static genome, these state-of-art technologies have been recently exploited to analyze the dynamic transcriptome, and the resulting technology is termed RNA sequencing (RNA-seq). RNA-seq is free from many limitations of other transcriptomic approaches, such as microarray and tag-based sequencing method. Although RNA-seq has only been available for a short time, studies using this method have completely changed our perspective of the breadth and depth of eukaryotic transcriptomes. In terms of the transcriptomics of teleost fishes, both model and non-model species have benefited from the RNA-seq approach and have undergone tremendous advances in the past several years. RNA-seq has helped not only in mapping and annotating fish transcriptome but also in our understanding of many biological processes in fish, such as development, adaptive evolution, host immune response, and stress response. In this review, we first provide an overview of each step of RNA-seq from library construction to the bioinformatic analysis of the data. We then summarize and discuss the recent biological insights obtained from the RNA-seq studies in a variety of fish species.
Collapse
Affiliation(s)
- Xi Qian
- 1 Department of Animal Science, University of Vermont , Burlington, Vermont
| | | | | | | |
Collapse
|
11
|
Whittington CM, Wilson AB. The role of prolactin in fish reproduction. Gen Comp Endocrinol 2013; 191:123-36. [PMID: 23791758 DOI: 10.1016/j.ygcen.2013.05.027] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 05/14/2013] [Accepted: 05/31/2013] [Indexed: 11/16/2022]
Abstract
Prolactin (PRL) has one of the broadest ranges of functions of any vertebrate hormone, and plays a critical role in regulating aspects of reproduction in widely divergent lineages. However, while PRL structure, mode of action and functions have been well-characterised in mammals, studies of other vertebrate lineages remain incomplete. As the most diverse group of vertebrates, fish offer a particularly valuable model system for the study of the evolution of reproductive endocrine function. Here, we review the current state of knowledge on the role of prolactin in fish reproduction, which extends to migration, reproductive development and cycling, brood care behaviour, pregnancy, and nutrient provisioning to young. We also highlight significant gaps in knowledge and advocate a specific bidirectional research methodology including both observational and manipulative experiments. Focusing research efforts towards the thorough characterisation of a restricted number of reproductively diverse fish models will help to provide the foundation necessary for a more explicitly evolutionary analysis of PRL function.
Collapse
Affiliation(s)
- Camilla M Whittington
- Institute of Evolutionary Biology and Environmental Science, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland.
| | | |
Collapse
|
12
|
Gallardo VE, Behra M. Fluorescent activated cell sorting (FACS) combined with gene expression microarrays for transcription enrichment profiling of zebrafish lateral line cells. Methods 2013; 62:226-31. [PMID: 23791746 DOI: 10.1016/j.ymeth.2013.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 06/05/2013] [Accepted: 06/10/2013] [Indexed: 10/26/2022] Open
Abstract
Transgenic lines carrying fluorescent reporter genes like GFP have been of great value in the elucidation of developmental features and physiological processes in various animal models, including zebrafish. The lateral line (LL), which is a fish specific superficial sensory organ, is an emerging organ model for studying complex cellular processes in the context of the whole living animal. Cell migration, mechanosensory cell development/differentiation and regeneration are some examples. This sensory system is made of superficial and sparse small sensory patches called neuromasts, with less than 50 cells in any given patch. The paucity of cells is a real problem in any effort to characterize those cells at the transcriptional level. We describe here a method which we applied to efficiently separate subpopulation of cells of the LL, using two distinct stable transgenic zebrafish lines, Tg(cldnb:gfp) and Tg(tnks1bp1:EGFP). In both cases, the GFP positive (GFP+) cells were separated from the remainder of the animal by using a Fluorescent Activated Cell Sorter (FACS). The transcripts of the GFP+ cells were subsequently analyzed on gene expression microarrays. The combination of FACS and microarrays is an efficient method to establish a transcriptional signature for discrete cell populations which would otherwise be masked in whole animal preparation.
Collapse
Affiliation(s)
- Viviana E Gallardo
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
13
|
Díaz-Rosales P, Romero A, Balseiro P, Dios S, Novoa B, Figueras A. Microarray-based identification of differentially expressed genes in families of turbot (Scophthalmus maximus) after infection with viral haemorrhagic septicaemia virus (VHSV). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2012; 14:515-529. [PMID: 22790792 DOI: 10.1007/s10126-012-9465-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 06/12/2012] [Indexed: 06/01/2023]
Abstract
Viral haemorrhagic septicaemia virus (VHSV) is one of the major threats to the development of the aquaculture industry worldwide. The present study was aimed to identify genes differentially expressed in several turbot (Scophthalmus maximus) families showing different mortality rates after VHSV. The expression analysis was conducted through genome-wide expression profiling with an oligo-microarray in the head kidney. A significant proportion of the variation in the gene expression profiles seemed to be explained by the genetic background, indicating that the mechanisms by which particular species and/or populations can resist a pathogen(s) are complex and multifactorial. Before the experimental infections, fish from resistant families (low mortality rates after VHSV infection) showed high expression of different antimicrobial peptides, suggesting that their pre-immune state may be stronger than fish of susceptible families (high mortality rates after VHSV infection). After infection, fish from both high- and low-mortality families showed an up-modulation of the interferon-induced Mx2 gene, the IL-8 gene and the VHSV-induced protein 5 gene compared with control groups. Low levels of several molecules secreted in the mucus were observed in high-mortality families, but different genes involved in viral entrance into target cells were down-regulated in low-mortality families. Moreover, these families also showed a strong down-modulation of marker genes related to VHSV target organs, including biochemical markers of renal dysfunction and myocardial injury. In general, the expression of different genes involved in the metabolism of sugars, lipids and proteins were decreased in both low- and high-mortality families after infection. The present study serves as an initial screen for genes of interest and provides an extensive overview of the genetic basis underlying the differences between families that are resistant or susceptible to VHSV infection.
Collapse
Affiliation(s)
- P Díaz-Rosales
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas, Eduardo Cabello 6, Vigo, Spain
| | | | | | | | | | | |
Collapse
|
14
|
Calduch-Giner JA, Sitjà-Bobadilla A, Davey GC, Cairns MT, Kaushik S, Pérez-Sánchez J. Dietary vegetable oils do not alter the intestine transcriptome of gilthead sea bream (Sparus aurata), but modulate the transcriptomic response to infection with Enteromyxum leei. BMC Genomics 2012; 13:470. [PMID: 22967181 PMCID: PMC3444936 DOI: 10.1186/1471-2164-13-470] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 09/07/2012] [Indexed: 11/30/2022] Open
Abstract
Background Studies conducted with gilthead sea bream (Sparus aurata L.) have determined the maximum dietary replacement of fish meal and oil without compromising growth or product quality. The present study aimed to analyze the effect of the nutritional background on fish health and fish fed plant protein-based diets with fish oil (FO diet) or a blend of vegetable oils (66VO diet) were exposed for 102 days to the intestinal myxosporean parasite Enteromyxum leei, and the intestine transcriptome was analyzed with a customized oligo-microarray of 7,500 annotated genes. Results Infection prevalence was high and similar in the two diet groups, but the outcome of the disease was more pronounced in fish fed the 66VO diet. No differences were found in the transcriptome of both diet control groups, whereas the number of differentially expressed genes in infected groups was considerable. K-means clustering of these differentially expressed genes identified four expression patterns that reflected the progression of the disease with the magnitude of the fold-change being higher in infected 66VO fish. A positive correlation was found between the time of infection and the magnitude of the transcriptional change within the 66VO group, being higher in early infected animals. Within this diet group, a strong up-regulation of many components of the immune specific response was evidenced, whereas other genes related to complement response and xenobiotic metabolism were down-regulated. Conclusions The high replacement of fish oil by vegetable oils in practical fish feeds did not modify the intestine transcriptome of gilthead sea bream, but important changes were apparent when fish were exposed to the myxosporean E. leei. The detected changes were mostly a consequence rather than a cause of the different disease progression in the two diet groups. Hence, the developed microarray constitutes an excellent diagnostic tool to address changes associated with the action of intestinal pathogens, but lacks a prognostic value to predict in advance the different susceptibility of growing fish to the current pathogen.
Collapse
Affiliation(s)
- Josep A Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Department of Marine Species Biology, Culture and Pathology, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Ribera de Cabanes, Castellón, 12595, Spain
| | | | | | | | | | | |
Collapse
|
15
|
Larsson T, Mørkøre T, Kolstad K, Østbye TK, Afanasyev S, Krasnov A. Gene expression profiling of soft and firm Atlantic salmon fillet. PLoS One 2012; 7:e39219. [PMID: 22745718 PMCID: PMC3379969 DOI: 10.1371/journal.pone.0039219] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 05/17/2012] [Indexed: 11/19/2022] Open
Abstract
Texture of salmon fillets is an important quality trait for consumer acceptance as well as for the suitability for processing. In the present work we measured fillet firmness in a population of farmed Atlantic salmon with known pedigree and investigated the relationship between this trait and gene expression. Transcriptomic analyses performed with a 21 K oligonucleotide microarray revealed strong correlations between firmness and a large number of genes. Highly similar expression profiles were observed in several functional groups. Positive regression was found between firmness and genes encoding proteasome components (41 genes) and mitochondrial proteins (129 genes), proteins involved in stress responses (12 genes), and lipid metabolism (30 genes). Coefficients of determination (R(2)) were in the range of 0.64-0.74. A weaker though highly significant negative regression was seen in sugar metabolism (26 genes, R(2) = 0.66) and myofiber proteins (42 genes, R(2) = 0.54). Among individual genes that showed a strong association with firmness, there were extracellular matrix proteins (negative correlation), immune genes, and intracellular proteases (positive correlation). Several genes can be regarded as candidate markers of flesh quality (coiled-coil transcriptional coactivator b, AMP deaminase 3, and oligopeptide transporter 15) though their functional roles are unclear. To conclude, fillet firmness of Atlantic salmon depends largely on metabolic properties of the skeletal muscle; where aerobic metabolism using lipids as fuel, and the rapid removal of damaged proteins, appear to play a major role.
Collapse
|
16
|
Mehinto AC, Martyniuk CJ, Spade DJ, Denslow ND. Applications for next-generation sequencing in fish ecotoxicogenomics. Front Genet 2012; 3:62. [PMID: 22539934 PMCID: PMC3336092 DOI: 10.3389/fgene.2012.00062] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 03/02/2012] [Indexed: 01/23/2023] Open
Abstract
The new technologies for next-generation sequencing (NGS) and global gene expression analyses that are widely used in molecular medicine are increasingly applied to the field of fish biology. This has facilitated new directions to address research areas that could not be previously considered due to the lack of molecular information for ecologically relevant species. Over the past decade, the cost of NGS has decreased significantly, making it possible to use non-model fish species to investigate emerging environmental issues. NGS technologies have permitted researchers to obtain large amounts of raw data in short periods of time. There have also been significant improvements in bioinformatics to assemble the sequences and annotate the genes, thus facilitating the management of these large datasets.The combination of DNA sequencing and bioinformatics has improved our abilities to design custom microarrays and study the genome and transcriptome of a wide variety of organisms. Despite the promising results obtained using these techniques in fish studies, NGS technologies are currently underused in ecotoxicogenomics and few studies have employed these methods. These issues should be addressed in order to exploit the full potential of NGS in ecotoxicological studies and expand our understanding of the biology of non-model organisms.
Collapse
Affiliation(s)
- Alvine C Mehinto
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | | | | | | |
Collapse
|
17
|
Tine M, Guinand B, Durand JD. Variation in gene expression along a salinity gradient in wild populations of the euryhaline black-chinned tilapia Sarotherodon melanotheron. JOURNAL OF FISH BIOLOGY 2012; 80:785-801. [PMID: 22471799 DOI: 10.1111/j.1095-8649.2012.03220.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This study evaluated variation in expression of 11 genes within and among six wild populations of the black-chinned tilapia Sarotherodon melanotheron distributed along a salinity gradient from 0 to 100. Previous laboratory studies had shown that expression of these genes was sensitive to water salinity; the current study confirmed that a number of them also varied in expression in wild populations along the salinity gradient. Principal component analysis (PCA) first distinguished two, not mutually exclusive, sets of genes: trade-off genes that were highly expressed at one or other extreme of the salinity gradient and stress genes that were up-regulated at the two salinity extremes (i.e. a U-shaped expression pattern). The PCA clearly partitioned the populations into three groups based on their gene expression patterns and their position along the salinity gradient: a freshwater (GL; 0) population, four brackish and seawater (GB, HB, SM, SF; ranging from 20 to 50) populations and a hypersaline (SK, 100) population. Individual variation in gene expression was significantly greater within the populations at the extreme compared to intermediate salinities. These results reveal phenotypically plastic regulation of gene expression in S. melanotheron, and greater osmoregulatory and plasticity costs at extreme salinities, where fitness-related traits are known to be altered.
Collapse
Affiliation(s)
- M Tine
- Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, D-14195 Berlin, Germany.
| | | | | |
Collapse
|
18
|
Mazurais D, Darias M, Zambonino-Infante J, Cahu C. Transcriptomics for understanding marine fish larval development1This review is part of a virtual symposium on current topics in aquaculture of marine fish and shellfish. CAN J ZOOL 2011. [DOI: 10.1139/z11-036] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The larval phase is a crucial period in the life of marine fish. During this phase, the organism will acquire the phenotype of an adult fish through the development of tissues and organs and the maturation of some of the principal physiological functions. Many biological processes (differentiation, cellular proliferation, growth, etc.) are regulated during this period. These regulations take place at different biological levels and particularly concern the expression of genes involved in larval ontogenesis processes. The development of bioinformatic resources (DNA or cDNA sequences) and molecular tools enabling high throughput gene expression analysis (microarrays) have allowed the transcriptome of marine fish species to be studied. In the present review, we summarize the main findings from transcriptomic investigations of development of marine fish larvae. Special attention is paid to investigations of transcriptomic patterns during postembryonic development and to the impact of environmental or nutritional factors on the transcriptome of marine fish larvae. Transcriptomic approaches will be especially useful in the future for investigating the effect of temperature and water acidification (or pH) on the development of different fish species in the context of global climate change.
Collapse
Affiliation(s)
- D. Mazurais
- Institut Français de Recherche pour l’Exploitation de la Mer (IFREMER), Technopole Brest Iroise, BP70, 29280 Plouzané, France
| | - M. Darias
- Investigación y Tecnología Agroalimentarias – Centre de Sant Carles de la Ràpita (IRTA–SCR), Unitat de Cultius Experimentals, Carretera del Poble Nou s/n, 43540 – Sant Carles de la Ràpita, Spain
| | - J.L. Zambonino-Infante
- Institut Français de Recherche pour l’Exploitation de la Mer (IFREMER), Technopole Brest Iroise, BP70, 29280 Plouzané, France
| | - C.L. Cahu
- Institut Français de Recherche pour l’Exploitation de la Mer (IFREMER), Technopole Brest Iroise, BP70, 29280 Plouzané, France
| |
Collapse
|
19
|
Bittner D, Cossins AR, Segner H, Excoffier L, Largiadèr CR. Identification of candidate genes and physiological pathways involved in gonad deformation in whitefish (Coregonus spp.) from Lake Thun, Switzerland. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2011; 8:2706-33. [PMID: 21845154 PMCID: PMC3155325 DOI: 10.3390/ijerph8072706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/07/2011] [Accepted: 06/15/2011] [Indexed: 11/17/2022]
Abstract
In 2000, fishermen reported the appearance of deformed reproductive organs in whitefish (Coregonus spp.) from Lake Thun, Switzerland. Despite intensive investigations, the causes of these abnormalities remain unknown. Using gene expression profiling, we sought to identify candidate genes and physiological processes possibly associated with the observed gonadal deformations, in order to gain insights into potential causes. Using in situ-synthesized oligonucleotide arrays, we compared the expression levels at 21,492 unique transcript probes in liver and head kidney tissue of male whitefish with deformed and normally developed gonads, respectively. The fish had been collected on spawning sites of two genetically distinct whitefish forms of Lake Thun. We contrasted the gene expression profiles of 56 individuals, i.e., 14 individuals of each phenotype and of each population. Gene-by-gene analysis revealed weak expression differences between normal and deformed fish, and only one gene, ictacalcin, was found to be up-regulated in head kidney tissue of deformed fish from both whitefish forms, However, this difference could not be confirmed with quantitative real-time qPCR. Enrichment analysis on the level of physiological processes revealed (i) the involvement of immune response genes in both tissues, particularly those linked to complement activation in the liver, (ii) proteolysis in the liver and (iii) GTPase activity and Ras protein signal transduction in the head kidney. In comparison with current literature, this gene expression pattern signals a chronic autoimmune disease in the testes. Based on the recent observations that gonad deformations are induced through feeding of zooplankton from Lake Thun we hypothesize that a xenobiotic accumulated in whitefish via the plankton triggering autoimmunity as the likely cause of gonad deformations. We propose several experimental strategies to verify or reject this hypothesis.
Collapse
Affiliation(s)
- David Bittner
- Computational and Molecular Populations Genetics Lab, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland; E-Mails: (D.B.); (L.E.)
| | - Andrew R. Cossins
- Liverpool Microarray Facility, School of Biological Sciences, University of Liverpool, L69 7ZB Liverpool, UK; E-Mail:
| | - Helmut Segner
- Centre for Fish and Wildlife Health, University of Bern, Laenggass-Strasse 122, PO-Box 8466, 3001 Bern, Switzerland; E-Mail:
| | - Laurent Excoffier
- Computational and Molecular Populations Genetics Lab, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland; E-Mails: (D.B.); (L.E.)
| | - Carlo R. Largiadèr
- Institute of Clinical Chemistry, University Hospital, University of Bern, Inselspital, 3010 Bern, Switzerland
| |
Collapse
|
20
|
Fernandino JI, Popesku JT, Paul-Prasanth B, Xiong H, Hattori RS, Oura M, Strüssmann CA, Somoza GM, Matsuda M, Nagahama Y, Trudeau VL. Analysis of sexually dimorphic expression of genes at early gonadogenesis of pejerrey Odontesthes bonariensis using a heterologous microarray. Sex Dev 2011; 5:89-101. [PMID: 21325793 DOI: 10.1159/000324423] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2010] [Indexed: 12/29/2022] Open
Abstract
The process of morphological development of a differentiated gonad from an undifferentiated primordium is a very important step of gonadogenesis. Studies on sexually dimorphic gene expression are important to increase our understanding of this process and to investigate how environmental factors such as temperature can regulate gonadal development. The aim of this study was to identify putative genes involved in sex differentiation in pejerrey (Odontesthes bonariensis) reared at male- and female-producing temperatures (MPT and FPT, respectively) using a microarray heterologous from the medaka (Oryzias latipes), a closely phylogenetic species. Genes related to numerous processes presented higher expression at MPT, including those involved in muscular contraction, metabolic pathways, developmental processes, and reproduction. Genes induced by FPT were classified under the gene ontology terms of response to stimulus, transport and proteolysis. From genes selected for validation, at MPT ndrg3 expression was observed in the somatic cells, whereas pen-2 was detected in germ cells in the caudal portion of the gonads, where no apoptotic signals were observed. Finally, hsp90 was highly expressed in somatic cells of the gonads at the FPT. The results suggest that the interplay of pro-apoptotic and anti-apoptotic genes is important during the masculinization process and for the prevention of sterility following exposure to warm temperatures.
Collapse
Affiliation(s)
- J I Fernandino
- Laboratorio de Ictiofisiología y Acuicultura, Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina. fernandino @ intech.gov.ar
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Cerdà J, Douglas S, Reith M. Genomic resources for flatfish research and their applications. JOURNAL OF FISH BIOLOGY 2010; 77:1045-1070. [PMID: 21039490 DOI: 10.1111/j.1095-8649.2010.02695.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Flatfishes are a group of teleosts of high commercial and environmental interest, whose biology is still poorly understood. The recent rapid development of different 'omic' technologies is, however, enhancing the knowledge of the complex genetic control underlying different physiological processes of flatfishes. This review describes the different functional genomic approaches and resources currently available for flatfish research and summarizes different areas where microarray-based gene expression analysis has been applied. The increase in genome sequencing data has also allowed the construction of genetic linkage maps in different flatfish species; these maps are invaluable for investigating genome organization and identifying genetic traits of commercial interest. Despite the significant progress in this field, the genomic resources currently available for flatfish are still scarce. Further intensive research should be carried out to develop larger genomic sequence databases, high-density microarrays and, more detailed, complete linkage maps, using second-generation sequencing platforms. These tools will be crucial for further expanding the knowledge of flatfish physiology, and it is predicted that they will have important implications for wild fish population management, improved fish welfare and increased productivity in aquaculture.
Collapse
Affiliation(s)
- J Cerdà
- Laboratory of Institut de Recerca i Tecnologia Agroalimentàries (IRTA) - Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Passeig marítim 37-49, 08003 Barcelona, Spain.
| | | | | |
Collapse
|
22
|
Castilho PC, Buckley BA, Somero G, Block BA. Heterologous hybridization to a complementary DNA microarray reveals the effect of thermal acclimation in the endothermic bluefin tuna (Thunnus orientalis). Mol Ecol 2009; 18:2092-102. [PMID: 19389180 DOI: 10.1111/j.1365-294x.2009.04174.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The temperature stress that pelagic fishes experience can induce physiological and behavioural changes that leave a signature in gene expression profiles. We used a functional genomics approach to identify genes that were up- or down-regulated following thermal stress in the Pacific bluefin tuna. Following the acclimation period, 113, 81 and 196 genes were found to be differentially expressed between the control (20 degrees C) and cold (15 degrees) treatment groups, in ventricle, red muscle and white muscle, respectively. The genes whose expression levels were responsive to thermal acclimation varied according to muscle fibre type, perhaps reflecting the tissue-specific degrees of endothermy characteristic of this species.
Collapse
Affiliation(s)
- Pedro C Castilho
- Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA.
| | | | | | | |
Collapse
|
23
|
Yano A, von Schalburg K, Cooper G, Koop BF, Yoshizaki G. Identification of a molecular marker for type A spermatogonia by microarray analysis using gonadal cells from pvasa-GFP transgenic rainbow trout (Oncorhynchus mykiss). Mol Reprod Dev 2009; 76:246-54. [PMID: 18646050 DOI: 10.1002/mrd.20947] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The spermatogonia of fish can be classified as being either undifferentiated type A spermatogonia or differentiated type B spermatogonia. Although type A spermatogonia, which contain spermatogonial stem cells, have been demonstrated to be a suitable material for germ cell transplantation, no molecular markers for distinguishing between type A and type B spermatogonia in fish have been developed to date. We therefore sought to develop a molecular marker for type A spermatogonia in rainbow trout. Using GFP-dependent flow cytometry (FCM), enriched fractions of type A and type B spermatogonia, testicular somatic cells, and primordial germ cells were prepared from rainbow trout possessing the green fluorescent protein (GFP) gene driven by trout vasa regulatory regions (pvasa-GFP rainbow trout). The gene-expression profiles of each cell fraction were then compared with a microarray containing cDNAs representing 16,006 genes from several salmonid species. Genes exhibiting high expression for type A spermatogonia relative to above-mentioned other types of gonadal cells were identified and subjected to RT-PCR and quatitative PCR analysis. Since only the rainbow trout notch1 homologue showed significantly high expression in the type A spermatogonia-enriched fraction, we propose that notch1 may be a useful molecular marker for type A spermatogonia. The combination of GFP-dependent FCM and microarray analysis of pvasa-GFP rainbow trout can therefore be applied to the identification of potentially useful molecular markers of germ cells in fish.
Collapse
Affiliation(s)
- Ayaka Yano
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | | | | | | | | |
Collapse
|
24
|
O'Dowd C, Mothersill CE, Cairns MT, Austin B, Lyng FM, McClean B, Talbot A, Murphy JEJ. Gene expression and enzyme activity of mitochondrial proteins in irradiated rainbow trout (Oncorhynchus mykiss, Walbaum) tissues in vitro. Radiat Res 2009; 171:464-73. [PMID: 19397447 DOI: 10.1667/rr1484.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In recent years ethical, legislative and economic pressures have created a renewed interest in the development of alternatives to in vivo animal experiments. In vitro studies, particularly those using cell cultures, have been used increasingly as tools to assess the degree of toxicity associated with or present in particular environments. While cell cultures are useful to give relative toxicity values, genotypic and phenotypic integrity may be compromised in the continuous artificial environment they experience. In addition, cell cultures lack the complexity of functional organs and thus do not truly represent the effects that toxins exert on organ and organism functionality. In this study, ex vivo tissue cultures of rainbow trout gill, skin and spleen samples were analyzed for variation of expression in genes associated with oxidative phosphorylation after exposure to ionizing radiation. Significant radiation-induced changes in gene expression and enzyme activity associated with the mitochondrial oxidative phosphorylation process were identified. The tissues examined in this study demonstrated an exposure threshold at which radiation dose stimulates an alteration in the regulatory activity of mitochondrial-associated genes. Spleen tissues exposed to low levels of radiation (0.1 Gy) appeared most sensitive whereas skin tissues proved least sensitive, reacting only to higher doses (>1 Gy). We propose this investigative approach as an innovative alternative to in vivo studies because it identifies toxic exposure in vitro and could significantly reduce the number of live-animal toxicity tests required.
Collapse
Affiliation(s)
- Colm O'Dowd
- Radiation and Environmental Science Centre, Focas Institute, Dublin Institute of Technology, Dublin 8, Ireland.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Holth TF, Nourizadeh-Lillabadi R, Blaesbjerg M, Grung M, Holbech H, Petersen GI, Aleström P, Hylland K. Differential gene expression and biomarkers in zebrafish (Danio rerio) following exposure to produced water components. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2008; 90:277-291. [PMID: 18963085 DOI: 10.1016/j.aquatox.2008.08.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 08/26/2008] [Accepted: 08/27/2008] [Indexed: 05/27/2023]
Abstract
The main effluent from oil and gas production is produced water (PW), a waste that contains low to moderate concentrations of oil-derived substances such as polycyclic aromatic hydrocarbons (PAHs) and alkylphenols (APs). PW components may be present in seawater at low concentrations over large areas in the vicinity of oil and gas production facilities. In this study, zebrafish (Danio rerio) were exposed to control and three treatments (high-, pulsed-, low-dose) of a synthetic PW mixture for 1, 7 and 13 weeks. The aim was to investigate the development of transcriptome and biomarker responses as well as relationships between early responses and population-relevant effects. The synthetic PW contained a mixture of low-molecular-weight PAHs (<5 ring) and short-chain APs (C1-C4). The water-borne exposure levels (sum PAH) ranged from 0.54 ppb (low dose) to 5.4 ppb (high dose). Bile pyrene metabolites ranged from 17-133 ng g(-1) bile in the control group to 23-1081 ng g(-1) bile in the high exposure group. Similar levels have been observed in wild fish, confirming an environmentally relevant exposure. The expression of mRNAs of hepatic genes was investigated in the high exposure group using the Zebrafish OligoLibrary from Compugen. Functional clustering analysis revealed effects in the reproductive system, the nervous system, the respiratory system, the immune system, lipid metabolism, connective tissue and in a range of functional categories related to cell cycle and cancer. The majority of differentially expressed mRNAs of genes were down-regulated, suggesting reduction in gene transcription to be as relevant as up-regulation or induction when assessing biological responses to PW exposure. Biomarkers for effects of PAHs (cytochrome P450 1A) and environmental estrogens (vitellogenin) did not appear to be affected by the chronic exposure to low concentration of PW components. Effects at the population level included a reduction in condition factor in male fish from all exposed groups and spinal column deformations in the F1 generation of exposed groups. The different exposure regimes did not produce any significant differences in reproduction or recruitment. The results from this study demonstrate that environmentally relevant concentrations of PW affect gene expression and population-relevant endpoints in zebrafish, although links between the two were not obvious.
Collapse
Affiliation(s)
- T F Holth
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Carvan MJ, Incardona JP, Rise ML. Meeting the Challenges of Aquatic Vertebrate Ecotoxicology. Bioscience 2008. [DOI: 10.1641/b581105] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
28
|
Martin SAM, Collet B, Mackenzie S, Evensen O, Secombes CJ. Genomic Tools for Examining Immune Gene Function in Salmonid Fish. ACTA ACUST UNITED AC 2008. [DOI: 10.1080/10641260802325476] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Garcia-Reyero N, Griffitt RJ, Liu L, Kroll KJ, Farmerie WG, Barber DS, Denslow ND. Construction of a robust microarray from a non-model species (largemouth bass) using pyrosequencing technology. JOURNAL OF FISH BIOLOGY 2008; 72:2354-2376. [PMID: 19936325 PMCID: PMC2779536 DOI: 10.1111/j.1095-8649.2008.01904.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A novel custom microarray for largemouth bass (Micropterus salmoides) was designed with sequences obtained from a normalized cDNA library using the 454 Life Sciences GS-20 pyrosequencer. This approach yielded in excess of 58 million bases of high-quality sequence. The sequence information was combined with 2,616 reads obtained by traditional suppressive subtractive hybridizations to derive a total of 31,391 unique sequences. Annotation and coding sequences were predicted for these transcripts where possible. 16,350 annotated transcripts were selected as target sequences for the design of the custom largemouth bass oligonucleotide microarray. The microarray was validated by examining the transcriptomic response in male largemouth bass exposed to 17beta-oestradiol. Transcriptomic responses were assessed in liver and gonad, and indicated gene expression profiles typical of exposure to oestradiol. The results demonstrate the potential to rapidly create the tools necessary to assess large scale transcriptional responses in non-model species, paving the way for expanded impact of toxicogenomics in ecotoxicology.
Collapse
Affiliation(s)
- Natàlia Garcia-Reyero
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, USA
| | - Robert J. Griffitt
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, USA
| | - Li Liu
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, USA
| | - Kevin J. Kroll
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, USA
| | - William G. Farmerie
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, USA
| | - David S. Barber
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, USA
| | - Nancy D. Denslow
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, USA
- Corresponding author: CEHT. 471 Mowry Road. Gainesville, FL-32611. USA. Phone: +1-352-392-2243 ext 5583. Fax: +1-352-392-4707.
| |
Collapse
|
30
|
Lv W, Zhang Y, Wu Z, Chu L, Koide SS, Chen Y, Yan Y, Li Y. Identification of WSB1 gene as an important regulator in the development of zebrafish embryo during midblastula transition. Acta Biochim Biophys Sin (Shanghai) 2008; 40:478-88. [PMID: 18535746 DOI: 10.1111/j.1745-7270.2008.00427.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
To uncover novel genes potentially involved in embryo development, especially at the midblastula transition (MBT) phase in the developing embryo of zebrafish, Affymetrix zebrafish GeneChip microarray analysis was carried out on the expression of 14,900 gene transcripts. The results of the analysis showed that 360 genes were clearly up-regulated and 119 genes were markedly down-regulated. Many of these genes were involved in transcription factor activity, nucleic acid binding, and cell growth. The present study showed that significant changes in transcript abundance occurred during the MBT phase. The expression of eight of these 479 genes was identified by reverse transcription-polymerase chain reaction analysis, confirming the microarray results. The WSB1 gene, found to be down-regulated by the microarray and reverse transcription-polymerase chain reaction analyses, was selected for further study. Sequence analysis of the WSB1 gene showed that it encodes a protein with 75% identity to the corresponding active human orthologs. In addition, WSB1 gene expression was detected at a higher level at 2 h post fertilization and at a lower level at 4 h post fertilization, consistent with the chip results. Overexpression of the WSB1 gene can result in the formation of abnormalities in embryos, as determined by fluorescence-activated cell sorting. The present study showed unequivocally that the occurrence of WSB1 expression is an important event during the MBT phase in the development of zebrafish embryos.
Collapse
Affiliation(s)
- Wenjian Lv
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Science, Shanghai 200031, China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Darawiroj D, Kondo H, Hirono I, Aoki T. Immune-related gene expression profiling of yellowtail (Seriola quinqueradiata) kidney cells stimulated with ConA and LPS using microarray analysis. FISH & SHELLFISH IMMUNOLOGY 2008; 24:260-266. [PMID: 18083599 DOI: 10.1016/j.fsi.2007.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Revised: 07/17/2007] [Accepted: 07/29/2007] [Indexed: 05/25/2023]
Abstract
To better understand the immune system of a commercially important fish (yellowtail, Seriola quinqueradiata), we constructed a cDNA microarray containing 1001 selected genes from yellowtail EST and used this to investigate gene expression of primary cultured kidney cells stimulated with ConA and LPS. The total number of up-regulated genes stimulated by LPS was apparently greater than that of ConA stimulation, whereas down-regulated genes were markedly found in ConA-stimulated group. Of the genes that were up-regulated at 3, 6, and 12h after LPS treatment, 12%, 13% and 12%, respectively, were immune-related. Immune-related genes were sorted into 4 groups based on their differential expression patterns against LPS induction. LPS induced the expression of genes related to inflammation, cytokine activity, antigen presentation and antigen binding such as, IL-1beta, CC chemokine with stalk CK2, MHC class II beta chain and immunoglobulin heavy chain. Amplified fragments of RT-PCR products of IgM, IL-1beta, nephrosin, and beta-actin had signal intensities that were comparable to those obtained with the microarray. Overall, these results show that microarrays are a promising tool for uncovering immune mechanism in teleost fish. cDNA sequences of genes were deposited in the GenBank database at DDBJ with accession numbers BB 996897-BB 997897.
Collapse
Affiliation(s)
- Damri Darawiroj
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo, Japan
| | | | | | | |
Collapse
|